首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rice (Oryza sativa L.) is seriously impacted by global soil salinization. To determine the quantitative trait loci (QTLs) related to salt tolerance in rice roots, F2:3 and BC1F2:3 populations derived from a cross between the cv. Dongnong 425 of high quality and yield and the salt-tolerant cv. Changbai 10, were studied at different development stages. Two genetic linkage maps of F2:3 and BC1F2:3 populations were constructed. A 66 mM NaCl solution was used to irrigate the field and to analyze the dynamic QTL of some rice root traits. Using unconditional and conditional QTL mapping methods, 30 unconditional QTLs and 16 conditional QTLs related to the 6 root traits were detected on the 9 rice chromosomes during different developmental stages. Fourteen pairs of unconditional and conditional QTLs were detected at the identical developmental stage in the identical population. A number of QTLs were detected at different developmental stages, however, many did not appear at the last stage. Remarkably, qRKC1 appeared continuously at multiple stages in both the populations suggesting its key role in regulating the salt tolerance of rice roots.  相似文献   

2.
水稻粒长QTL定位与主效基因的遗传分析   总被引:1,自引:0,他引:1  
该研究利用短粒普通野生稻矮杆突变体和长粒栽培稻品种KJ01组配杂交组合F_1,构建分离群体F_2;并对该群体粒长进行性状遗传分析,利用平均分布于水稻的12条染色体上的132对多态分子标记对该群体进行QTL定位及主效QTLs遗传分析,为进一步克隆新的主效粒长基因奠定基础,并为水稻粒形育种提供理论依据。结果表明:(1)所构建的水稻杂交组合分离群体F_2的粒长性状为多基因控制的数量性状。(2)对543株F_2分离群体进行QTL连锁分析,构建了控制水稻粒长的连锁遗传图谱,总长为1 713.94 cM,共检测出24个QTLs,只有3个表现为加性遗传效应,其余位点均表现为遗传负效应。(3)检测到的3个主效QTLs分别位于3号染色体的分子标记PSM379~RID24455、RID24455~RM15689和RM571~RM16238之间,且三者对表型的贡献率分别为54.85%、31.02%和7.62%。(4)在标记PSM379~RID24455之间已克隆到的粒长基因为该研究新发现的主效QTL位点。  相似文献   

3.
Roots are involved in acquisition of water and nutrients, as well as in providing structural support to plant. The root system provides a dynamic model for developmental analysis. Here, we investigated quantitative trait loci (QTL), dynamic conditional QTL and epistatic interactions for seedling root traits using an upland cotton F2 population and a constructed genetic map. Totally, 37 QTLs for root traits, 35 dynamic conditional QTLs based on the net increased amount of root traits (root tips, forks, length, surface area and volume) (i) after transplanting 10 days compared to 5 days, and (ii) after transplanting 15 days to 10 days were detected. Obvious dynamic characteristic of QTL and dynamic conditional QTL existed at different developmental stages of root because QTL and dynamic conditional QTL had not been detected simultaneously. We further confirmed that additive and dominance effects of QTL qRSA-chr1-1 in interval time 5 to 10 DAT (days after transplant) offset the effects in 10 to 15 DAT. Lots of two-locus interactions for root traits were identified unconditionally or dynamically, and a few epistatic interactions were only detected simultaneously in interval time of 5–10 DAT and 10–15 DAT, suggesting different interactive genetic mechanisms on root development at different stages. Dynamic conditional QTL and epistasis effects provide new attempts to understand the dynamics of roots and provide clues for root architecture selection in upland cotton.  相似文献   

4.
A backcross breeding strategy was used to identify quantitative trait loci (QTLs) associated with 14 traits in a BC2F2 population derived from a cross between MR219, an indica rice cultivar and an accession of Oryza rufipogon (IRGC 105491). A total of 261 lines were genotyped with 96 microsatellite markers and evaluated for plant morphology, yield components and growth period. The genetic linkage map generated for this population with an average interval size of 16.2?cM, spanning 1,553.4?cM (Kosambi) of the rice genome. Thirty-eight QTLs were identified with composite interval mapping (CIM), whereas simple interval mapping (SIM) resulted in 47 QTLs (LOD >3.0). The O. rufipogon allele was favourable for 59% of QTLs detected through CIM. Of 261 BC2F2 families, 26 advanced backcross breeding lines (BC2F5) were used for QTL validation. These lines were selected on the basis of the yield traits potentiality in BC2F3 and BC2F4 generations. The field trial was conducted at three different locations in Malaysia using randomized complete block design with three replications. Trait based marker analysis was done for QTL determination. Twenty-five QTLs were detected in BC2F5 generation whereas 29 QTLs were detected in BC2F2 generation of the same population. Two QTLs (qPL-1 and qSPL-7) were not considered for validation due to their low R 2 values and two QTLs (qPSS-3-2 and qGW-3-2) were not detected in the BC2F5 population. Fifteen QTLs showed the beneficial effect to enhance the trait value of the breeding lines. QTL validation aided to select the promising lines for further utilization.  相似文献   

5.
 A segregated F2 progeny derived from two highly divergent poplar species, Populus trichocarpa and P. deltoides, was used to evaluate the genetic basis of canopy structure and function in a clonally replicated plantation. The QTLs of large effect on growth, branch, and leaf traits were identified using the Populus linkage map constructed by 343 molecular markers. Stem height and harvest index appeared to be under the control of few QTLs with major effects, whereas variation in stem basal area, volume, and dry weight might be due to many more QTLs. Branch and leaf traits on sylleptics tended to include more QTLs with major effects than those on proleptics. In the environment where the pedigree was tested, sylleptics were very frequent in the P. trichocarpa parent but rare in the P. deltoides parent. For sylleptic traits for which two or more QTLs were identified, however, increases in the trait values were conditioned not only by the P. trichocarpa alleles, but also by the P. deltoides alleles. Similar findings were found for traits on proleptics that were differently expressed between the two parents. For both sylleptic and proleptic branch types, dominance (ranging from partial to over) was observed. The QTLs on specific linkage groups were found to be responsible for relationships between stem growth and its developmental components. Similar QTL clustering was also observed for morphological or developmental integration in poplar, i.e., traits with similar developmental origins are more strongly correlated with one another than traits with different developmental origins. The implications of these molecular genetic results for ideotype breeding of poplars are discussed. Received: 15 July 1997/Accepted: 19 August 1997  相似文献   

6.
Common wild rice (Oryza rufipogon Griff.) is the ancestor of cultivated rice (O. sativa L.), which has a greater genetic diversity and important traits that remain to be employed in cultivated rice. In this study, a set of introgression lines (BC4F5 and/or BC4F6) carrying various introgressed segments from common wild rice, collected from Dongxiang county, Jiangxi Province, China, in the background of an Indica (O. sativa L. ssp. indica) cultivar, Guichao 2, was used. A total of 12 drought-related quantitative trait loci (QTL) were identified by investigating drought tolerance of introgression lines under 30% PEG treatment at the young seedlings stage. Of these QTLs, the alleles of 4 QTLs on chromosome 2, 6 and 12 from Dongxiang common wild rice were responsible for increased drought tolerance of the introgression lines. In particular, a QTL qSDT12-2, near RM17 on chromosome 12, was consistently detected in different replications, and expressed stably under PEG stress throughout the study. It was also found that the QTLs located on different chromosomes might express at different stages.  相似文献   

7.
In plants, several population types [F2, recombinant inbred lines, backcross inbred lines (BILs), etc.] are used for quantitative trait locus (QTL) analyses. However, dissection of the trait of interest and subsequent confirmation by introgression of QTLs for breeding purposes has not been as successful as that predicted from theoretical calculations. More practical knowledge of different QTL mapping approaches is needed. In this recent study, we describe the detection and mapping of quantitative resistances to downy mildew in a set of 29 BILs of cultivated lettuce (L. sativa) containing genome segments introgressed from wild lettuce (L. saligna). Introgression regions that are associated with quantitative resistance are considered to harbor a QTL. Furthermore, we compare this with results from an already existing F2 population derived from the same parents. We identified six QTLs in our BIL approach compared to only three in the F2 approach, while there were two QTLs in common. We performed a simulation study based on our actual data to help us interpret them. This revealed that two newly detected QTLs in the BILs had gone unnoticed in the F2, due to a combination of recessiveness of the trait and skewed segregation, causing a deficit of the wild species alleles. This study clearly illustrates the added value of extended genetic studies on two different population types (BILs and F2) to dissect complex genetic traits.  相似文献   

8.
QTL mapping for plant-height traits has not been hitherto reported in high-oil maize. A high-oil maize inbred ‘GY220’ was crossed with two dent maize inbreds (‘8984’ and ‘8622’) to generate two connected F2:3 populations. Four plant-height traits were evaluated in 284 and 265 F2:3 families. Single-trait QTL mapping and multiple-trait joint QTL mapping was used to detect QTLs for the traits and the genetic relationship between plant height (PH) and two other plant-height traits. A total of 28 QTLs and 12 pairs of digenic interactions among detected QTLs for four traits were detected in the two F2:3 families. Only one marker was shared between the two populations. Joint analysis of PH with ear height (EH) and PH with top height (TH) detected 32 additional QTLs. Our results showed that QTL detection for PH was dependent on the genetic background of dent corn inbreds. Multiple-trait joint QTL analysis could increase the number of detected QTLs.  相似文献   

9.
Iron toxicity is one of the major constraints for lowland rice production in highly weathered soils, which are widely distributed in tropics and subtropics and often lack macronutrients such as potassium (K) and phosphorus (P). To analyze the genetic factors for excess iron accumulation under K or P deficiency, a set of seedlings in F3 and F8 generations from an Oryza sativa cross between a japonica cultivar ‚Gimbozu’ and an indica cultivar ‚Kasalath’ were raised and exposed to nutritional stresses in a short period under nutritional solutions. In the F8 lines, contents of K, P, Fe, and Mg in dried shoots were measured. Quantitative trait loci (QTL) for the iron accumulation and related mineral contents in each plant were analyzed with composite interval mapping. QTLs for the Fe, P and Mg content in shoots were compared in the maps of F3 and F8. The QTLs for the Fe content in shoots varied in three types of nutritional conditions, but consistently indicated two overlapping regions on chromosome 3 and 4. The obtained QTLs were crosschecked with those reported before. Some of these QTLs were indicative of iron excluding the power of the root, which was expressed under reduced P content in solution.  相似文献   

10.
Genetic map containing 103 microsatellite loci obtained on 200 F2 plants derived from the cross R15 × 478 was used for quantitative trait loci (QTL) mapping in maize. QTLs were characterized in a population of 200 F2:4 lines, derived from selfing the F2 plants, and were evaluated with two replications in two environments. QTL determinations were made from the mean of these two environments. Plant height (PH) and ear height (EH) were measured. Using composite interval mapping (CIM) method, a total of 14 distinct QTLs were identified: nine for PH and five for EH. Additive, partial dominance, dominance, and overdominance actions existed among all detected QTLs affecting plant height and ear height. The QTLs explained 78.27% of the phenotypic variance of PH and 41.50% of EH. The 14 QTLs displayed mostly dominance or partial dominance gene action and mapped to chromosomes 2, 3, 4, 8, and 9. The text was submitted by the authors in English.  相似文献   

11.
The identification of quantitative trait loci (QTLs) affecting agronomically important traits enable to understand their underlying genetic mechanisms and genetic basis of their complex interactions. The aim of the present study was to detect QTLs for 12 agronomic traits related to staygreen, plant early development, grain yield and its components, and some growth characters by analyzing replicated phenotypic datasets from three crop seasons, using the population of 168 F7 RILs of the cross 296B × IS18551. In addition, we report mapping of a subset of genic-microsatellite markers. A linkage map was constructed with 152 marker loci comprising 149 microsatellites (100 genomic- and 49 genic-microsatellites) and three morphological markers. QTL analysis was performed by using MQM approach. Forty-nine QTLs were detected, across environments or in individual environments, with 1–9 QTLs for each trait. Individual QTL accounted for 5.2–50.4% of phenotypic variance. Several genomic regions affected multiple traits, suggesting the phenomenon of pleiotropy or tight linkage. Stable QTLs were identified for studied traits across different environments, and genetic backgrounds by comparing the QTLs in the study with previously reported QTLs in sorghum. Of the 49 mapped genic-markers, 18 were detected associating either closely or exactly as the QTL positions of agronomic traits. EST marker Dsenhsbm19, coding for a key regulator (EIL-1) of ethylene biosynthesis, was identified co-located with the QTLs for plant early development and staygreen trait, a probable candidate gene for these traits. Similarly, such exact co-locations between EST markers and QTLs were observed in four other instances. Collectively, the QTLs/markers identified in the study are likely candidates for improving the sorghum performance through MAS and map-based gene isolations.  相似文献   

12.
 Nursery growth and dry weight were analyzed for F2 genotypes derived from Populus trichocarpa×P. deltoides that have been field tested with clonal replicates in three different environments. The correlations between nursery and plantation performance differed among the environments, with higher values at Boardman and Clatskanie (both planted with rooted cuttings) than Puyallup (planted with unrooted cuttings). At Puyallup, nursery height was more strongly associated with plantation growth than were nursery diameter and dry weight. Yet, this finding was not supported by QTL mapping. A single overdominant QTL on linkage group G affected the stem height of both seedlings and resprouts in the nursery but showed nonsignificant LOD scores for plantation height from ages 1 to 5 at Puyallup. A total of four QTLs were identified for nursery diameter, one of which on linkage group O also controlled plantation basal area at all ages. Two important nursery QTLs on linkage groups B and G were used to estimate the relative efficiency of marker-assisted selection for plantation productivity. Despite the fact that they were not detected in the plantation stage, these two QTLs could significantly increase the proportion of the phenotypic variance explained by plantation QTLs. Received: 5 February 1998 / Accepted: 1 April 1998  相似文献   

13.
The use of molecular markers to identify quantitative trait loci (QTLs) has the potential to enhance the efficiency of trait selection in plant breeding. The purpose of the present study was to identify additional QTLs for plant height, lodging, and maturity in a soybean, Glycine max (L.) Merr., population segregating for growth habit. In this study, 153 restriction fragment length polymorphisms (RFLP) and one morphological marker (Dt1) were used to identify QTLs associated with plant height, lodging, and maturity in 111 F2-derived lines from a cross of PI 97100 and Coker 237. The F2-derived lines and two parents were grown at Athens, Ga., and Blackville, S.C., in 1994 and evaluated for phenotypic traits. The genetic linkage map of these 143 loci covered about 1600 cM and converged into 23 linkage groups. Eleven markers remained unlinked. Using interval-mapping analysis for linked markers and single-factor analysis of variance (ANOVA), loci were tested for association with phenotypic data taken at each location as well as mean values over the two locations. In the combined analysis over locations, the major locus associated with plant height was identified as Dt1 on linkage group (LG) L. The Dt1 locus was also associated with lodging. This locus explained 67.7% of the total variation for plant height, and 56.4% for lodging. In addition, two QTLs for plant height (K007 on LG H and A516b on LG N) and one QTL for lodging (cr517 on LG J) were identified. For maturity, two independent QTLs were identified in intervals between R051 and N100, and between B032 and CpTI, on LG K. These QTLs explained 31.2% and 26.2% of the total variation for maturity, respectively. The same QTLs were identified for all traits at each location. This consistency of QTLs may be related to a few QTLs with large effects conditioning plant height, lodging, and maturity in this population.  相似文献   

14.
水稻株高构成因素的QTL剖析   总被引:5,自引:0,他引:5  
利用水稻籼粳杂交 (圭 6 30× 0 2 42 8) F1 的花药离体培养建立的一个含 81个 DH家系的作图群体 ,对水稻株高构成因素 (穗长、第 1节间长、……、第 5节间长 )进行基因定位。DH群体中株高构成因素均呈正态分布。相邻的构成因素间呈极显著的正相关 ,而相距较远的构成因素间的相关较弱或不显著。采用 QTL(Quantitative trait lo-cus)分析 ,定位了影响株高构成因素的 6个 QTL:qtl7同时影响穗长和第 1、2、3节间长 ,qtl1 和 qtl2 同时影响第 4和第 5节间长 ,qtl1 0 a和 qtl1 0 b仅影响第 1节间长 ,qtl3 仅影响第 3节间长。采用 QTL 互作分析 ,检测到 19对显著的互作 ,每个构成因素受 2个或 2个以上的 QTL 互作对的影响。并且还发现 ,同一个 QTL 互作对可能影响不同的性状 ,以及一个 QTL 可以分别与不同的 QTL 产生互作而影响同一个性状或影响不同的性状 ,但总的看来 ,加性效应是主要的。这些结果揭示了株高构成因素间相关的遗传基础 ,在水稻育种中运用这些 QTL 将有助于对株高 ,以及对穗长和上部节间长度进行精细的遗传调控。  相似文献   

15.
As a basis for genetic improvement of willow (Salix spp.) for use in wood biomass production, quantitative trait loci (QTLs) responsible for resistance to herbivores have been identified in a tetraploid hybrid F2 population originating from a cross between Salix dasyclados (Wimm.) and Salix viminalis (L.) (Salicaceae). Symptoms of herbivory, caused by various insects and game, and, in addition, leaf rust, were assessed in three field locations with varying soils and climates. Eleven damage traits (lost leaf area, leaf discoloration, leaf blisters, leaf‐mite symptoms, leaf‐margin cuts, and various estimates of shoot‐tip damage by a gall midge, game, and lepidopterans) were submitted to QTL analysis. A composite interval mapping approach was used to estimate the number of QTLs, the magnitude of the QTLs, and their position on genetic linkage maps. Most of the identified QTLs were specific for each trait and location, but a few QTLs common across the locations were also detected. Each QTL explained between 8 and 24% of the phenotypic variation, depending on damage trait and field location. Clusters of QTLs for different traits were found at several linkage groups, indicating either a common genetic base or tightly linked QTL. Our results emphasize the need for verification of QTL studies over different environments.  相似文献   

16.
Quantitative trait loci (QTLs) for body weight and tail length are mapped in an F2 population of 927 C57BL/6J × DBA/2J mice. We test the concordance between the locations of the mapped QTLs with those detected by changes of marker frequency under artificial selection in a previous experiment with the same base population. The directions of effects of the QTLs are generally in agreement, and in many cases significant QTLs are found in similar map positions, but there are also discrepancies between the two experiments. There are indications of age-specific QTL effects on growth. For body weight traits, the genetic variation in the F2 appears to result from many loci with relatively small effects. For tail length at 10 weeks, however, a single QTL on Chromosome (Chr) 1 with a peak LOD score of ∼33 contributes most of the genetic variation detected, changes the trait value by about 6%, and explains about 20% of the phenotypic variance of the trait. Received: 4 August 1998 / Accepted: 17 November 1998  相似文献   

17.
Genetic variation of bud burst and early growth components was estimated in a full-sib family of Quercus robur L. comprising 278 offspring. The full sibs were vegetatively propagated, and phenotypic assessments were made in three field tests. This two-generation pedigree was also used to construct a genetic linkage map (12 linkage groups, 128 markers) and locate quantitative trait loci (QTLs) controlling bud burst and growth components. In each field test, the date of bud burst extended over a period of 20 days from the earliest to the latest clone. Bud burst exhibited higher heritability (0.15–0.51) than growth components (0.04–0.23) and also higher correlations across field tests. Over the three tests there were 32 independent detected QTLs (P5% at the chromosome level) controlling bud burst, which likely represent at least 12 unique genes or chromosomal regions controlling this trait. QTLs explained from 3% to 11% of the variance of the clonal means. The number of QTLs controlling height growth components was lower and varied between two and four. However the contribution of each QTL to the variance of the clonal mean was higher (from 4% to 19%). These results indicate that the genetic architecture of two important fitness-related traits are quite different. On the one hand, bud burst is controlled by several QTLs with rather low to moderate effects, but contributing to a high genetic (additive) variance. On the other hand, height growth depends on fewer QTLs with moderate to strong effects, resulting in lower heritabilities of the trait.  相似文献   

18.
The razor clam (Sinonovacula constricta) is an important aquaculture species, for which a high-density genetic linkage map would play an important role in marker-assisted selection (MAS). In this study, we constructed a high-density genetic map and detected quantitative trait loci (QTLs) for Sinonovacula constricta with an F1 cross population by using the specific locus amplified fragment sequencing (SLAF-seq) method. A total of 315,553 SLAF markers out of 467.71 Mreads were developed. The final linkage map was composed of 7516 SLAFs (156.60-fold in the parents and 20.80-fold in each F1 population on average). The total distance of the linkage map was 2383.85 cM, covering 19 linkage groups with an average inter-marker distance of 0.32 cM. The proportion of gaps less than 5.0 cM was on average 96.90%. A total of 16 suggestive QTLs for five growth-related traits (five QTLs for shell height, six QTLs for shell length, three QTLs for shell width, one QTL for total body weight, and one QTL for soft body weight) were identified. These QTLs were distributed on five linkage groups, and the regions showed overlapping on LG9 and LG13. In conclusion, the high-density genetic map and QTLs for S. constricta provide a valuable genetic resource and a basis for MAS.  相似文献   

19.
The architecture of a plant affects its ability to compete for light and to respond to environmental stresses, thus affecting overall fitness and productivity. Two components of architecture, branching and height, were studied in 182 F7 recombinant inbred lines (RILs) at the vegetative, flowering and mature developmental stages in the panicoid C4 model grass system, Setaria. The RIL population was derived from a cross between domesticated S. italica (foxtail millet) and its wild relative S. viridis (green foxtail). In both field and greenhouse trials the wild parent was taller initially, started branching earlier, and flowered earlier, while the domesticated parent was shorter initially, but flowered later, producing a robust tall plant architecture with more nodes and leaves on the main culm and few or no branches. Biomass was highly correlated with height of the plant and number of nodes on the main culm, and generally showed a negative relationship with branch number. However, several of the RILs with the highest biomass in both trials were significantly more branched than the domesticated parent of the cross. Quantitative trait loci (QTL) analyses indicate that both height and branching are controlled by multiple genetic regions, often with QTL for both traits colocalizing in the same genomic regions. Genomic positions of several QTL colocalize with QTL in syntenic regions in other species and contain genes known to control branching and height in sorghum, maize, and switchgrass. Included in these is the ortholog of the rice SD-1 semi-dwarfing gene, which underlies one of the major Setaria height QTL. Understanding the relationships between height and branching patterns in Setaria, and their genetic control, is an important step to gaining a comprehensive knowledge of the development and genetic regulation of panicoid grass architecture.  相似文献   

20.
Alveolar echinococcosis (AE) is a severe hepatic disorder caused by larval infection by the fox tapeworm Echinococcus multilocularis. The course of parasitic development and host reactions are known to vary significantly among host species, and even among different inbred strains of mice. As reported previously, after oral administration of parasite eggs, DBA/2 (D2) mice showed a higher rate of cyst establishment and more advanced protoscolex development in the liver than C57BL/6 (B6) mice. These findings strongly suggest that the outcome of AE is affected by host genetic factor(s). In the present study, the genetic basis of such strain-specific differences in susceptibility/resistance to AE in murine models was studied by whole-genome scanning for quantitative trait loci (QTLs) using a backcross of (B6 × D2)F1 and D2 mice with varying susceptibility to E. multilocularis infection. For cyst establishment, genome linkage analysis identified one suggestive and one significant QTL on chromosomes (Chrs.) 9 and 6, respectively, whereas for protoscolex development, two suggestive and one highly significant QTLs were detected on Chrs. 6, 17 and 1, respectively. Our QTL analyses using murine AE models revealed that multiple genetic factors regulated host susceptibility/resistance to E. multilocularis infection. Moreover, our findings show that establishment of the parasite cysts in the liver is affected by QTLs that are distinct from those associated with the subsequent protoscolex development of the parasite, indicating that different host factors are involved in the host–parasite interplay at each developmental stage of the larval parasite. Further identification of responsible genes located on the identified QTLs could lead to the development of effective disease prevention and control strategies, including an intensive screening and clinical follow-up of genetically high-risk groups for AE infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号