首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The lateral mobility of ribosomes bound to rough endoplasmic reticulum (RER) membranes was demonstrated under experimental conditions. High- salt-washed rough microsomes were treated with pancreatic ribonuclease (RNase) to cleave the mRNA of bound polyribosomes and allow the movement of individual bound ribosomesmfreeze-etch and thin-section electron microscopy demonstrated that, when rough microsomes were treated with RNase at 4 degrees C and then maintained at this temperature until fixation, the bound ribosomes retained their homogeneous distribution on the microsomal surface. However, when RNase- treated rough microsomes were brought to 24 degrees C, a temperature above the thermotropic phase transition of the microsomal phospholipids, bound ribosomes were no longer distributed homogeneously but, instead, formed large, tightly packed aggregates on the microsomal surface. Bound polyribosomes could also be aggregated by treating rough microsomes with antibodies raised against large ribosomal subunit proteins. In these experiments, extensive cross-linking of ribosomes from adjacent microsomes also occurred, and large ribosome-free membrane areas were produced. Sedimentation analysis in sucrose density gradients demonstrated that the RNase treatment did not release bound ribosomes from the membranes; however, the aggregated ribosomes remain capable of peptide bond synthesis and were released by puromycin. It is proposed that the formation of ribosomal aggregates on the microsomal surface results from the lateral displacement of ribosomes along with their attached binding sites, nascent polypeptide chains, and other associated membrane proteins; The inhibition of ribosome mobility after maintaining rough microsomes at 4 degrees C after RNase, or antibody, treatment suggests that the ribosome binding sites are integral membrane proteins and that their mobility is controlled by the fluidity of the RER membrane. Examination of the hydrophobic interior of microsomal membranes by the freeze-fracture technique revealed the presence of homogeneously distributed 105-A intramembrane particles in control rough microsomes. However, aggregation of ribosomes by RNase, or their removal by treatment with puromycin, led to a redistribution of the particles into large aggregates on the cytoplasmic fracture face, leaving large particle-free regions.  相似文献   

2.
Mild ribonuclease treatment of the membrane fraction of P3K cells released three types of membrane-bound ribosomal particles: (a) all the newly made native 40S subunits detected after 2 h of [3H]uridine pulse. Since after a 3-min pulse with [35S]methionine these membrane native subunits appear to contain at least sevenfold more Met-tRNA per particle than the free native subunits, they may all be initiation complexes with mRNA molecules which have just become associated with the membranes; (b) about 50% of the ribosomes present in polyribosomes. Evidence is presented that the released ribosomes carry nascent chains about two and a half to three times shorter than those present on the ribosomes remaining bound to the membranes. It is proposed that in the membrane-bound polyribosomes of P3K cells, only the ribosomes closer to the 3' end of the mRNA molecules are directly bound, while the latest ribosomes to enter the polyribosomal structures are indirectly bound through the mRNA molecules; (c) a small number of 40S subunits of polyribosomal origin, presumably initiation complexes attached at the 5' end of mRNA molecules of polyribosomes. When the P3K cells were incubated with inhibitors acting at different steps of protein synthesis, it was found that puromycin and pactamycin decreased by about 40% the proportion of ribosomes in the membrane fraction, while cycloheximide and anisomycin had no such effect. The ribosomes remaining on the membrane fraction of puromycin-treated cells consisted of a few polyribosomes, and of an accumulation of 80S and 60S particles, which were almost entirely released by high salt treatment of the membranes. The membrane-bound ribosomes found after pactamycin treatment consisted of a few polyribosomes, with a striking accumulation of native 60S subunits and an increased number of native 40S subunits. On the basis of the observations made in this and the preceding papers, a model for the binding of ribosomes to membranes and for the ribosomal cycle on the membranes is proposed. It is suggested that ribosomal subunits exchange between free and membrane-bound polyribosomes through the cytoplasmic pool of free native subunits, and that their entry into membrane-bound ribosomes is mediated by mRNA molecules associated with membranes.  相似文献   

3.
The in vitro binding of total ribosomal proteins with rough endoplasmic membranes, from which 70% of ribosomes are eliminated by EDTA (ME) is studied. It is found that in conditions of specific interaction of ribosomes with membranes about 75% of total ribosomal proteins are bound with ME. Membranes, heterogenous in their content (different protein/lipid ratio), became homogenous in their buyoant density after the binding with proteins. The ability of membrane-ribosomal protein complex to bind ribosomes is not decreased, as it can be expected, but is considerablly increased, thus indicating on a non-specific character of ribosome binding. Ribosomal subunits lacking about half of structural protein are capable to bind with ribosome-binding membrane receptors and with some additional sites. This binding is also non-specific, because the binding efficiency of large and small subunits is the same.  相似文献   

4.
Over half of the chloroplast ribosomes isolated from growing cultures of Chlamydomonas reinhardtii are bound to chloroplast thylakoid membranes if completion of nascent polypeptide chains is prevented by chloramphenicol. The free chloroplast ribosomes are recovered in homogenate supernatants, and presumably originate from the chloroplast stroma. Only about 10% of these free chloroplast ribosomes are polyribosomes, even under conditions when 70% of free cytoplasm ribosomes are recovered as polyribosomes. The nonionic detergent Nonidet P-40 liberates atypical polyribosomes (Type I), from membranes, which require both ribonuclease and proteases for complete conversion to monomeric ribosomes. Thus Type I particles are held together by mRNA but are also held together by peptide bonds. These Type I polyribosomes probably are not bound to intact membrane, but might be bound to some protein-containing sub-membrane particle. The Type I polyribosomes are dissociated to ribosomal subunits by puromycin and high salt, and contained 0.2 to 1 nascent chain per ribosome. If membranes are treated with Nonidet and proteases at the same time, polyribosomes which are digested to monomeric ribosomes by ribonuclease alone (Type II) are obtained. Type II polyribosomes are smaller than Type I, and probably represent the true size distribution of polyribosomes on the membranes. At least 50% of the membrane-bound ribosomes are polyribosomes, since that much membrane bound chloroplast RNA is recovered as Type I or Type II polyribosomes.  相似文献   

5.
Rat liver rough microsomal membranes were stripped of bound ribosomes by treatment with puromycin and high concentrations of monovalent ions. Ribosomal subunits labeled in the RNA were detached from rough microsomes by the same procedure, recombined into monomers, and then incubated with stripped membranes in a medium of low ionic strength (25 mm-KCl, 50 mm-Tris-HCl, 5 mm-MgCl2). These ribosomes readily attached to the stripped membranes, as determined by isopycnic flotation of the reconstituted microsomes. The binding reaction was complete after incubation for five minutes at 37 °C, but also proceeded at 0 °C, at a lower rate. Scatchard plots showed a binding constant of ~8 × 107m?1 and ~5 × 10?8 mol binding sites per gram of membrane protein. Native rough microsomes showed a much lower binding capacity at 0 °C than stripped rough microsomes, but showed considerable uptake of ribosomes at 37 °C. Smooth microsomes, treated for stripping and incubated at 0 °C, accepted less than half as many ribosomes as stripped rough microsomes. Erythrocyte ghosts were incapable of binding ribosomes. Microsomal binding sites were heat sensitive, were destroyed by a brief incubation with a mixture of trypsin and chymotrypsin in the cold, and were unaffected by incubation with phospholipase C.Ribosome binding was decreased by increasing the concentration of monovalent ions and was strongly inhibited by 10?4m-aurintricarboxylic acid. Experiments with purified ribosomal subunits revealed that at concentrations of monovalent ions close to physiological concentrations (100 to 150 mm-KCl), microsomal binding sites had a greater affinity for 60 S than for 40 S subunits.Stripped rough microsomes were also capable of accepting polysomes obtained from rough microsomes by detergent treatment. Although this binding presumably involves the correct membrane binding sites, polypeptides discharged from re-bound polymers were not transferred to the vesicular cavities, as in native microsomes. The released polypeptides remained firmly associated with the outer microsomal face, as shown by their accessibility to proteases.  相似文献   

6.
Binding of rat liver polyribosomes to homologous degranulated rough endoplasmic reticulum (dRER) labeled with 10-(pyren-1-yl)decanoic acid (PDA) was studied. As a consequence of the membrane association of polysomes, the excimer/monomer fluorescence intensity ratios (Ie/Im) decreased, thus indicating alterations in the dynamics and organization of lipids. These fluorescence changes were complete within approximately 1 min, in accordance with the tight binding of ribosomes to RER. In order to characterize the changes in membrane lipid dynamics in more detail, polysomes were covalently labeled with trinitrobenzenesulfonic acid so as to allow their use as F?rster-type resonance energy-transfer acceptors while utilizing PDA as a donor. Accordingly, assuming the binding of native and quencher-labeled ribosomes to the PDA-labeled membranes to be identical, we were able to discriminate fluorescence changes (a) in the proximity of the ribosome binding site from (b) those arising in the surrounding ribosome-free membrane and beyond the effective quenching radii of the TNP residues coupled to polysomes. Our data suggest that lipids in the polysome attachment site of dRER are less mobile than those in the remaining, ribosome-free membrane. In addition, there appears to be a relative enrichment of the PDA probe in the polyribosome membrane attachment sites.  相似文献   

7.
The amino acid-incorporating activities of free polyribosomes, rough membranes and rough membranes reconstituted in vitro, derived from rat liver, were compared. The amino acid-incorporating activity of the two membrane fractions were very similar in their response towards changes in pH, Mg2+ concentration and temperature, but differed from the response of the amino acid-incorporating activity of free polyribosomes. Free polyribosomes irreversibly lost part of their amino acid-incorporating capacity after they had become bound to rough membrane, from which the original ribosomes had been removed. Ribonuclease activity present in the membrane fraction may be responsible for this loss.  相似文献   

8.
Treatment of rat liver rough microsomes (3.5 mg of protein/ml) with sublytical concentrations (0.08%) of the neutral detergent Triton X-100 caused a lateral displacement of bound ribosomes and the formation of ribosomal aggregates on the microsomal surface. At slightly higher detergent concentrations (0.12-0.16%) membrane areas bearing ribosomal aggregates invaginated into the microsomal lumen and separated from the rest of the membrane. Two distinct classes of vesicles could be isolated by density gradient centrifugation from microsomes treated with 0.16% Triton X-100: one with ribosomes bound to the inner membrane surfaces ("inverted rough" vesicles) and another with no ribosomes attached to the membranes. Analysis of the fractions showed that approximately 30% of the phospholipids and 20-30% of the total membrane protein were released from the membranes by this treatment. Labeling with avidin-ferritin conjugates demonstrated that concanavalin A binding sites, which in native rough microsomes are found in the luminal face of the membranes, were present on the outer surface of the inverted rough vesicles. Freeze-fracture electron microscopy showed that both fracture faces had similar concentrations of intramembrane particles. SDS PAGE analysis of the two vesicle subfractions demonstrated that, of all the integral microsomal membrane proteins, only ribophorins I and II were found exclusively in the inverted rough vesicles bearing ribosomes. These observations are consistent with the proposal that ribophorins are associated with the ribosomal binding sites characteristic of rough microsomal membranes.  相似文献   

9.
1. Pancreatic ribonuclease in dilute EDTA has been shown to condition rough-microsomal membranes from adult rat liver to accept exogenously added rat liver polyribosomes in vitro at 0-4 degrees C. Treated smooth membranes would not significantly interact with polyribosomes. 2. The conditioning process decreased the membrane RNA content and removed polyribosomes from vesicle surfaces as viewed electron-microscopically. 3. Binding to these conditioned membranes was shown to be uninfluenced by changes of temperature (0-37 degrees C) and pH (6.9-7.8) or the presence of cell sap, but was inhibited by increasing the concentration of potassium chloride. 4. Possession of a polyribosome-binding capacity by conditioned rough membranes was not dependent on adventitious materials that could be dislodged by high ionic strengths. 5. Trypsin treatment under mild conditions destroyed the binding capacity of ribonuclease-conditioned rough membranes. 6. A 2-10S residual RNA was recovered from ribonuclease-conditioned membranes, but its partial removal had no effect on the capacity of membranes to accept polyribosomes. However, some role for this residual RNA in attaching polyribosomes could not be discounted. 7. Evidence is considered that polyribosome-binding sites are intrinsic features of conditioned membranes isolated from rough-microsomal fractions, and that long-range ionic bonding is a primary factor in polyribosome interaction with these binding sites.  相似文献   

10.
The binding of ribosomal subunits to endoplasmic reticulum membranes   总被引:11,自引:6,他引:5       下载免费PDF全文
The binding of ribosomes and ribosomal subunits to endoplasmic reticulum preparations of mouse liver was studied. (1) Membranes prepared from rough endoplasmic reticulum by preincubation with 0.5m-KCl and puromycin bound 60-80% of added 60S subunits and 10-15% of added 40S subunits. Membranes prepared with pyrophosphate and citrate showed less clear specificity for 60S subunits particularly when assayed at low ionic strengths. (2) Ribosomal 40S subunits bound efficiently to membranes only in the presence of 60S subunits. The reconstituted membrane-60S subunit-40S subunit complex was active in synthesis of peptide bonds. (3) No differences in binding to membranes were seen between subunits derived from free and from membrane-bound ribosomes. (4) It is concluded that the binding of ribosomes to membranes does not require that they be translating a messenger RNA, and that the mechanism whereby bound and free ribosomes synthesize different groups of proteins does not depend on two groups of ribosomes that differ in their ability to bind to endoplasmic reticulum.  相似文献   

11.
A procedure has been developed for extracting membranes from bacterial cells under conditions that keep a large fraction of bacterial polyribosomes intact. Freeze-thawing spheroplasts in the presence of deoxyribonuclease, followed by differential centrifugation, permits a separation of free and membrane-associated polyribosomes. The latter fraction contains as much as 40% of cell ribosomal ribonucleic acid (RNA) and 55% of cell messenger RNA (mRNA). Nascent polypeptides were divided almost equally between the two fractions, but 70 to 80% of alkaline phosphatase nascent chains, detected both chemically and immunologically, were derived from polyribosomes associated with the bacterial membrane. Analysis of the fractions for mRNA specific for the lac and trp operons by RNA-deoxyribonucleic acid hydridization showed somewhat larger amounts on membrane than on free polyribosomes, but enrichment for nascent alkaline phosphatase (a secreted protein) on membranes was consistently greater, suggesting that polyribosomes making secreted proteins are more tightly bound to membranes. Electron micrographs of the membrane preparations show relatively intact membranes with clusters of polyribosomes on their inner surfaces.  相似文献   

12.
N-terminal acetylation is one of the most common modifications, occurring on the vast majority of eukaryotic proteins. Saccharomyces cerevisiae contains three major NATs, designated NatA, NatB, and NatC, with each having catalytic subunits Ard1p, Nat3p, and Mak3p, respectively. Gautschi et al. (Gautschi et al. [2003] Mol Cell Biol 23: 7403) previously demonstrated with peptide crosslinking experiments that NatA is bound to ribosomes. In our studies, biochemical fractionation in linear sucrose density gradients revealed that all of the NATs are associated with mono- and polyribosome fractions. However only a minor portion of Nat3p colocalized with the polyribosomes. Disruption of the polyribosomes did not cause dissociation of the NATs from ribosomal subparticles. The NAT auxiliary subunits, Nat1p and Mdm20p, apparently are required for efficient binding of the corresponding catalytic subunits to the ribosomes. Deletions of the genes corresponding to auxiliary subunits significantly diminish the protein levels of the catalytic subunits, especially Nat3p, while deletions of the catalytic subunits produced less effect on the stability of Nat1p and Mdm20p. Also two ribosomal proteins, Rpl25p and Rpl35p, were identified in a TAP-affinity purified NatA sample. Moreover, Ard1p copurifies with Rpl35p-TAP. We suggest that these two ribosomal proteins, which are in close proximity to the ribosomal exit tunnel, may play a role in NatA attachment to the ribosome.  相似文献   

13.
Potassium and magnesium ion concentrations affected the extent but not the specificity of binding in vitro of 60-S and 40-S ribosome subunits to degranulated rough microsomal membranes from rat liver. Scatchard plots revealed that under ionic conditions most likely to resemble those in vivo, the affinity constants for binding 60-S subunits were approximately four-times greater than those characterizing 40-S subunit binding. Further, the extent to which subunits bound at saturation was close to the level of ribosomes present in intact membranes.  相似文献   

14.
Number of tRNA binding sites on 80 S ribosomes and their subunits   总被引:1,自引:0,他引:1  
The ability of rabbit liver ribosomes and their subunits to form complexes with different forms of tRNAPhe (aminoacyl-, peptidyl- and deacylated) was studied using the nitrocellulose membrane filtration technique. The 80 S ribosomes were shown to have two binding sites for aminoacyl- or peptidyl-tRNA and three binding sites for deacylated tRNA. The number of tRNA binding sites on 80 S ribosomes or 40 S subunits is constant at different Mg2+ concentrations (5-20 mM). Double reciprocal or Scatchard plot analysis indicates that the binding of Ac-Phe-tRNAPhe to the ribosomal sites is a cooperative process. The third site on the 80 S ribosome is formed by its 60 S subunit, which was shown to have one codon-independent binding site specific for deacylated tRNA.  相似文献   

15.
Several procedures were used to disassemble rat liver rough microsomes (RM) into ribosomal subunits, mRNA, and ribosome-stripped membrane vesicles in order to examine the nature of the association between the mRNA of bound polysomes and the microsomal membranes. The fate of the mRNA molecules after ribosome release was determined by measuring the amount of pulse-labeled microsomal RNA in each fraction which was retained by oligo-dT cellulose or by measuring the poly A content by hybridization to radioactive poly U. It was found that ribosomal subunits and mRNA were simultaneously released from the microsomal membranes when the ribosomes were detached by: (a) treatment with puromycin in a high salt medium containing Mg++, (b) resuspension in a high salt medium lacking Mg++, and (c) chelation of Mg++ by EDTA or pyrophosphate. Poly A-containing mRNA fragments were extensively released from RM subjected to a mild treatment with pancreatic RNase in a medium of low ionic strength. This indicates that the 3' end of the mRNA is exposed on the outer microsomal surface and is not directly bound to the membranes. Poly A segments of bound mRNA were also accessible to [(3)H] poly U for in situ hybridization in glutaraldehyde-fixed RM. Rats were treated with drugs which inhibit translation after formation of the first peptide bonds or interfere with the initiation of protein synthesis. After these treatments inactive monomeric ribosomes, as well as ribosomes bearing mRNA, remained associated with their binding sites in microsomes prepared in media of low ionic strength. However, because there were no linkages provided by nascent chains, ribosomes, and mRNA, molecules were released from the microsomal membranes without the need of puromycin, by treatment with a high salt buffer containing Mg++. Thus, both in vivo and in vitro observations are consistent with a model in which mRNA does not contribute significantly to the maintenance of the interaction between bound polysomes and endoplasmic reticulum membranes in rat liver hepatocytes.  相似文献   

16.
In a medium of high ionic strength, rat liver rough microsomes can be nondestructively disassembled into ribosomes and stripped membranes if nascent polypeptides are discharged from the bound ribosomes by reaction with puromycin. At 750 mM KCl, 5 mM MgCl2, 50 mM Tris·HCl, pH 7 5, up to 85% of all bound ribosomes are released from the membranes after incubation at room temperature with 1 mM puromycin. The ribosomes are released as subunits which are active in peptide synthesis if programmed with polyuridylic acid. The ribosome-denuded, or stripped, rough microsomes (RM) can be recovered as intact, essentially unaltered membranous vesicles Judging from the incorporation of [3H]puromycin into hot acid-insoluble material and from the release of [3H]leucine-labeled nascent polypeptide chains from bound ribosomes, puromycin coupling occurs almost as well at low (25–100 mM) as at high (500–1000 mM) KCl concentrations. Since puromycin-dependent ribosome release only occurs at high ionic strength, it appears that ribosomes are bound to membranes via two types of interactions: a direct one between the membrane and the large ribosomal subunit (labile at high KCl concentration) and an indirect one in which the nascent chain anchors the ribosome to the membrane (puromycin labile). The nascent chains of ribosomes specifically released by puromycin remain tightly associated with the stripped membranes. Some membrane-bound ribosomes (up to 40%) can be nondestructively released in high ionic strength media without puromycin; these appear to consist of a mixture of inactive ribosomes and ribosomes containing relatively short nascent chains. A fraction (~15%) of the bound ribosomes can only be released from membranes by exposure of RM to ionic conditions which cause extensive unfolding of ribosomal subunits, the nature and significance of these ribosomes is not clear.  相似文献   

17.
1. Free and membrane-bound polyribosomes and ribosomal monomers were isolated from normal and Rauscher-virus-infected mouse spleens by means of discontinuous sucrose density gradients. 2. The addition of ribonuclease inhibitor from rat liver was essential to protect these polyribosomes from degradation. To separate the smooth and rough membranes from ribosomal monomers an additional centrifugation step through a continuous sucrose density gradient was necessary. 3. After infection a marked increase in rRNA from both membrane-bound and free polyribosomes was observed. Treatment of the membrane-bound polyribosomes with sodium deoxycholate yielded only 80S particles even when ribonuclease inhibitor was added. 4. A striking feature of the infected spleen was the occurrence of large polyribosomes. Up to 40 monomers per polyribosome could be counted on electron micrographs.  相似文献   

18.
The membrane-bound polyribosomes in Ehrlich ascites tumor cells can be separated into a loosely bound and a tightly bound fraction by means of a high salt treatment. Both membrane fractions as well as the free polyribosomes in the supernatant synthesize about the same set of proteins, suggesting a close relationship between these polyribosome fractions in the Ehrlich cell. Relatively high concentrations of cycloheximide do not prevent newly synthesized poly(A)-containing mRNA from entering the tightly bound polyribosome fraction. Nor had treatment of the cells with puromycin in the presence of cycloheximide, which released about 70% of the nascent chains, any significant effect on the entrance of newly synthesized mRNA into tightly bound polyribosomes. These results suggest that in ehrlich ascites tumor cells nascent polypeptide chains are not involved in the binding of polyribosomes to membranes.  相似文献   

19.
Summary The isolation of rough and smooth endoplasmic reticulum from rat parotid salivary gland is described. The rough membrane was stripped of its bound ribosomes using the KCl-puromycin method. Rough endoplasmic reticulum was reconstituted from stripped-rough membrane and polyribosomes. The reconstituted rough membrane resembled the native rough membrane in the following aspects: RNA/protein ratio, buoyant density in a continuous sucrose gradient and amino acid incorporation capacity. The in vitro synthesis of -amylase by both rough and in vitro reconstituted rough membrane was demonstrated using SDS polyacrylamide gel electrophoresis. The reconstituted rough membrane could be restripped by KCl-puromycin. The in vitro synthesized -amylase remained associated with the rough or the in vitro reconstituted rough membrane, even after these membranes were stripped of their bound ribosomes.Abbreviations Fp Free polyribosomes - Bp Membrane-bound polyribosomes released by DOC - RM Rough membrane - SM Smooth membrane - RMst Rough membrane stripped - RMrec In vitro reconstituted rough membrane - DOC Sodium deoxycholate  相似文献   

20.
A system for study and measurement of the attachment in vitro of exogenous polyribosomes to membranes has been presented. Its main features are use of low temperature, post-microsomal supernatant, pyrophosphate and citric acid to remove ribosomes from the surface of rough endoplasmic reticulum, and a method for quantitative separation of unattached from membrane-associated polyribosomes. The following were found. (1) Rough endoplasmic reticulum, from which ribosomes had been removed by treatment with pyrophosphate and citrate, bound over 50% of added polyribosomes, whereas the untreated (or control) rough and smooth endoplasmic reticulum and the smooth endoplasmic reticulum treated with pyrophosphate-citrate did not bind polyribosomes. (2) The polyribosome-binding capacity of rough endoplasmic reticulum stripped of its ribosomes decayed upon storage of the membranes at 0-4 degrees C. The half-life of this decay was about 6 days whereas that of the polyribosome-binding capacity of hepatoma stripped rough endoplasmic reticulum was about 1.5 days. (3) Preparations of stripped rough endoplasmic reticulum after reassociation with polyribosomes in vitro were quite similar to preparations of native rough endoplasmic reticulum as viewed with the electron microscope. Evidence is presented to support the contention that association of polyribosomes with membranes was the result of polyribosomal reattachment to the membranes rather than trapping of the polyribosomes between vesicles of the membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号