首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proportion of total cells in the blastocyst allocated to the inner cell mass (ICM) and trophectoderm (TE) is important for future development and may be a sensitive indicator to evaluate culture conditions. The number of cells and their distribution within the two primary cell lineages were determined for the rabbit embryo developing in vivo after superovulation or nonsuperovulation or embryo transfer and compared with embryos developing in vitro. Comparisons were made with cultured embryos or embryos grown in vivo until 3.5, 4.0, and 4.5 days of age. Embryos from superovulated rabbits developed in vivo for 3.5, 4.0, and 4.5 days, respectively, had 361, 758, and 902 total cells (P<0.05), and in nonsuperovulated rabbits 130, 414, and 905 total cells (P<0.05), with increasing proportions of ICM cells over time (P<0.05). One-cell embryos recovered from superovulated females and transferred to nonsuperovulated recipients developed more slowly with 70, 299, and 550 total cells after 3.5, 4.0, and 4.5 days of culture (P<0.05), respectively. The proportion of ICM cells increased with age of the embryo. Corresponding values for one-cell embryos cultured in vitro resulted in 70, 299, and 550 total cells (P<0.05). However, in vitro culture of morula-stage embryos in the presence of fetal bovine serum for 24 hr did not delay growth. In addition, the proportions of ICM/total cells were 0.17, 0.25, and 0.29 for embryos developing in vitro at 3.5, 4.0, and 4.5 days, respectively, similar to those for embryos developing in vivo at each of the three recovery times. These data establish for the first time the number and proportion of cells allocated to the ICM of the rabbit embryo developing in vivo or under defined conditions in vitro. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Data from other laboratories have shown that speed of bovine blastocyst development is higher when Ménézo B2 is used for coculture compared to TCM199. It was our purpose to investigate whether this early blastocyst formation was also indicative of embryo quality by studying the allocation of inner cells in embryos generated by B2-coculture and by TCM199-coculture. For this purpose, a differential staining technique was used. General embryo development was similar for TCM199- and B2-embryos expressed as rate of cleavage at day 3 and morula-blastocyst formation at day 8 (P > 0.05), but significantly different when expressed as number of eight-cell stages at day 3 and expanded or hatched blastocysts at day 8 (P < 0.01). B2-embryos cultured until day 5, 6, and 7 post insemination, had total cell numbers of 24, 65, and 109 respectively, which was significantly higher than the cell number of TCM199 embryos cultured over the same time period (18, 41, and 71 respectively, P < 0.001). Morphological differentiation was significantly more advanced for B2-embryos at day 7 and 8 (P < 0.0001 and P < 0.001, respectively). First presumptive inner cells appeared in eight- to 16-cell stages at day 3. Because the determination of inner cells by differential staining is depending upon the presence of functional tight junctions, we concluded that the establishment of the tight junction seal in B2-embryos differed from that in TCM199-embryos: Inner cells appeared 0.56 cell cycle later in B2-embryos (P < 0.001) and a larger variation existed in the number of ICM-cells in B2-blastocysts (P < 0.001). The higher total cell number of B2-expanded blastocysts was mainly acquired by trophectoderm growth (P < 0.06). These data indicate that the apparent better quality of B2-embryos (faster cleavage, earlier blastocyst formation) is not reflected in a reliable number of inner cells of B2-blastocysts. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Inner cell mass (ICM) and trophectoderm cell lineages in preimplantation mouse embryos were studied by means of iontophoretic injection of horseradish peroxidase (HRP) as a marker. HRP was injected into single blastomeres at the 2- and 8-cell stages and into single outer blastomeres at the 16-cell and late morula (about 22- to 32-cell) stages. After injection, embryos were either examined immediately for localization of HRP (controls) or they were allowed to develop until the blastocyst stage (1 to 3.5 days of culture) and examined for the distribution of labeled cells. In control embryos, HRP was confined to one or two outer blastomeres. In embryos allowed to develop into blastocysts, HRP-labeled progeny were distributed into patches of cells, showing that there is limited intermingling of cells during preimplantation development. A substantial fraction of injected blastomeres contributed descendants to both ICM and trophectoderm (95, 58, 44, and 35% for injected 2-cell, 8-cell, 16-cell, and late morula stages, respectively). Although more than half of the outer cells injected at 16-cell and late morula stages contributed descendants only to trophectoderm (53 and 63%, respectively), some outer cells contributed also to the ICM lineage even at the late morula stage. Although the mechanism for allocation of outer cells to the inner cell lineage is unknown, our observation of adjacent labeled mural trophectoderm and presumptive endoderm cells implicated polarized cell division. This observation also suggests that mural trophectoderm and presumptive endoderm are derived from common immediate progenitors. These cells appear to separate into inner and outer layers during the fifth cleavage division. Our results demonstrate the usefulness of HRP as a cell lineage marker in mouse embryos and show that the allocation of cells to ICM or trophectoderm begins after the 2-cell stage and continues into late cleavage.  相似文献   

4.
The morphology of the inner cell mass (ICM) cells and the proportion of dead ICM cells in frozen-thawed bovine preimplantation embryos were investigated by differential fluorochrome staining. Embryos at the blastocyst stage of development were frozen and thawed by two different techniques (three-step and one-step) in two different basic salt solutions (PBS and TCM 199) containing 1.36M glycerol. After thawing and glycerol removal, embryos were co-cultured in a cumulus cells monolayer in TCM 199 for 48 hr (morula) or 24 hr (blastocysts). Differential cell counts of the ICM and trophectoderm were then done using differential fluorochrome staining. Overall, there was no significant difference in the viability of embryos frozen in the two basic salt solutions. Low proportions of dead ICM cells were observed in embryos frozen at the morula stage in both PBS (19.1%) or TCM 199 (18.0%). However, blastocyst stage embryos frozen by the three-step technique had a higher (P < 0.05) proportion of dead ICM cells in TCM 199 (37.7%) than in PBS (18.2%). Blastocysts frozen by the one-step technique had a higher (P < 0.05) proportion of dead ICM cells (42.2%) than those frozen by the three-step technique (18.2%), regardless of basic salt solutions. Results indicate that freezing and thawing damages ICM cells in morphologically normal embryos and that the degree of damage depended on the basic salt solution and the freezing method. © 1994 Wiley-Liss, Inc.  相似文献   

5.
Total cell number as well as differential cell numbers representing the inner cell mass (ICM) and trophectoderm were determined by a differential staining technique for preimplantation pig embryos recovered between 5 and 8 days after the onset of oestrus. Total cell number increased rapidly over this time span and significant effects were found between embryos of the same chronological age from different females. Inner cells could be detected in some but not all embryos of 12-16 cells. The proportion of inner cells was low in morulae but increased during differentiation of ICM and trophectoderm in early blastocysts. The proportion of ICM cells then decreased as blastocysts expanded and hatched. Some embryos were cultured in vitro and others were transferred to the oviducts of immature mice as a surrogate in vivo environment and assessed for morphology and cell number after several days. Although total cell number did not reach in vivo levels, morphological development and cell number increase was sustained better in the immature mice than in vitro. The proportion of ICM cells in blastocysts formed in vitro was in the normal range.  相似文献   

6.
The morphology and number of cells in the trophectoderm (TE) and inner cell mass (ICM) of buffalo blastocysts derived from in vitro fertilization and cultured in the presence or absence of insulin-like growth factor-I (IGF-I) were analyzed by differential fluorochrome staining technique. The total cell number (TCN), TE number, and ICM cell number were significantly higher in blastocysts developed in vitro in the presence of IGF-I as compared to blastocysts developed without IGF-I (P < 0.01). It was observed that the buffalo blastocyst took 5–9 days postfertilization to develop in vitro. In order to correlate the time required for blastocyst development and the allocation of cells to TE and ICM, blastocysts were designated as fast (developing on or before day 7) or slow (developing after day 7). The TCN, TE, and ICM cells of fast-developing blastocysts cultured in the presence of IGF-I were significantly higher than slow-developing blastocysts (P < 0.01). The blastocysts developed on day 6 had a mean total cell number 118.6 ± 21.4, which significantly decreased to 85.6 ± 17.4, 62.0 ± 14.5, and 17.0 ± 4.0 on days 7, 8, and 9, respectively (P < 0.05). Normal development of buffalo embryo showed that, on average, embryos reached compact morula stage at the earliest between days 4.5–5.5. Blastocysts developed, at the earliest, between days 5.0–6.0, and it took them, on average, 6.5 days to hatch from the zona pellucida. TCN, TE, and ICM increased three times from morula to blastocyst; however, the proportion of ICM to TCN remained the same, in both embryonic stages. TE approximately doubled in hatched blastocysts, as compared to unhatched blastocysts (P < 0.05). However, ICM cells were decreased. The time required for development of parthenogenetic blastocysts was observed to be greater as compared to in vitro fertilized (IVF) blastocysts. The total cell number of parthenogenetic blastocysts was 100.8 ± 11.3, including 59.2 ± 8.4 cells of TE and 42.1 ± 6.9 cells of ICM. © 1996 Wiley-Liss, Inc.  相似文献   

7.
The ability of ICM to differentiate into TE is still a controversial issue. Many of authors have showed the reconstruction of TE from isolated ICMs. We showed that immunosurgical method is not 100% efficient and that the original TE cells very often remain on the surface of isolated ICMs. We also found that isolated ICM cells cultured in vitro do not express Cdx2, and that the TE is reconstituted from TE cells which have survived immunosurgery. This indicates that very soon after the formation of TE in the blastocyst, the cells of ICM lose the potency to differentiate into trophectoderm.  相似文献   

8.
Diploid parthenogenetic postimplantation mouse embryos, containing two maternal genomes, are characterized by poor development of extraembryonic membranes derived from the trophectoderm and primitive endoderm of the blastocyst. This is thought to be caused by a deficiency of expression of paternally derived imprinted genes. Here we have compared the inner cell mass, from which the primitive endoderm and fetal lineages are derived, and the trophectoderm, which forms a major component of the placenta, in parthenogenetic and fertilized preimplantation embryos. We have also studied the metabolism from the 1-cell to the blastocyst stage. Cell numbers were reduced in the ICM and TE of parthenogenetic blastocysts compared to fertilized blastocysts. This was thought to be due to the increased levels of cell death observed in these lineages. Pyruvate and glucose uptake by parthenogenetic embryos was similar to that by fertilized embryos throughout preimplantation development. However, at the expanded blastocyst stage glucose uptake by parthenogenetic embryos was significantly higher than by fertilized embryos. The implications of the actions of imprinted genes and of X-inactivation is discussed. © 1996 Wiley-Liss, Inc.  相似文献   

9.
10.
Noninvasive measurements of bovine embryo quality, such as timing of cleavage, morula morphology, blastocyst formation, and hatching ability, were linked with the number of inner cell mass (ICM) cells and trophectoderm (TE) cells of the resulting embryos. First, it was confirmed that fast-cleaving embryos proved to have significantly higher chances to reach advanced developmental stages vs. intermediate and slow cleavers (P = 0.01). They also showed significantly less fragmentation at the morula stage, implying the presence of more excellent morulae among fast-cleaving embryos (P < 0.05). Second, the quality of hatched blastocysts, resulting from morulae of different morphological grades, was examined by differential staining. The total cell and ICM cell numbers were significantly lower for hatched blastocysts developed from poor morulae compared to hatched blastocysts developed from excellent, good, or fair morulae. However, hatched blastocysts with <10 ICM cells were seen in embryos belonging to all four morphological scores. Finally, it was found that timing of first cleavage was not significantly correlated with timing of blastocyst formation or with cell number of blastocysts. Timing of blastocyst formation, however, was significantly correlated with cell number: day 8 blastocysts had significantly lower total cell and ICM cell numbers than day 6 and day 7 blastocysts (P < 0.001). These results suggest that the quality of in vitro-produced bovine embryos is very variable and cannot be linked with a single criterion such as embryo morphology and/or hatching ability. Timing of blastocyst formation was the most valuable criterion with regard to embryonic differentiation. Mol. Reprod. Dev. 47:47–56, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
A series of chimeras was generated by injecting single normal, parthenogenetic, or androgenetic blastomeres carrying transgenic markers under the zona pellucida of nontransgenic eight-cell embryos. These chimeras were cultured to the blastocyst stage and sectioned, and the transgenic component was detected by in situ hybridization. No statistically significant difference was found among the normal, parthenogenetic, and androgenetic chimeras in the number of chimeric blastocysts with a transgenic contribution to the inner cell mass (ICM), the trophectoderm, or both the ICM and trophectoderm. Since androgenetic and parthenogenetic cells were present in chimeras at a high frequency in both the ICM and trophectoderm at the blastocyst stage, but not in similar chimeras at late gastrulation, these cells must not respond normally to developmental signals subsequent to blastocyst formation and prior to late gastrulation.  相似文献   

12.
嵌合体大鼠是研究人类疾病的重要动物模犁.用囊胚注射法研究了大鼠内细胞团(ICM)和胎儿神经干细胞(FNS)构建嵌合体的潜力.结果发现来自黑色(DA)大鼠第5天(D5)和第6天(D6)囊胚的ICM细胞注入D5 Sprague-Dawley(SD)大鼠囊胚后得到3只嵌合体大鼠:D5 SD大鼠ICM细胞注射入D5 DA囊胚后得到4只嵌合体大鼠:而体外培养的DA或SD人鼠ICM细胞注射后均未能获得嵌合体大鼠.本研究用大鼠胎儿神经干细胞(rFNS)和LacZ转染的rFNS构建嵌介体,未能获得嵌合体人鼠:但在LacZ转染的SD rFNS注射到DA大鼠囊胚后发育来的41只胎儿中,有2只胎儿其组织切片中发现少量LacZ阳性细胞.结果表明DA和SD大鼠ICM具有参与嵌合体发育的潜力,但ICM细胞经体外培养后构建嵌合体的潜力显著F降(P<0.05);大鼠胎儿神经干细胞构建嵌合体的潜力较低,可能仅具有参与早期胚胎发育的潜力.  相似文献   

13.
嵌合体大鼠是研究人类疾病的重要动物模型。用囊胚注射法研究了大鼠内细胞团(ICM)和胎儿神经干细胞(FNS)构建嵌合体的潜力。结果发现来自黑色(DA)大鼠第5天(D5)和第6天(D6)囊胚的ICM细胞注入D5 Sprague-Dawley(SD)大鼠囊胚后得到3只嵌合体大鼠;D5 SD大鼠ICM细胞注射入D5 DA囊胚后得到4只嵌合体大鼠;而体外培养的DA或SD大鼠ICM细胞注射后均未能获得嵌合体大鼠。本研究用大鼠胎儿神经干细胞(rFNS)和LacZ转染的rFNS构建嵌合体,未能获得嵌合体大鼠;但在LacZ转染的SD rFNS注射到DA大鼠囊胚后发育来的41只胎儿中,有2只胎儿其组织切片中发现少量LacZ阳性细胞。结果表明DA和SD大鼠ICM具有参与嵌合体发育的潜力,但ICM细胞经体外培养后构建嵌合体的潜力显著下降(P<0.05);大鼠胎儿神经干细胞构建嵌合体的潜力较低,可能仅具有参与早期胚胎发育的潜力。  相似文献   

14.
In this report, we examine the cytotoxic effect of ginkgolides, the major components of Ginkgo biloba extracts, on the blastocyst stage of mouse embryos and on subsequent early postimplantation embryonic development in vitro. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay revealed that blastocysts treated with 5 or 10muM ginkgolide A or ginkgolide B showed increased apoptosis versus untreated controls. This could be correlated with the observation that ginkgolide-treated blastocysts showed a significant reduction in the average number of total cells in the blastocyst and trophectoderm/inner cell mass lineage versus controls. In addition, ginkgolide-pretreated blastocysts showed normal levels of implantation on culture dishes in vitro, but significantly fewer embryos reached the later stages of embryonic development in the treatment groups versus the controls, instead dying at relatively early stages of development. Our results collectively indicate that ginkgolide treatment of mouse blastocysts induces apoptosis, decreases cell numbers, retards early postimplantation blastocyst development, and increases early-stage blastocyst death. These novel findings provide important new insights into the effect of Ginkgo biloba extracts on mouse blastocysts.  相似文献   

15.
The allocation of cells to the trophectoderm and inner cell mass (ICM) in the mouse blastocyst has been examined by labelling early morulae (16-cell stage) with the short-term cell lineage marker yellow-green fluorescent latex (FL) microparticles. FL is endocytosed exclusively into the outside polar cell population and remains autonomous to the progeny of these blastomeres. Rhodamine-concanavalin A was used as a contemporary marker for outside cells in FL-labelled control (16-cell stage) and cultured (approximately 32- to 64-cell stage) embryos, immediately prior to the disaggregation and analysis of cell labelling patterns. By this technique, the ratio of outside to inside cell numbers in 16-cell embryos was shown to vary considerably between embryos (mean 10.8:5.2; range 9:7 to 14:2). In cultured embryos, the trophectoderm was derived almost exclusively (over 99% cells) from outside polar 16-cell blastomeres. The origin of the ICM varied between embryos; on average, most cells (75%) were descended from inside nonpolar blastomeres with the remainder derived from the outside polar lineage, presumably by differentiative cleavage. In blastocysts examined by serial sectioning, polar-derived ICM cells were localised mainly in association with trophectoderm and were absent from the ICM core. In nascent blastocysts with exactly 32 cells an inverse relationship was found between the proportion of the ICM descended from the polar lineage and the deduced size of the inside 16-cell population. From these results, it is concluded that interembryonic variation in the outside to inside cell number ratio in 16-cell morulae is compensated by the extent of polar 16-cell allocation to the ICM at the next division, thereby regulating the trophectoderm to ICM cell number ratio in early blastocysts.  相似文献   

16.
Expression of adipokines in preimplantation rabbit and mice embryos   总被引:1,自引:1,他引:0  
Recent studies point to a role for adipokines in reproduction. Leptin is involved in embryo metabolism and may participate in embryo-maternal crosstalk. Little is known about potential roles of other adipokines in reproduction. We therefore studied the expression of adiponectin and pathway members during the pre- and periimplantation period in rabbits and mice. Adiponectin protein is localized in glandular epithelium of the rabbit endometrium on day 6 and 8 p.c. and in mouse endometrium on day 3.5 and 5 p.c. Rabbit, but not mice blastocysts express adiponectin mRNA. Adiponectin receptors one and two, adiponectin paralogues and PPARs were found in both species. Both, trophoblast and embryoblast were adiponectin positive. Real time PCR for adipoR1 and adipoR2 in rabbit blastocysts of different gastrulation stages at day 6 p.c. revealed a specific switch in expression: Expression was high in the trophoblast in early stages and in the embryoblast shortly prior to implantation. In conclusion, during the pre- and periimplantation period, members of the adiponectin pathway are expressed in endometrium and blastocysts, with a specific expression pattern in the embryonic disk of the gastrulating rabbit blastocyst, giving support to a role of the adipokine network in blastocyst differentiation and embryo-maternal interactions.  相似文献   

17.
18.
Sex-related growth rate differences in preimplantation mouse embryos were investigated. In experiment I, Day 3 embryos were recovered from reproductive tracts, classified according to developmental stage, and cultured for 24 hr in CZB medium containing glucose. Each embryo was then reclassified and stained for measurement of number of nuclei and finally sexed using the polymerase chain reaction. In experiment II, Day 4 embryos were recovered, classified, stained, and sexed as in experiment I immediately after recovery. Morphologically, there were no differences between the sexes in either of the experiments on Day 4. However, based on number of nuclei, the data showed that in vitro conditions support the development of male embryos to the blastocyst stage compared to female embryos. Furthermore, growth rate differences were observed in vivo on Day 3, as females compacted earlier than males. These results suggest that the increased cell proliferation in cultured male embryos is an artifact caused by the in vitro environment. The variation may be due to sex differences in embryonal energy metabolism during the preimplantation stage. The growth difference implies different in vitro requirements of male and female embryos. © 1995 Wiley-Liss, Inc.  相似文献   

19.
X-chromosome inactivation in monkey embryos and pluripotent stem cells   总被引:1,自引:0,他引:1  
Inactivation of one X chromosome in female mammals (XX) compensates for the reduced dosage of X-linked gene expression in males (XY). However, the inner cell mass (ICM) of mouse preimplantation blastocysts and their in vitro counterparts, pluripotent embryonic stem cells (ESCs), initially maintain two active X chromosomes (XaXa). Random X chromosome inactivation (XCI) takes place in the ICM lineage after implantation or upon differentiation of ESCs, resulting in mosaic tissues composed of two cell types carrying either maternal or paternal active X chromosomes. While the status of XCI in human embryos and ICMs remains unknown, majority of human female ESCs show non-random XCI. We demonstrate here that rhesus monkey ESCs also display monoallelic expression and methylation of X-linked genes in agreement with non-random XCI. However, XIST and other X-linked genes were expressed from both chromosomes in isolated female monkey ICMs indicating that ex vivo pluripotent cells retain XaXa. Intriguingly, the trophectoderm (TE) in preimplantation monkey blastocysts also expressed X-linked genes from both alleles suggesting that, unlike the mouse, primate TE lineage does not support imprinted paternal XCI. Our results provide insights into the species-specific nature of XCI in the primate system and reveal fundamental epigenetic differences between in vitro and ex vivo primate pluripotent cells.  相似文献   

20.
The mammalian blastocyst consists of an inner cell mass (ICM) enclosed by the trophectoderm. The origin of these two cell populations lies in the segregation of inner and outer cells in the early morula. In the present study, the segregation of inner and outer cells has been studied in porcine embryos and is compared with segregation in mouse embryos. For this, nuclei of inner and outer cells were differentially labelled with two fluorochromes after partial complement-mediated lysis of the outer cells. In porcine and mouse embryos compaction and the first appearance of inner cells occur at different stages of development. In porcine embryos compaction was observed as early as the 4-cell stage, while in mouse embryos compaction occurred in the 8-cell stage. The first inner cells segregated in porcine embryos which were in the transition from four to eight cells and inner cells were added during two subsequent cell cycles. In mouse embryos inner cells segregated predominantly during the fourth cleavage division. From the results obtained we conclude that the segregation of inner and outer cells follows a different pattern in mouse and in porcine embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号