共查询到20条相似文献,搜索用时 0 毫秒
1.
Jie Gao Yue Ma Hua-Lin Fu Qian Luo Zhen Wang Yu-Huan Xiao Hao Yang Da-Xiang Cui Wei-Lin Jin 《蛋白质与细胞》2016,7(5):351
The methylcytosine dioxygenases TET proteins (TET1, TET2, and TET3) play important regulatory roles in neural function. In this study, we investigated the role of TET proteins in neuronal differentiation using Neuro2a cells as a model. We observed that knockdown of TET1, TET2 or TET3 promoted neuronal differentiation of Neuro2a cells, and their overexpression inhibited VPA (valproic acid)-induced neuronal differentiation, suggesting all three TET proteins negatively regulate neuronal differentiation of Neuro2a cells. Interestingly, the inducing activity of TET protein is independent of its enzymatic activity. Our previous studies have demonstrated that srGAP3 can negatively regulate neuronal differentiation of Neuro2a cells. Furthermore, we revealed that TET1 could positively regulate srGAP3 expression independent of its catalytic activity, and srGAP3 is required for TET-mediated neuronal differentiation of Neuro2a cells. The results presented here may facilitate better understanding of the role of TET proteins in neuronal differentiation, and provide a possible therapy target for neuroblastoma. 相似文献
2.
3.
4.
5.
Virginia Avellana-Adalid Gerard Rebel Michel Caron Jean-Denis Cornillot Dominique Bladier Raymonde Joubert-Caron 《Glycoconjugate journal》1994,11(4):286-291
The distribution of a 14.4 kDa S-type lectin was examined in murine neuroblastoma cells, either undifferentiated or after differentiation induced by dibutyryl-cyclic adenosine monophosphate. In undifferentiated cells the immunoreactivity was detected extracellularly, associated with the plasma membrane and in bulges released into the extracellular milieu. Important modifications of the lectin localization were associated with the differentiation process that induced an increased cytosolic expression and a decreased externalization. Possible functions for the lectin expressed intracellularly in the differentiated cells are also considered. 相似文献
6.
7.
Leonardo D’Aiuto Yun Zhi Dhanjit Kumar Das Madeleine R Wilcox Jon W Johnson Lora McClain Matthew L MacDonald Roberto Di Maio Mark E Schurdak Paolo Piazza Luigi Viggiano Robert Sweet Paul R Kinchington Ayantika G Bhattacharjee Robert Yolken Vishwajit L Nimgaonka 《Organogenesis》2014,10(4):365-377
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases. 相似文献
8.
9.
Yan XD Hanson AJ Nahreini P Koustas WT Andreatta C Prasad KN 《In vitro cellular & developmental biology. Animal》2002,38(9):529-537
An elevation of the intracellular levels of adenosine 3',5'-cyclic monophosphate (cAMP) induces terminal differentiation in neuroblastoma (NB) cells in culture; however, genetic alterations during differentiation have not been fully identified. To investigate this, we used Mouse Genome U74A microarray containing approximately 6000 functionally characterized genes to measure changes in gene expression in murine NB cells 30 min and 4, 24, and 72 h after treatment with cAMP-stimulating agents. Based on the time of increase in differentiated functions and their status (reversible versus irreversible) after treatment with cAMP-stimulating agents, the induction of differentiation in NB cells was divided into three distinct phases: initiation (about 4 h after treatment when no increase in differentiated functions is detectable), promotion (about 24 h after treatment when an increase in differentiated functions occurs, but they are reversible upon the removal of cAMP), and maintenance (about 72 h after treatment when differentiated functions are maximally expressed, but they are irreversible upon the removal of cAMP). Results showed that alterations in expression of genes regulating cell growth, proliferation, apoptosis, and necrosis occurred during cAMP-induced differentiation of NB cells. Genes that were upregulated during the initiation, promotion, or maintenance phase were called initiators, promoters, or maintainers of differentiation. Genes that were downregulated during the initiation, promotion, or maintenance phase were called suppressors of initiation, promotion, or maintenance phase. Genes regulating growth may act as initiators, promoters, maintainers, or suppressors of these phases. Genes regulating cell proliferation may primarily act as suppressors of promotion. Genes regulating cell cycle may behave as suppressors of initiation or promotion, whereas those regulating apoptosis and necrosis may act as initiators or suppressors of initiation or promotion. The fact that genetic signals for differentiation occurred 30 min after treatment with cAMP, whereas cell-cycle genes were downregulated at a later time, suggests that decision for NB cells to differentiate is made earlier and not at the cell-cycle stage, as commonly believed. 相似文献
10.
Neuronal differentiation involving neurite growth is dependent on environmental cues which are relayed by signalling pathways to actin cytoskeletal remodelling. C3G, the exchange factor for Rap1, functions in pathways leading to actin reorganization and filopodia formation, processes required during neurite growth. In the present study, we have analyzed the function of C3G, in regulating neuronal cell survival and plasticity. Human neuroblastoma cells, IMR-32 induced to differentiate by serum starvation or by treatment with nerve growth factor (NGF) or forskolin showed enhanced C3G protein levels. Transient over-expression of C3G stimulated neurite growth and also increased responsiveness to NGF and serum deprivation induced differentiation. C3G-induced neurite growth was dependent on both its catalytic and N-terminal regulatory domains, and on the functions of Cdc42 and Rap1. Knockdown of C3G using small hairpin RNA inhibited forskolin and NGF-induced morphological differentiation of IMR-32 cells. Forskolin-induced differentiation was dependent on catalytic activity of C3G. Forskolin and NGF treatment resulted in phosphorylation of C3G at Tyr504 predominantly in the Golgi. C3G expression induced the cell cycle inhibitor p21 and C3G knockdown enhanced cell death in response to serum starvation. These findings demonstrate a novel function for C3G in regulating survival and differentiation of human neuroblastoma cells. 相似文献
11.
Insulin-like growth factor-I (IGF-I) is translated as a pre-pro-peptide that is posttranslationally processed to its mature form by proteolytic removal of the signal peptide and the E-domain peptide. Contrary to the mature human (h) IGF-I, the recombinant rtEa4 -peptide significantly reduced the anchorage-independent cell growth in human neuroblastoma cells (SK-N-F1), shown by colony formation assay in vitro. Significant inhibition of colony formation is also observed in SK-N-F1 cells stably transfected with a bicistronic expression construct encoding a secretory form of the rtEa4 peptide. Furthermore, treatment with the recombinant rtEa4 peptide, but not the mature hIGF-I, resulted in morphological differentiation of SK-N-F1 cells characterized by long neurite outgrowth. Similar morphological differentiation is also observed in SK-N-F1 cell clones stably transfected with the rtEa4 peptide expression construct. A spectrum of biological activities similar to those of rtEa4 peptide is also observed in the synthetic hEb peptide, but not-the hEa peptide. Results of further characterization reveal that neurites induced by rtEa4 or hEb peptide contain neuronal-specific MAP-2, Tau, and neurofilament (NF-160), accompanied by an increased expression of the neuronal marker gene neuropeptide tyrosine (NPY). Furthermore, effects of signal transduction inhibitors are indicative of the involvement of MAP-kinase PI-3-kinase cascades. The activation of ERK-1/-2 is markedly increased in response to rtEa-4 or hEb peptide stimulation, further indicating the involvement of MAPK signaling cascade. These unique biological activities exhibited by the rtEa4 or hEb peptide suggest that E peptide of the pro-IGF-I may play distinct roles in regulating cell growth and differentiation in neuroblastoma cells. 相似文献
12.
R.L. Konger S.D. Billings N.C. Prall T.M. Katona S.C. DaSilva C.R.J. Kennedy S. Badve S.M. Perkins P.T. LaCelle 《Prostaglandins, leukotrienes, and essential fatty acids》2009,81(4):279-290
We have previously demonstrated that the EP1 subtype of PGE2 receptor is expressed in the differentiated compartment of normal human epidermis and is coupled to intracellular calcium mobilization. We therefore hypothesized that the EP1 receptor is coupled to keratinocyte differentiation. In in vitro studies, radioligand binding, RT-PCR, immunoblot and receptor agonist-induced second messenger studies demonstrate that the EP1 receptor is up-regulated by high cell density in human keratinocytes and this up-regulation precedes corneocyte formation. Moreover, two different EP1 receptor antagonists, SC51322 and AH6809, both inhibited corneocyte formation. SC51322 also inhibited the induction of differentiation-specific proteins, cytokeratin K10 and epidermal transglutaminase. We next examined the immunolocalization of the EP1 receptor in non-melanoma skin cancer in humans. Well-differentiated SCCs exhibited significantly greater membrane staining, while spindle cell carcinomas and BCCs had significantly decreased membrane staining compared with normal epidermis. This data supports a role for the EP1 receptor in regulating keratinocyte differentiation. 相似文献
13.
Byung-Chang Suh Jong-So Kim Uk Namgung Sung Han Kyong-Tai Kim 《Journal of neurochemistry》2001,77(6):1475-1485
Rhythmic noradrenergic signaling from the hypothalamic clock in the suprachiasmatic nucleus to the pineal gland causes an increase in intracellular cAMP which regulates the circadian fluctuation of melatonin synthesis. The activation of phospholipase C (PLC)-coupled P2Y(2) receptors upon treatment with ATP and UTP exclusively inhibited the isoproterenol-stimulated cAMP production in mouse pineal gland tumor cells. However, the activation of other PLC-coupled receptors including P2Y(1) and bombesin receptors had little or no effect on the isoproterenol-stimulated cAMP production. Also, ATP did not inhibit cAMP production caused by forskolin, prostaglandin E(2), or the adenosine analog NECA. These results suggest a selective coupling between signalings of P2Y(2) and beta(2)-adrenergic receptors. The binding of [(3)H]CGP12177 to beta(2)-adrenergic receptors was not effected by the presence of ATP or UTP. Ionomycin decreased the isoproterenol-stimulated cAMP production, whereas phorbol 12-myristate 13-acetate slightly potentiated the isoproterenol response. Chelation of intracellular Ca(2+), however, had little effect on the ATP-induced inhibition of cAMP production, while it completely reversed the ionomycin-induced inhibition. Treatment of cells with pertussis toxin almost completely blocked the inhibitory effect of nucleotides. Pertussis toxin also inhibited the nucleotide-induced increase in intracellular Ca(2+) and inositol 1,4,5-trisphosphate production by 30-40%, suggesting that the ATP-mediated inhibition of the cAMP generation and the partial activation of PLC are mediated by pertussis toxin-sensitive G(i)-protein. We conclude that one of the functions of P2Y(2) receptors on the pineal gland is the selective inhibition of beta-adrenergic receptor-mediated signaling pathways via the inhibitory G-proteins. 相似文献
14.
15.
We have analysed the expression of 32 ribosomal protein (RP) mRNAs during retinoic acid induced neuronal differentiation of human NTERA2 cells. Except for a new S27 variant (S27v), all were down regulated both in selectively replated differentiated neurons and the most differentiated continuous cultures, i.e., non-replated cultures. However, the expression profiles of the individual RP mRNAs were different, most (L3, L7, L8, L10, L13, L23a, L27a, L36a, L39, P0, S2, S3, S3a, S4X, S6, S9, S12, S13, S16, S19, S20, S23, and S27a) exhibited a constant down regulation, whereas a few were either initially constant (L11, L32, S8, and S11) or up regulated (L6, L15, L17, L31, and S27y) and then down regulated. The expression of S27v remained elevated in the most differentiated continuous cultures but was down regulated in replated differentiated neurons. The down regulation of RP mRNAs was variable: the expression levels in differentiated replated neurons were between 10% (S3) and 90% (S11) of the levels in undifferentiated cells. The ratio between rRNA and RP mRNA changed during the differentiation; in differentiated neurons there were, on average, about half the number of RP mRNAs per rRNA as compared to undifferentiated cells. The expression profiles of a few translation-related proteins were also determined. EF1alpha1, EF1beta1, and EF1delta were down regulated, whereas the expression of the neuron and muscle specific EF1alpha2 increased. The reduction in the expression of RP mRNAs was coordinated with a reduction in the expression level of the proliferation marker PCNA. The expression levels of most RP mRNAs were lower in purified differentiated post-mitotic neurons than in the most differentiated continuous cultures, despite similar levels of PCNA, suggesting that both the differentiation state and the proliferative status of the cells affect the expression of RP mRNAs. 相似文献
16.
Smith AG Popov N Imreh M Axelson H Henriksson M 《Journal of cellular biochemistry》2004,92(6):1282-1295
Amplification of MYCN is one of the most important prognostic markers for neuroblastoma and is correlated with rapid tumor progression and poor prognosis. MYCN belongs to the Myc/Max/Mad/Mnt network of proteins that regulate proliferation, apoptosis, and differentiation. It is well established that MYCN is downregulated during induced differentiation of neuroblastoma cells carrying an amplified MYCN gene, but very little is known about other components of the network, i.e., the Max, Mad, and Mnt proteins, during this process. In this study we show that Mad and Mnt expression was only modestly regulated in differentiating SK-N-BE(2) neuroblastoma cells, while MYCN was rapidly downregulated. This downregulation was reflected in a decreased MYCN/Max DNA-binding activity while the Mnt/Max binding did not change during differentiation. In parallel experiments we also analyzed the Myc/Max/Mad expression and DNA binding capacity during induced differentiation in the MYCN single copy neuroblastoma cell line SH-SY5Y. In this cell line only modest changes in expression of the components of the MYCN/Max/Mad/Mnt network was detected, but since the cell line expresses relatively low levels of MYCN and c-Myc, these changes might be of functional significance. Cell cycle analyses of SK-N-BE(2) demonstrated an increase in the G1-phase fraction after RA-treatment. These data show that the decreased MYCN expression and MYCN DNA-binding is correlated with retarded cell cycle progression. Furthermore, when Mad1 or Mnt was overexpressed in SK-N-BE(2) cells they retained the capacity to differentiate, underscoring the notion that MYCN downregulation, and not changes in Mad/Mnt expression, is essential for neuroblastoma cell differentiation. 相似文献
17.
Cytokine-induced stable neuronal differentiation of human bone marrow mesenchymal stem cells in a serum/feeder cell-free condition 总被引:11,自引:0,他引:11
The characteristics and multilineage differentiation potential of bone marrow mesenchymal stem cells (BM MSC) remain controversial. This study aimed to characterize human BM MSC isolated by plastic adherent or antibody selection and their neuronal differentiation potential using growth factors or chemical inducing agents. MSC were found to express low levels of neuronal markers: neurofilament-M, beta tubulin III, and neuron specific enolase. Under a serum- and feeder cell-free condition, basic fibroblast growth factor, epidermal growth factor, and platelet-derived growth factor induced neuronal morphology in MSC. In addition to the above markers, these cells expressed neurotransmitters or associated proteins: gamma-aminobutyric acid, tyrosine hydroxylase and serotonin. These changes were maintained for up to 3 months in all bone marrow specimens (N = 6). In contrast, butylated hydroxyanisole and dimethylsulfoxide were unable to induce sustained neuronal differentiation. Our results show that MSC isolated by two different procedures produced identical lineage differentiation with defined growth factors in a serum- and feeder cell-free condition. 相似文献
18.
Dickkopf‐3 alters the morphological response to retinoic acid during neuronal differentiation of human embryonal carcinoma cells 下载免费PDF全文
Rocío Jiménez Alfonso Irantzu Gorroño‐Etxebarria Miriam Rabano Maria dM. Vivanco Robert Kypta 《Developmental neurobiology》2014,74(12):1243-1254
Dickkopf‐3 (Dkk‐3) and Dkkl‐1 (Soggy) are secreted proteins of poorly understood function that are highly expressed in subsets of neurons in the brain. To explore their potential roles during neuronal development, we examined their expression in Ntera‐2 (NT2) human embryonal carcinoma cells, which differentiate into neurons upon treatment with retinoic acid (RA). RA treatment increased the mRNA and protein levels of Dkk‐3 but not of Dkkl‐1. Ectopic expression of both Dkk‐3 and Dkkl‐1 induced apoptosis in NT2 cells. Gene silencing of Dkk‐3 did not affect NT2 cell growth or differentiation but altered their response to RA in suspension cultures. RA treatment of NT2 cells cultured in suspension resulted in morphological changes that led to cell attachment and flattening out of cell aggregates. Although there were no significant differences in the expression levels of cell adhesion molecules in control and Dkk‐3‐silenced cells, this morphological response was not observed in Dkk‐3‐silenced cells. These findings suggest that Dkk‐3 plays a role in the regulation of cell interactions during RA‐induced neuronal differentiation. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1243–1254, 2014 相似文献
19.
The sugar chain structures of the cell surface change dramatically during cellular differentiation. A human neuroblastoma cell line, GOTO, is known to differentiate into neuronal cells and Schwannian cell-like cells on treatments with dibutyryl cAMP and bromodeoxyuridine, respectively. We have examined the expression of UDP-N-acetylglucosamine: -d-mannoside -1,4N-acetylglucosaminyltransferase III (GnT-III: EC 2.4.1.144) and UDP-N-acetylglucosamine: -6-d-mannoside -1,6N-acetylglucosaminyltransferase V (GnT-V: EC 2.4.1.155), two major branch forming enzymes inN-glycan synthesis, in GOTO cells on two distinct directions of differentiation.In neuronal cell differentiation, GnT-III activity showed a slight increase during initial treatment with Bt2cAMP for 4 days and decreased drastically after the fourth day, but the mRNA level of GnT-III did not show a decrease but in fact a slight increase. GnT-V activity increased to approximately two- to three-fold the initial level with increasing mRNA level after 8 days, and lectin blot analysis showed an increase in reactivity toDatsura stramonium (DSA) of the immunoprecipitated neural cell adhesion molecule (NCAM). In Schwannian cell differentiation, the activity and mRNA level of GnT-III showed no significant change on treatment with BrdU. GnT-V activity also showed no change in spite of the gradual increase in the mRNA level. These results suggest that the activation of GnT-V during neuronal cell differentiation of GOTO cells might be a specific change for branch formation in N-glycans, and this affects the sugar chain structures of some glycoproteins such as NCAM.Abbreviations and trivial names GnT
N-acetylglucosaminyltransferase
- Bt2cAMP
N
6,O
6-dibutyryl cAMP
- BrdU
bromodeoxyuridine
- DSA
Datsura stramonium
- NCAM
neural cell adhesion molecule
- PAGE
polyacrylamide gel electrophoresis 相似文献
20.
Verstraeten SV Erlejman AG Zago MP Oteiza PI 《Archives of biochemistry and biophysics》2002,399(2):167-173
The capacity of Al(3+) to induce changes in the physical properties of plasma membrane from human neuroblastoma cells (IMR-32) was investigated, and the magnitude of the changes was compared with that obtained after cell differentiation to a neuronal phenotype. Similarly to our previous results in liposomes, Al(3+) (10 to 100 microM) caused a significant loss of membrane fluidity, being the differentiated cells more affected than the nondifferentiated cells. Al(3+) also increased the relative content of lipids in gel phase and promoted lipid rearrangement through lateral phase separation, with the magnitude of this effect being similar in nondifferentiated and differentiated cells. Since membrane physical properties depend on bilayer composition, we characterized the content of proteins, phospholipids, cholesterol, and fatty acids in the IMR-32 cells before and after differentiation. Differentiated cells had a significantly higher content of unsaturated fatty acids, creating an environment that favors Al(3+)-mediated effects on the bilayer fluidity. The neurotoxic effects of Al(3+) may be, at least in part, due to alterations of neuronal membrane physical properties, with potential consequences on the normal functioning of membrane-related cellular processes. 相似文献