首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Utilizing concepts of protein building blocks, we propose a de novo computational algorithm that is similar to combinatorial shuffling experiments. Our goal is to engineer new naturally occurring folds with low homology to existing proteins. A selected protein is first partitioned into its building blocks based on their compactness, degree of isolation from the rest of the structure, and hydrophobicity. Next, the protein building blocks are substituted by fragments taken from other proteins with overall low sequence identity, but with a similar hydrophobic/hydrophilic pattern and a high structural similarity. These criteria ensure that the designed protein has a similar fold, low sequence identity, and a good hydrophobic core compared with its native counterpart. Here, we have selected two proteins for engineering, protein G B1 domain and ubiquitin. The two engineered proteins share approximately 20% and approximately 25% amino acid sequence identities with their native counterparts, respectively. The stabilities of the engineered proteins are tested by explicit water molecular dynamics simulations. The algorithm implements a strategy of designing a protein using relatively stable fragments, with a high population time. Here, we have selected the fragments by searching for local minima along the polypeptide chain using the protein building block model. Such an approach provides a new method for engineering new proteins with similar folds and low homology.  相似文献   

2.
Folds are the basic building blocks of protein structures. Understanding the emergence of novel protein folds is an important step towards understanding the rules governing the evolution of protein structure and function and for developing tools for protein structure modeling and design. We explored the frequency of occurrences of an exhaustively classified library of supersecondary structural elements (Smotifs), in protein structures, in order to identify features that would define a fold as novel compared to previously known structures. We found that a surprisingly small set of Smotifs is sufficient to describe all known folds. Furthermore, novel folds do not require novel Smotifs, but rather are a new combination of existing ones. Novel folds can be typified by the inclusion of a relatively higher number of rarely occurring Smotifs in their structures and, to a lesser extent, by a novel topological combination of commonly occurring Smotifs. When investigating the structural features of Smotifs, we found that the top 10% of most frequent ones have a higher fraction of internal contacts, while some of the most rare motifs are larger, and contain a longer loop region.  相似文献   

3.
We report herein the NMR structure of Tm0979, a structural proteomics target from Thermotoga maritima. The Tm0979 fold consists of four beta/alpha units, which form a central parallel beta-sheet with strand order 1234. The first three helices pack toward one face of the sheet and the fourth helix packs against the other face. The protein forms a dimer by adjacent parallel packing of the fourth helices sandwiched between the two beta-sheets. This fold is very interesting from several points of view. First, it represents the first structure determination for the DsrH family of conserved hypothetical proteins, which are involved in oxidation of intracellular sulfur but have no defined molecular function. Based on structure and sequence analysis, possible functions are discussed. Second, the fold of Tm0979 most closely resembles YchN-like folds; however the proteins that adopt these folds differ in secondary structural elements and quaternary structure. Comparison of these proteins provides insight into possible mechanisms of evolution of quaternary structure through a simple mechanism of hydrophobicity-changing mutations of one or two residues. Third, the Tm0979 fold is found to be similar to flavodoxin-like folds and beta/alpha barrel proteins, and may provide a link between these very abundant folds and putative ancestral half-barrel proteins.  相似文献   

4.
Here we show that the locations of molecular hinges in protein structures fall between building block elements. Building blocks are fragments of the protein chain which constitute local minima. These elements fold first. In the next step they associate through a combinatorial assembly process. While chain-linked building blocks may be expected to trial-associate first, if unstable, alternate more stable associations will take place. Hence, we would expect that molecular hinges will be at such inter-building block locations, or at the less stable, unassigned regions. On the other hand, hinge-bending motions are well known to be critical for protein function. Hence, protein folding and protein function are evolutionarily related. Further, the pathways through which proteins attain their three dimensional folds are determined by protein topology. However, at the same time the locations of the hinges, and hinge-bending motions are also an outcome of protein topology. Thus, protein folding and function appear coupled, and relate to protein topology. Here we provide some results illustrating such a relationship.  相似文献   

5.
The peptides derived from envelope proteins have been shown to inhibit the protein-protein interactions in the virus membrane fusion process and thus have a great potential to be developed into effective antiviral therapies. There are three types of envelope proteins each exhibiting distinct structure folds. Although the exact fusion mechanism remains elusive, it was suggested that the three classes of viral fusion proteins share a similar mechanism of membrane fusion. The common mechanism of action makes it possible to correlate the properties of self-derived peptide inhibitors with their activities. Here we developed a support vector machine model using sequence-based statistical scores of self-derived peptide inhibitors as input features to correlate with their activities. The model displayed 92% prediction accuracy with the Matthew’s correlation coefficient of 0.84, obviously superior to those using physicochemical properties and amino acid decomposition as input. The predictive support vector machine model for self- derived peptides of envelope proteins would be useful in development of antiviral peptide inhibitors targeting the virus fusion process.  相似文献   

6.
A new approach is introduced for analyzing and ultimately predicting protein structures, defined at the level of C alpha coordinates. We analyze hexamers (oligopeptides of six amino acid residues) and show that their structure tends to concentrate in specific clusters rather than vary continuously. Thus, we can use a limited set of standard structural building blocks taken from these clusters as representatives of the repertoire of observed hexamers. We demonstrate that protein structures can be approximated by concatenating such building blocks. We have identified about 100 building blocks by applying clustering algorithms, and have shown that they can "replace" about 76% of all hexamers in well-refined known proteins with an error of less than 1 A, and can be joined together to cover 99% of the residues. After replacing each hexamer by a standard building block with similar conformation, we can approximately reconstruct the actual structure by smoothly joining the overlapping building blocks into a full protein. The reconstructed structures show, in most cases, high resemblance to the original structure, although using a limited number of building blocks and local criteria of concatenating them is not likely to produce a very precise global match. Since these building blocks reflect, in many cases, some sequence dependency, it may be possible to use the results of this study as a basis for a protein structure prediction procedure.  相似文献   

7.
We have devised several mechanical models of globular proteins by approximating them to various polyhedra (dodecahedron, truncated octahedron, icosahedron, truncated icosahedron). The models comprise hollow blocks linked together in a flexible chain. Between blocks there is a set of several reversible, weak magnetic interactions such that when the chain is agitated, it will fold into a stable polyhedral structure about the size of a hand. Folding may be followed in real time with a video camera. Key to the success of the folding process is the lightness of the chain. Several side chains may also be added to the blocks such that they come together to create a polyhedral core when the chain folds. The models have a number of similarities to globular proteins: each chain folds into a unique, but dynamic, three-dimensional structure; the instructions that determine this structure are built into the configuration of blocks; and it is difficult to predict this structure given the unfolded block configuration. Furthermore, the chains fold quickly, generally in less than a minute, several pathways are involved, and these pathways progress through elements of "native" structure. In particular, the models emphasize the importance of restricted conformational mobility in assisting the chain to fold, and also in eliminating undesirable interactions. Because of these similarities to globular proteins, we believe that the polyhedral models will, with continued development, be helpful in understanding the protein folding process, while at the same time acting as valuable educational visual aids. They might also inspire the construction of new types of microscopic, self-assembling devices.  相似文献   

8.
Abstract

Here we show that the locations of molecular hinges in protein structures fall between building block elements. Building blocks are fragments of the protein chain which constitute local minima. These elements fold first. In the next step they associate through a combinatorial assembly process. While chain-linked building blocks may be expected to trial-associate first, if unstable, alternate more stable associations will take place. Hence, we would expect that molecular hinges will be at such inter-building block locations, or at the less stable, ‘unassigned’ regions.

On the other hand, hinge-bending motions are well known to be critical for protein function. Hence, protein folding and protein function are evolutionarily related. Further, the pathways through which proteins attain their three dimensional folds are determined by protein topology. However, at the same time the locations of the hinges, and hinge-bending motions are also an outcome of protein topology. Thus, protein folding and function appear coupled, and relate to protein topology. Here we provide some results illustrating such a relationship.  相似文献   

9.
Haspel N  Tsai CJ  Wolfson H  Nussinov R 《Proteins》2003,51(2):203-215
We have previously presented a building block folding model. The model postulates that protein folding is a hierarchical top-down process. The basic unit from which a fold is constructed, referred to as a hydrophobic folding unit, is the outcome of combinatorial assembly of a set of "building blocks." Results obtained by the computational cutting procedure yield fragments that are in agreement with those obtained experimentally by limited proteolysis. Here we show that as expected, proteins from the same family give very similar building blocks. However, different proteins can also give building blocks that are similar in structure. In such cases the building blocks differ in sequence, stability, contacts with other building blocks, and in their 3D locations in the protein structure. This result, which we have repeatedly observed in many cases, leads us to conclude that while a building block is influenced by its environment, nevertheless, it can be viewed as a stand-alone unit. For small-sized building blocks existing in multiple conformations, interactions with sister building blocks in the protein will increase the population time of the native conformer. With this conclusion in hand, it is possible to develop an algorithm that predicts the building block assignment of a protein sequence whose structure is unknown. Toward this goal, we have created sequentially nonredundant databases of building block sequences. A protein sequence can be aligned against these, in order to be matched to a set of potential building blocks.  相似文献   

10.
Secondary amphiphilicity is inherent to the secondary structural elements of proteins. By forming energetically favorable contacts with each other these amphiphilic building blocks give rise to the formation of a tertiary structure. Small proteins and peptides, on the other hand, are usually too short to form multiple structural elements and cannot stabilize them internally. Therefore, these molecules are often found to be structurally ambiguous up to the point of a large degree of intrinsic disorder in solution. Consequently, their conformational preference is particularly susceptible to environmental conditions such as pH, salts, or presence of interfaces. In this study we use molecular dynamics simulations to analyze the conformational behavior of two synthetic peptides, LKKLLKLLKKLLKL (LK) and EAALAEALAEALAE (EALA), with built-in secondary amphiphilicity upon forming an alpha-helix. We use these model peptides to systematically study their aggregation and the influence of macroscopic and molecular interfaces on their conformational preferences. We show that the peptides are neither random coils in bulk water nor fully formed alpha helices, but adopt multiple conformations and secondary structure elements with short lifetimes. These provide a basis for conformation-selection and population-shift upon environmental changes. Differences in these peptides’ response to macroscopic and molecular interfaces (presented by an aggregation partner) can be linked to their inherent alpha-helical tendencies in bulk water. We find that the peptides’ aggregation behavior is also strongly affected by presence or absence of an interface, and rather subtly depends on their surface charge and hydrophobicity.  相似文献   

11.
12.
Three-dimensional protein folds range from simple to highly complex architectures. In complex folds, some building block fragments are more important for correct protein folding than others. Such fragments are typically buried in the protein core and mediate interactions between other fragments. Here we present an automated, surface area-based algorithm that is able to indicate which, among all local elements of the structure, is critical for the formation of the native fold, and apply it to structurally well-characterized proteins. In particular, we focus on adenylate kinase. The fragment containing the phosphate binding, P-loop (the "giant anion hole") flanked by a beta-strand and an alpha-helix near the N-terminus, is identified as a critical building block. This building block shows a high degree of sequence and structural conservation in all adenylate kinases. The results of our molecular dynamics simulations are consistent with this identification. In its absence, the protein flips to a stable, non-native state. In this misfolded conformation, the other local elements of the structure are in their native-like conformations; however, their association is non-native. Furthermore, this element is critically important for the function of the enzyme, coupling folding, and function.  相似文献   

13.
Yo Matsuo  Ken Nishikawa 《Proteins》1995,23(3):370-375
A protein fold recognition method was tested by the blind prediction of the structures of a set of proteins. The method evaluates the compatibility of an amino acid sequence with a three-dimensional structure using the four evaluation functions: side-chain packing, solvation, hydrogen-bonding, and local conformation functions. The structures of 14 proteins containing 19 sequences were predicted. The predictions were compared with the experimental structures. The experimental results showed that 9 of the 19 target sequences have known folds or portions of known folds. Among them, the folds of Klebsiella aerogenes urease β subunit (KAUB) and pyruvate phosphate dikinase domain 4 (PPDK4) were successfully recognized; our method predicted that KAUB and PPDK4 would adopt the folds of macromomycin (Ig-fold) and phosphoribosylanthra-nilate isomerase:indoleglycerol-phosphate synthase (TIM barrel), respectively, and the experimental structure revealed that they actually adopt the predicted folds. The predictions for the other targets were not successful, but they often gave secondary structural patterns similar to those of the experimental structures. © 1995 Wiley-Liss, Inc.  相似文献   

14.
15.
Amino acid sequence alignments of orthologous ribosomal proteins found in Bacteria, Archaea, and Eukaryota display, relative to one another, an unusual segment or block structure, with major evolutionary implications. Within each of the prokaryotic phylodomains the sequences exhibit substantial similarity, but cross-domain alignments break up into (a) universal blocks (conserved in both phylodomains), (b) bacterial blocks (unalignable with any archaeal counterparts), and (c) archaeal blocks (unalignable with any bacterial counterparts). Sequences of those eukaryotic cytoplasmic riboproteins that have orthologs in both Bacteria and Archaea, exclusively match the archaeal block structure. The distinct blocks do not correlate consistently with any identifiable functional or structural feature including RNA and protein contacts. This phylodomain-specific block pattern also exists in a number of other proteins associated with protein synthesis, but not among enzymes of intermediary metabolism. While the universal blocks imply that modern Bacteria and Archaea (as defined by their translational machinery) clearly have had a common ancestor, the phylodomain-specific blocks imply that these two groups derive from single, phylodomain-specific types that came into existence at some point long after that common ancestor. The simplest explanation for this pattern would be a major evolutionary bottleneck, or other scenario that drastically limited the progenitors of modern prokaryotic diversity at a time considerably after the evolution of a fully functional translation apparatus. The vast range of habitats and metabolisms that prokaryotes occupy today would thus reflect divergent evolution after such a restricting event. Interestingly, phylogenetic analysis places the origin of eukaryotes at about the same time and shows a closer relationship of the eukaryotic ribosome-associated proteins to crenarchaeal rather than euryarchaeal counterparts.  相似文献   

16.
Somatic complementation by fusion of two mutant cells and mixing of their cytoplasms occurs when the genetic defect of one fusion partner is cured by the functional gene product provided by the other. We have found that complementation of mutational defects in the network mediating stimulus-induced commitment and sporulation of Physarum polycephalum may reflect time-dependent changes in the signaling state of its molecular building blocks. Network perturbation by fusion of mutant plasmodial cells in different states of activation, and the time-resolved analysis of somatic complementation effects can be used to systematically probe network structure and dynamics. Time-resolved somatic complementation quantitatively detects regulatory interactions between the functional modules of a network, independent of their biochemical composition or subcellular localization, and without being limited to direct physical interactions.  相似文献   

17.

Background

The function of proteins is a direct consequence of their three-dimensional structure. The structural classification of proteins describes the ways of folding patterns all proteins could adopt. Although, the protein folds were described in many ways the functional properties of individual folds were not studied.

Results

We have analyzed two β-barrel folds generally adopted by small proteins to be looking similar but have different topology. On the basis of the topology they could be divided into two different folds named SH3-fold and OB-fold. There was no sequence homology between any of the proteins considered. The sequence diversity and loop variability was found to be important for various binding functions.

Conclusions

The function of Oligonucleotide/oligosaccharide-binding (OB) fold proteins was restricted to either DNA/RNA binding or sugar binding whereas the Src homology 3 (SH3) domain like proteins bind to a variety of ligands through loop modulations. A question was raised whether the evolution of these two folds was through DNA shuffling.  相似文献   

18.
Protein sequence world is considerably larger than structure world. In consequence, numerous non-related sequences may adopt similar 3D folds and different kinds of amino acids may thus be found in similar 3D structures. By grouping together the 20 amino acids into a smaller number of representative residues with similar features, sequence world simplification may be achieved. This clustering hence defines a reduced amino acid alphabet (reduced AAA). Numerous works have shown that protein 3D structures are composed of a limited number of building blocks, defining a structural alphabet. We previously identified such an alphabet composed of 16 representative structural motifs (5-residues length) called Protein Blocks (PBs). This alphabet permits to translate the structure (3D) in sequence of PBs (1D). Based on these two concepts, reduced AAA and PBs, we analyzed the distributions of the different kinds of amino acids and their equivalences in the structural context. Different reduced sets were considered. Recurrent amino acid associations were found in all the local structures while other were specific of some local structures (PBs) (e.g Cysteine, Histidine, Threonine and Serine for the alpha-helix Ncap). Some similar associations are found in other reduced AAAs, e.g Ile with Val, or hydrophobic aromatic residues Trp with Phe and Tyr. We put into evidence interesting alternative associations. This highlights the dependence on the information considered (sequence or structure). This approach, equivalent to a substitution matrix, could be useful for designing protein sequence with different features (for instance adaptation to environment) while preserving mainly the 3D fold.  相似文献   

19.
Protein structures cluster into families of folds that can result from extremely different amino acid sequences [1]. Because the enormous amount of genetic information generates a limited number of protein folds [2], a particular domain structure often assumes numerous functions. How new protein structures and new functions evolve under these limitations remains elusive. Molecular evolution may be driven by the ability of biomacromolecules to adopt multiple conformations as a bridge between different folds [3-6]. This could allow proteins to explore new structures and new tasks while part of the structural ensemble retains the initial conformation and function as a safeguard [7]. Here we show that a global structural switch can arise from single amino acid changes in cysteine-rich domains (CRD) of cnidarian nematocyst proteins. The ability of these CRDs to form two structures with different disulfide patterns from an identical cysteine pattern is distinctive [8]. By applying a structure-based mutagenesis approach, we demonstrate that a cysteine-rich domain can interconvert between two natively occurring domain structures via a bridge state containing both structures. Comparing cnidarian CRD sequences leads us to believe that the mutations we introduced to stabilize each structure reflect the birth of new protein folds in evolution.  相似文献   

20.
Information is often encoded as an aperiodic chain of building blocks. Modern digital computers use bits as the building blocks, but in general the choice of building blocks depends on the nature of the information to be encoded. What are the optimal building blocks to encode structural information? This can be analysed by substituting the operations of addition and multiplication of conventional arithmetic with translation and rotation. It is argued that at the molecular level, the best component for encoding discretized structural information is carbon. Living organisms discovered this billions of years ago, and used carbon as the back-bone for constructing proteins that function according to their structure. Structural analysis of polypeptide chains shows that an efficient and versatile structural language of 20 building blocks is needed to implement all the tasks carried out by proteins. Properties of amino acids indicate that the present triplet genetic code was preceded by a more primitive one, coding for 10 amino acids using two nucleotide bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号