首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: In vivo microdialysis was used to assess the hypothesis that the stress-induced increase in dopamine release in the prefrontal cortex is mediated by stress-activated glutamate neurotransmission in this region. Local perfusion of an α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, blocked the stress-induced increase in dopamine levels, whereas an NMDA receptor antagonist, 2-amino-5-phosphonopentanoic acid, at the dose tested, was not able to alter this response significantly. These data indicate that the effect of stress on dopamine release in the prefrontal cortex is mediated locally by activation of AMPA/kainate receptors, which modulate the release of dopamine in this region.  相似文献   

2.
Abstract: In vivo electrochemistry was used to characterize dopamine clearance in the medial prefrontal cortex and to compare it with clearance in the dorsal striatum and nucleus accumbens. When calibrated amounts of dopamine were pressure-ejected into the cortex from micropipettes adjacent to the recording electrodes, transient and reproducible dopamine signals were detected. The local application of the selective uptake inhibitors GBR-12909, desipramine, and fluoxetine before the application of dopamine indicated that at the lower recording depths examined (2.5–5.0 mm below the brain surface), locally applied dopamine was cleared from the extracellular space primarily by the dopamine transporter. The norepinephrine transporter played a greater role at the more superficial recording sites (0.5–2.25 mm below the brain surface). To compare clearance of dopamine in the medial prefrontal cortex (deeper sites only), striatum, and nucleus accumbens, varying amounts of dopamine were locally applied in all three regions of individual animals. The signals recorded from the cortex were of greater amplitude and longer time course than those recorded from the striatum or accumbens (per picomole of dopamine applied), indicating less efficient dopamine uptake in the medial prefrontal cortex. The fewer number of transporters in the medial prefrontal cortex may be responsible, in part, for this difference, although other factors may also be involved. These results are consistent with the hypothesis that regulation of dopaminergic function is unique in the medial prefrontal cortex.  相似文献   

3.
In vivo microdialysis has been used to study the acute effects of antipsychotic drugs on the extracellular level of dopamine from the nucleus accumbens, striatum, and prefrontal cortex of the rat. (-)-Sulpiride (20, 50, and 100 mg/kg i.v.) and haloperidol (0.1 and 0.5 mg/kg i.v.) enhanced the outflow of dopamine in the striatum and nucleus accumbens. In the medial prefrontal cortex, (-)-sulpiride at all doses tested did not significantly affect the extracellular level of dopamine. The effect of haloperidol was also attenuated in the medial prefrontal cortex; 0.1 mg/kg did not increase the outflow of dopamine and the effect of 0.5 mg/kg haloperidol was of shorter duration in the prefrontal cortex than that observed in striatum and nucleus accumbens. The atypical antipsychotic drug clozapine (5 and 10 mg/kg) increased the extracellular concentration of dopamine in all three regions. In contrast to the effects of sulpiride and haloperidol, that of clozapine in the medial prefrontal cortex was profound. These data suggest that different classes of antipsychotic drugs may have distinct effects on the release of dopamine from the nigrostriatal, mesolimbic, and mesocortical terminals.  相似文献   

4.
Microdialysis was used to assess extracellular dopamine in striatum, nucleus accumbens, and medial frontal cortex of unanesthetized rats both under resting conditions and in response to intermittent tail-shock stress. The dopamine metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid also were measured. The resting extracellular concentration of dopamine was estimated to be approximately 10 nM in striatum, 11 nM in nucleus accumbens, and 3 nM in medial frontal cortex. In contrast, the resting extracellular levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid were in the low micromolar range. Intermittent tail-shock stress increased extracellular dopamine relative to baseline by 25% in striatum, 39% in nucleus accumbens, and 95% in medial frontal cortex. 3,4-Dihydroxyphenylacetic acid and homovanillic acid also were generally increased by stress, although there was a great deal of variability in these responses. These data provide direct in vivo evidence for the global activation of dopaminergic systems by stress and support the concept that there exist regional variations in the regulation of dopamine release.  相似文献   

5.
Evoked Extracellular Dopamine In Vivo in the Medial Prefrontal Cortex   总被引:3,自引:2,他引:3  
Abstract: The measurement of evoked extracellular dopamine in the medial prefrontal cortex by using fast-scan cyclic voltammetry with carbon-fiber microelectrodes was established and release characteristics of mesoprefrontal dopamine neurons were examined in vivo in anesthetized rats. Despite the sparse dopaminergic innervation and the presence of more dense noradrenergic and serotonergic innervations overall in the medial prefrontal cortex, the measurement of extracellular dopamine was achieved by selective recording in dopamine-rich terminal fields and selective activation of ascending dopamine neurons. This was confirmed by electrochemical, pharmacological, and anatomical evidence. An increased release capacity for mesoprefrontal dopamine neurons was also demonstrated by the slower decay of the evoked dopamine response after inhibition of catecholamine synthesis and the maintenance of the evoked dopamine response at higher levels in the medial prefrontal cortex compared with the striatum during supraphysiological stimulation.  相似文献   

6.
Abstract: We examined whether prior exposure to chronic cold (17–28 days, 5°C) alters basal or stress-evoked (30-min tail shock) catecholamine release in medial prefrontal cortex, nucleus accumbens, and striatum, using in vivo microdialysis. Basal norepinephrine (NE) concentrations in medial prefrontal cortex did not differ between chronically cold-exposed rats and naive control rats (2.7 ± 0.3 vs. 2.5 ± 0.2 pg/20 µl, respectively). Basal dopamine (DA) efflux in any of the brain regions was not significantly different between chronically cold-exposed rats and naive rats. However, a trend for lower basal DA efflux in the cold-exposed relative to naive rats was observed in medial prefrontal cortex (1.5 ± 0.2 vs. 2.2 ± 0.3 pg/20 µl, respectively), nucleus accumbens (3.7 ± 0.8 vs. 5.4 ± 0.9 pg/20 µl, respectively), and striatum (4.4 ± 0.5 vs. 7.2 ± 1.5 pg/20 µl, respectively). In medial prefrontal cortex of rats previously exposed to cold, tail shock elicited a greater increase from baseline in both DA and NE efflux relative to that measured in naive rats (DA, 2.3 ± 0.3 vs. 1.2 ± 0.1 pg, respectively; NE, 3.8 ± 0.4 vs. 1.4 ± 0.2 pg, respectively). However, in nucleus accumbens or striatum of rats previously exposed to cold, the stress-induced increase in DA efflux was not significantly different from that of naive rats (nucleus accumbens, 1.8 ± 0.7 vs. 1.5 ± 0.3 pg, respectively; striatum, 1.9 ± 0.4 vs. 2.6 ± 0.7 pg, respectively). Thus, both cortical NE projections and cortically projecting DA neurons sensitize after chronic exposure to cold. In contrast, subcortical DA projections do not sensitize under these conditions.  相似文献   

7.
In vivo voltammetry with carbon fiber electrodes was used to assess extracellular 3,4-dihydroxyphenylacetic acid (DOPAC) levels in striatum, nucleus accumbens, and anteromedial prefrontal cortex of freely moving rats subjected to altered motor activity or anxiogenic stimuli. Forced locomotion on a rotarod for 40 min caused an increase in extracellular DOPAC levels in the striatum and to a lesser extent in the nucleus accumbens but not in the prefrontal cortex. Subcutaneous injection of the anxiogenic agent methyl-beta-carboline carboxylate (10 mg/kg) increased extracellular DOPAC levels to a similar extent in prefrontal cortex and nucleus accumbens. Immobilization for 4 min augmented dopamine (DA) metabolism preferentially in the nucleus accumbens and to a lesser extent in the prefrontal cortex. Tail-pinch caused a selective activation of DA metabolism in the nucleus accumbens. None of these stimuli altered extracellular striatal DOPAC levels. These results confirm the involvement of dopaminergic systems projecting to the striatum and nucleus accumbens in motor function and suggest that mesolimbic and mesocortical dopaminergic systems can be specifically activated by certain kinds of anxiogenic stimuli; the relative activation of either of these latter systems could depend primarily on the nature (sensory modality, intensity) of the acute stressor.  相似文献   

8.
Abstract: In vivo microdialysis was used to determine the extent to which ionotropic glutamate receptors in the ventral tegmental area (VTA) regulate dopamine release in the nucleus accumbens. Coapplication of 2-amino-5-phosphonopentanoic acid (AP5; 200 µ M ) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 50 µ M ) to the VTA via reverse dialysis decreased extracellular concentrations of dopamine in the nucleus accumbens by ∼30%. In accordance with previous results, electrical stimulation of the prefrontal cortex increased dopamine release by 60%. Application of AP5 and CNQX to the VTA during cortical stimulation blocked the effect of stimulation on dopamine release. These results indicate that ionotropic glutamate receptors in the VTA are critically involved in basal and evoked dopamine release in the nucleus accumbens and suggest that a glutamatergic projection from the prefrontal cortex regulates the activity of dopaminergic neurons in the VTA.  相似文献   

9.
Amino acid neurotransmitters in the nucleus tractus solitarius (NTS) are thought to play a key role in the mediation of visceral reflexes and glutamate has been proposed as the neurotransmitter of visceral afferent nerves projecting to this region. The present studies sought to characterize the use of in vivo microdialysis to examine extracellular fluid levels of amino acids in the NTS of anesthetized rats. Using a microdialysis probe that was 450 μm in length and a sensitive HPLC assay for amino acids, amino acids could be measured in dialysate samples collected from the NTS. Perfusion of the microdialysis probe with 60 mM K±, to elicit depolarization of nerve terminals in the vicinity of the probe, resulted in increased dialysate fluid levels of aspartate, glutamate, glycine, taurine, and GABA. In contrast, glutamine and tyrosine were decreased and other amino acids were not significantly affected. Prior removal of the ipsilateral nodose ganglion did not alter the K±-evoked changes in dialysate levels of any of these amino acids. Electrical stimulation of the vagus nerves, using a variety of stimulus parameters, did not significantly alter dialysate levels of glutamate or any of the other amino acids that were measured. Blockade of glutamate uptake with dihydrokainate increased dialysate levels of glutamate, aspartate, and GABA, but in the presence of dihydrokainate vagal stimulation did not alter dialysate levels of these amino acids. The results show that in vivo microdialysis can be used to examine amino acid efflux in the rat NTS and provide further evidence for amino acidergic neural transmission in the NTS. However, these studies fail to support the hypothesis that vagal afferents release glutamate or aspartate.  相似文献   

10.
Catecholamine turnover in brain areas innervated by dopaminergic neurons was examined 2, 6, and 12 days after bilateral, N-methyl-D-aspartate lesions confined to the rat medial prefrontal cortex. The lesion produced a significant regional increase in the concentration of 3,4-dihydroxyphenylethylamine (DA, dopamine) in both the medial prefrontal cortex and the ventral tegmental area. DA concentrations were increased in the nucleus accumbens on day 6 (128% of control), in the ventral tegmental area on day 2 (130% of control), and in the medial prefrontal cortex on days 2 (145% of control) and 6 (127% of control). The only significant changes in the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) (197% of control), and in the ratio DOPAC/DA (163% of control) were found in the medial prefrontal cortex on day 6 post-lesion. All parameters had returned to control levels by day 12. DA depletion after the administration of alpha-methyl-p-tyrosine (AMPT) was not significantly different between excitotoxin-lesioned and sham animals on day 6 in all brain regions. Noradrenaline (NA) and 3,4-dihydroxyphenylethyleneglycol concentrations and their ratios, and the depletion of noradrenaline after AMPT were also determined, and the lesion resulted in a significant regional increase in NA in both the nucleus accumbens and the ventral tegmental area. An elevation of NA (147% of control) in the nucleus accumbens was found on day 12. Since the excitotoxin lesion destroys corticofugal efferents from medial prefrontal cortex to the nucleus accumbens, the anterior corpus striatum and the ventral tegmental area, our results provide no evidence for a role of these cortical projections in the regulation of subcortical DA metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The effects of various cholecystokinin (CCK)-related peptides were investigated on 35 mM K(+)-stimulated endogenous dopamine release from slices of either anterior or posterior nucleus accumbens of the rat. CCK sulphated octapeptide (1-10 microM), but not pentagastrin or CCK unsulphated octapeptide, was found to cause a dose-dependent increase in the release from the posterior nucleus accumbens. This effect was blocked by low doses of the CCKA receptor antagonist L364,718 (10 nM) but not the CCKB receptor antagonist L365,260. In the anterior nucleus accumbens CCK sulphated octapeptide (1 microM) and CCK unsulphated octapeptide (0.1-1 microM) inhibited the dopamine release, and this effect was blocked by L365,260 (10-100 nM) but not by L364,718. These results suggest that CCK has a different effect on dopamine release from the anterior and posterior nucleus accumbens and that these effects are mediated by two different types of CCK receptor.  相似文献   

12.
Abstract: Regional differences in the kinetics and pharmacological inhibition of dopamine uptake were investigated with fast-scan cyclic voltammetry in both the intact rat brain and a brain slice preparation. The regions compared were the basolateral amygdaloid nucleus, caudate-putamen, and nucleus accumbens. The frequency dependence of dopamine efflux evoked in vivo by electrical stimulation of the medial forebrain bundle was evaluated by nonlinear curve fitting with a Michaelis-Menten-based kinetic model. The K m for dopamine uptake was found to be significantly higher in the basolateral amygdala (0.6 µ M ) than in the other two regions (0.2 µ M ), whereas the V max value for dopamine uptake in the basolateral amygdala was significantly lower (0.49 µ M /s vs. 3.8 and 2.4 µ M /s in the caudate and accumbens, respectively). Similar kinetics were also obtained in brain slices. Addition of a dopamine uptake inhibitor, cocaine or nomifensine (10 µ M ), to the perfusion buffer increased the apparent K m value >25-fold in slices of both the caudate-putamen and nucleus accumbens. In contrast, neither uptake inhibitor had an observable effect in the basolateral amygdaloid nucleus. Thus, dopamine uptake in the rat brain is regionally distinct with regard to rate, affinity, and sensitivity to competitive inhibition.  相似文献   

13.
目的:探讨"青春期"大鼠前额皮质内BDNF与trkB的表达。方法:出生后35天大鼠作为"青春期"大鼠,出生后15天、75天大鼠分别作为幼年期与成年期对照,每组大鼠各6只,用ABC免疫组织化学方法与图像分析相结合技术检测前额皮质内BDNF与trkB免疫反应的强度和免疫阳性产物平均光密度值的变化。结果:各时间点大鼠前额皮质内均可见BDNF与trkB免疫阳性产物。35天组BDNF与trkB免疫反应最强,阳性产物平均光密度值最高,与其它两组相比差异有显著性(p<0.05)。结论:"青春期"大鼠前额皮质内BDNF与trkB高表达,提示在此时期内前额皮质对BDNF的需求最多。  相似文献   

14.
Abstract: The mesolimbic system of the brain has been shown to be involved in the reward properties of a number of agents. It is possible that release of monoamines by nicotine in this brain area could be related to the pleasurable aspects related to cigarette smoking. In this investigation, the effect of nicotine on the release of [3H]dopamine in the nucleus accumbens of the rat was studied. It was shown that nicotine produced a concentration-dependent increase in [3H]dopamine release at concentrations of 0.1 μ M and above. The increase in release was found to be almost completely calcium dependent. The nicotine-induced release was only partially blocked by the nicotinic antagonists hexamethonium and d -tubocurarine. A number of cholinergic agonists, as well as other compounds, were tested for their capacity to mimic the effect of nicotine. At equimolar concentrations there was, at most, only 50% of the activity of nicotine. The results of this study demonstrate that nicotine stimulates the release of dopamine in the nucleus accumbens at concentrations similar to those in the blood of cigarette smokers. This suggests that the release of mono-amines in specific nuclei of the mesolimbic system may be an important determinant of the desire to smoke cigarettes.  相似文献   

15.
Abstract: Intracerebral microdialysis in conjunction with HPLC coupled to electrochemical detection was used to investigate the effect of isolation-rearing in the rat on extracellular dopamine (DA) and its metabolites in vivo, in the shell region of the nucleus accumbens, in response to footshock and in relation to a conditioned emotional response. Male Lister hooded rats were reared from weaning for 6–8 weeks in either social isolation or groups of five. In the training phase, rats were exposed to a novel environment for 10 min where they experienced mild footshock. Footshock caused an immediate increase in basal extracellular DA levels in both rearing groups relative to control rats. However, the increase in extracellular DA was prolonged in the case of the isolation-reared rats and significantly greater than in group-reared rats. Exposure to the novel environment without shock (control groups) did not significantly alter basal extracellular DA in the nucleus accumbens shell; 140 min later rats were returned to the testing box (contextual stimulus) without receiving footshock. The contextual stimulus increased basal extracellular DA in the nucleus accumbens of both groups of rats with respect to controls; however, this increase was significantly greater and more prolonged in isolates. Extracellular levels of the metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid did not differ between isolation- and group-reared rats, and they were not significantly affected by either footshock or the contextual stimulus. These results suggest that exposure to footshock and a contextual stimulus are associated with increases in basal extracellular DA levels in the nucleus accumbens shell. The results also support evidence in favour of an isolation-induced enhancement in dopaminergic activity in the nucleus accumbens, which probably underlies aspects of the behavioural syndrome associated with isolation.  相似文献   

16.
Abstract: The effect of various classes of excitatory amino acid agonists on the release of dopamine in the medial prefrontal cortex (PFC) of awake rats was examined using intracerebral microdialysis. Local infusion of 20 µ M α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA), through the microdialysis probe, produced a significant increase of more than twofold in extracellular levels of dopamine. Application of 100 µ M AMPA increased these levels nearly 15 fold. The AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (50 µ M ) blocked the increase in dopamine release produced by 20 µ M AMPA. Local infusion of kainate at concentrations of 5 and 20 µ M increased dopamine release by nearly 150 and 500%, respectively. Local application of CNQX (50 µ M ) before 20 µ M kainate significantly attenuated the stimulatory effect of kainate on dopamine levels. In contrast to AMPA and kainate, infusion of N -methyl- d -aspartate (NMDA) at 20 or 100 µ M did not increase dopamine release. In fact, a trend toward a decrease in dopamine release was evident after 100 µ M NMDA. The present study indicates that the in vivo release of dopamine in the PFC is facilitated by AMPA and kainate receptors. This modulation is more profound than that previously reported in the basal ganglia. The lack of an excitatory effect of NMDA is in agreement with recent reports that the NMDA receptor may inhibit indirectly dopaminergic neurotransmission in the PFC.  相似文献   

17.
Incubated slices and freshly dissociated cells from 8-day-old rat cerebellum were used to try to identify the cells that participate in the large increases in cyclic GMP levels that follow activation of excitatory amino acid receptors in this tissue. In the slices, cyclic GMP responses to L-glutamate and related excitants were unaffected by tetrodotoxin and could be replicated by the guanylate cyclase activator nitroprusside. Nitroprusside and the receptor agonists appeared to activate the same pool of the enzyme. Prior destruction of neuroblasts, deep nuclei, or Golgi neurones did not cause loss of responses to L-glutamate. If granule cells were rendered necrotic, however, the cyclic GMP responses to all excitants tested were reduced by greater than or equal to 90%. Substantial losses of responses to veratridine and high K+ levels also occurred, but the nitroprusside-induced elevations were unaffected. In dissociated cell suspensions, the magnitude of responses to receptor agonists, but not those to nitroprusside, was markedly dependent on cell concentration. Responses to L-glutamate were the same in cell suspensions that were Purkinje cell depleted and Purkinje cell enriched. It is concluded that granule cells are primarily involved in the cyclic GMP responses to excitatory amino acids but that the cyclic GMP accumulations occur elsewhere, probably in glial cells.  相似文献   

18.
Abstract: This study examined the effects of intrastriatal administration of ionotropic excitatory amino acid receptor antagonists on biochemical markers of excitatory amino acid transmission in the rat striatum. High-affinity glutamate uptake was measured ex vivo on striatal homogenates 15 min after the local administration of either 6,7-dinitroquinoxaline-2,3-dione (DNQX), a non-NMDA receptor antagonist, or dl -2-amino-5-phosphonopentanoic acid (AP5), a competitive NMDA antagonist, at various doses (10–500 pmol injected). DNQX induced a dose-dependent increase in glutamate uptake rate, related to an increase in the V max of the transport process, whereas no significant change in glutamate uptake was detected after AP5 administration. Similar results were obtained from animals subjected to excitotoxic lesion of striatal neurons by kainate administration 15 days before the injection of DNQX or AP5. In a parallel series of experiments using in vivo microdialysis we showed that DNQX (10−5 M ) in the dialysis probe diminished by ∼30–40% the increases in the concentrations of glutamate and aspartate elicited by l - trans -pyrrolidine-2,4-dicarboxylic acid (1 m M ). These data suggest that presynaptic glutamate transmission in the rat striatum may undergo facilitatory autoregulatory processes involving ionotropic non-NMDA receptors and highlight the view that transporters for glutamate may be potent regulatory sites for glutamatergic transmission.  相似文献   

19.
Abstract: The basal and K+-induced release of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, were measured in microdialysate samples obtained in vivo from the nucleus accumbens region of rats subchronically exposed to 50 ppm lead for 90 days. The basal and stimulus-induced release of dopamine and the metabolites were significantly reduced in the lead-exposed rats as compared with the controls. These reductions in dopamine and its metabolites are consistent with the reports of decreased dopamine availability associated with lead-induced changes in certain behavioral indices (fixed-interval performance) in rats. Furthermore, these changes were observed at blood lead levels similar to those considered to cause impairment in cognitive functions in children.  相似文献   

20.
Abstract: The technique of intracerebral microdialysis was used to assess the effect of stress on the extracellular concentrations of excitatory amino acids, glutamate and aspartate, in the rat medial prefrontal cortex, hippocampus, striatum, and nucleus accumbens. A 20-min restraint procedure led to an increase in extracellular glutamate in all regions tested. The increase in glutamate levels was significantly higher in the prefrontal cortex than that observed in other regions. With the exception of the striatum, extracellular levels of aspartate were increased in all regions. Furthermore, the increase in aspartate levels was significantly higher in prefrontal cortex compared to hippocampus and nucleus accumbens. Local perfusion of tetrodotoxin during the restraint procedure significantly decreased the stress-induced increase in extracellular excitatory amino acids. In order to ensure that the above results were not an artifact of restraint not associated with stress (e.g., decreased mobility), we also examined the effect of swimming stress on the extracellular levels of excitatory amino acids in selected regions, i.e., striatum and medial prefrontal cortex. Both regions displayed a significant increase in extracellular levels of aspartate and glutamate following 20 min of swimming in room temperature water. This study provides direct evidence that stress increases the neuronal release of excitatory amino acids in a regionally selective manner. The implications of the present findings for stress-induced catecholamine release and/or hippocampal degeneration are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号