首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Pan BS  Wolyniak CJ  Brenna JT 《Amino acids》2007,33(4):631-638
Summary. Presented here is the first experimental evidence that natural, intramolecular, isotope ratios are sensitive to physiological status, based on observations of intramolecular δ15N of lysine in the mitochondrial mimic Paracoccus denitrificans. Paracoccus denitrificans, a versatile, gram-negative bacterium, was grown either aerobically or anaerobically on isotopically-characterized ammonium as sole cell-nitrogen source. Nitrogen isotope composition of the biomass with respect to source ammonium was = −6.2 ± 1.2‰ for whole cells under aerobic respiration, whereas cells grown anaerobically produced no net fractionation ( = −0.3 ± 0.23‰). Fractionation of 15N between protein nitrogen and total cell nitrogen increased during anaerobic respiration and suggests that residual nitrogen-containing compounds in bacterial cell membranes are isotopically lighter under anaerobic respiration. In aerobic cells, the lysine intramolecular difference between peptide and sidechain nitrogen is negligible, but in anaerobic cells was a remarkable Δ15Np − s = δ15Npeptide − δ15Nsidechain = +11.0‰, driven predominantly by enrichment at the peptide N. Consideration of known lysine pathways suggests this to be likely due to enhanced synthesis of peptidoglycans in the anaerobic state. These data indicate that distinct pathway branching ratios associated with microbial respiration can be detected by natural intramolecular Δδ15N measurements, and are the first in vivo observations of position-specific measurements of nitrogen isotope fractionation.  相似文献   

2.
The oxidative stress induced by acute exertion may interfere with blood platelet activation. The beneficial effect of l-carnitine (γ-trimethylamino-β-hydroxybutyric acid) on oxidative stress in blood platelets has not been fully investigated; however, different studies indicate that this compound modulates platelet functions. The aim of our study was to assess the effects of l-carnitine on platelet activation and oxidative/nitrative protein damage (determined by the levels of protein carbonyl groups, thiol groups, and 3-nitrotyrosine residues) in resting blood platelets or platelets treated with peroxynitrite (ONOO, a strong physiological oxidant) in vitro. We also investigated the effects of l-carnitine on the level of platelet glutathione and on the formation of superoxide anion radicals ( O2 - · ) \left( {{\hbox{O}}_2^{ - \bullet }} \right) , lipid peroxidation measured by thiobarbituric acid reactive substances (TBARS) in blood platelets stimulated by thrombin (a strong physiological agonist), and platelet aggregation induced by adenosine diphosphate (a strong physiological stimulator). We have observed that carnitine decreases platelet activation (measured by platelet aggregation, the generation of O2 - · {\hbox{O}}_2^{ - \bullet } , and TBARS production). Moreover, our results in vitro demonstrate that carnitine may protect against oxidation of thiol groups induced by ONOO. Thus, carnitine may have some protectory effects against oxidative changes induced in blood platelets.  相似文献   

3.
The allometric relationships of mean tree height [`(H)]( μ [`(w)]xq ) \bar{H}( \propto \bar{w}_{\rm {x}}^{\theta } ) and of organ mass density [`(d)]x ( μ [`(w)]xd ) \bar{d}_{\rm {x}} ( \propto \bar{w}_{\rm {x}}^{\delta } ) to mean organ mass [`(w)]x \bar{w}_{\rm {x}} were studied in self-thinning Pinus densiflora Sieb. et Zucc. stands. Tree height increased significantly with increasing mean mass of organs and aboveground parts on log–log coordinates. The value of the allometric constant θ ranged from 0.2878 to 0.3349. On the other hand, the constant value δ was not significantly different from zero, except for leaves. The value of the allometric constant δ ranged from −0.2926 to 0.0120. According to Weller’s allometric model, the slope of the self-thinning line was calculated from the allometric constants θ and δ. The thinning slope was estimated to be −1.51 in stem, −1.39 in branches, −1.00 in leaf and −1.41 in aboveground parts, respectively. Mass density was high in stem, medium in branches and low in leaves. Mean leaf mass density decreased significantly with decreasing stand density on log–log coordinates, which could be interpreted as indicating the importance of the constant final leaf biomass in overcrowded P. densiflora stands. The self-thinning exponents of branch, stem and aboveground parts were not significantly different from 3/2, which indicated that the 3/2 power law of self-thinning holds for stem mass, branch mass and aboveground mass in overcrowded P. densiflora stands.  相似文献   

4.
Life history parameters associated with reproductive biology, age, and growth of the convict cichlid (also known as the zebra cichlid) Amatitlania nigrofasciata, which was introduced into the Haebaru Reservoir on Okinawa-jima Island, were estimated using 437 specimens that ranged from 13.7 to 82.9 mm standard length (SL). Lengths of females at first maturity (SL) and 50% maturity (L 50) were estimated to be 32.2 and 37.3 mm SL, respectively. The spawning period continued throughout the year, with a peak spawning cycle from March to May 2006–2007. Observations of postovulatory follicles and tertiary yolk stage oocytes indicate that convict cichlids spawn multiple times within a year. Female cichlids that hatched during the peak spawning seasons matured after October of the same year. Batch fecundity of females (32.2–61.2 mm SL) ranged from 65 to 345 (mean ± SD = 155 ± 63). Opaque zones along the outer margins of otoliths formed annually. The maximum age of male and female cichlids was 3 years. The von Bertalanffy growth formulae (VBGF) were expressed as Lt = 57.4( 1 - e - 0.78( t + 0.91 ) ) {{\hbox{L}}_{\rm{t}}}{ = 57}{.4}\left( {1 - {e^{ - 0.78\left( {t + 0.91} \right)}}} \right) for females and Lt = 69.5( 1 - e - 1.07( t + 0.24 ) ) {{\hbox{L}}_{\rm{t}}}{ = 69}{.5}\left( {1 - {e^{ - 1.07\left( {t + 0.24} \right)}}} \right) for males. Males grew larger than females beginning from the first year. Certain life history characteristics, such as year-round spawning and early maturation, probably contributed to the successful establishment of the convict cichlid, and this species in particular is thought to adapt and become established quickly upon introduction to freshwater systems on Okinawa-jima Island.  相似文献   

5.
We report the synthesis and the biological evaluation of two new analogues of the potent dimeric opioid peptide biphalin. The performed modification is based on the replacement of two key structural elements of the native biphalin, namely: the hydrazine bridge which joins the two palindromic moieties and the phenylalanine residues at the 4,4′ positions of the backbone. The new analogues 9 and 10 contain 1,2-phenylenediamine and piperazine, respectively, in place of the hydrazidic linker and p-fluoro-l-phenylalanine residues at 4 and 4′ positions. Binding values are: K\textim = 0.51 \textnM K_{\text{i}}^{\mu } = 0.51\,{\text{nM}} and K\textid = 12.8 \textnM K_{\text{i}}^{\delta } = 12.8\,{\text{nM}} for compound 9, K\textim = 0.09 \textnM K_{\text{i}}^{\mu } = 0.09\,{\text{nM}} and K\textid = 0.11 \textnM K_{\text{i}}^{\delta } = 0.11\,{\text{nM}} for analogue 10.  相似文献   

6.
Mammalian metallothioneins ( \textM7\textIIMTs {\text{M}}_7^{\text{IIMTs}} ) show a clustered arrangement of the metal ions and a nonregular protein structure. The solution structures of Cd3-thiolate cluster containing β-domain of mouse β-MT-1 and rat β-MT-2 show high structural similarities, but widely differing structure dynamics. Molecular dynamics simulations revealed a substantially increased number of \textNH - \textSg {\text{NH - }}{{\text{S}}^\gamma } hydrogen bonds in β-MT-2, features likely responsible for the increased stability of the Cd3-thiolate cluster and the enfolding protein domain. Alterations in the \textNH - \textSg {\text{NH - }}{{\text{S}}^\gamma } hydrogen-bonding network may provide a rationale for the differences in dynamic properties encountered in the β-domains of MT-1, -2, and -3 isoforms, believed to be essential for their different biological function.  相似文献   

7.
Summary A set of three-dimensional triple-resonance experiments is described which provide , , and coupling constants. The pulse sequences generate E.COSY-like multiplet patterns and comprise a magnetization transfer from the amide proton to the α-proton or vice versa via the directly bound heteronuclei. For residues with the 1Hα spin resonating close to the H2O signal, a modified HNCA experiment can be employed to measure the vicinal 1HN,1Hα couplings. Ambiguities associated with the conversion of values into ϕ-angle constraints for protein structure determination can be resolved with the knowledge of the heteronuclear 3J-couplings. In favourable cases, stereospecific assignments of glycine α-protons can be obtained by employing the experiments described here in combination with NOE data. The methods are applied to flavodoxin from Desulfovibrio vulgaris.  相似文献   

8.
The data processing method of the turbidimetric bioassay of nisin was modified to facilitate its industrial application. The influence of the initial indicator concentration was minimized by a redefined specific dose of the bacteriocin as the quotient between the titer of the added bacteriocin and the initial population density of the indicator in the suspension. It was found that d c = 0.125 μg ml−1 was the critical dose of nisin that can cause a complete inhibition of the indicator, Pediococcus acidilactici UL5, with an initial OD of 0.135. To eliminate the interference of the cell debris, an equation, , exploiting d c, was formulated to obtain the intrinsic survival proportion. The use of the specific dose of the bacteriocin and the intrinsic survival proportion as parameters of the dose/response curve greatly enhanced its repeatability and feasibility. A dual-dosage approach was developed to further simplify the conventional standard dose/response curve method.  相似文献   

9.
The unusual ??-halogen bond interactions are investigated between $ \left( {\hbox{BNN}} \right)_3^{+} $ and X1X2 (X1, X2?=?F, Cl, Br) employing MP2 at 6-311?+?G(2d) and aug-cc-pVDZ levels according to the ??CP (counterpoise) corrected potential energy surface (PES)?? method. The order of the ??-halogen bond interactions and stabilities of the complexes are obtained to be $ \left( {\hbox{BNN}} \right)_3^{+} \ldots {{\hbox{F}}_2} < \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{ClF < }}\left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{C}}{{\hbox{l}}_2} < \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{BrCl}}\quad { < }\quad \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{B}}{{\hbox{r}}_2}\quad { < }\quad \left( {\hbox{BNN}} \right)_3^{+} \ldots {\hbox{BrF}}{.} $ at MP2/aug-cc-pVDZ level. The analyses of the Mulliken charge transfer, natural bond orbital (NBO), atoms in molecules (AIM) theory and electron density shifts reveal that the nature of the ??-halogen bond interaction in the complexes of ClF, BrF and BrCl might partly be charge transfer from the delocalized ??-HOMO orbital of $ \left( {\hbox{BNN}} \right)_3^{+} $ to X1X2. This result suggests that the positive aromatic ring $ \left( {\hbox{BNN}} \right)_3^{+} $ might act as a ??-electron donor to form the ??-halogen bond.
Figure
Shifts of electron density as a result of formation of the complex. The unusual ??-halogen interactions are found between (BNN)3 + and X1X2 (X1, X2=F, Cl, Br) employing MP2 method at 6-311+G(2d) and aug-cc-pVDZ levels according to the ??CP-corrected PES)?? method. The analyses of the Mulliken charge transfer, NBO, AIM and electron density shifts reveal that the nature of the ??-halogen bond interaction in the complexes of ClF, BrF and BrCl might partly be charge transfer from the delocalized ??-HOMO orbital of (BNN)3 + to X1X2. (BNN)3 + might be as ??-electron donor to form the ??-halogen bond.  相似文献   

10.
11.
High temperature generally constrains plant growth and photosynthesis in many regions of the world; however, little is known about how photosynthesis responds to high temperature with regard to different leaf ages. The synchronous changes in gas exchange and chlorophyll fluorescence at three leaf age levels (just fully expanded, mature, and older leaves) of maize (Zea mays L.) were determined at three temperatures (30°C as a control and 36 and 42°C as the higher temperatures). High temperature significantly decreased the net CO2 assimilation rate (A), stomatal conductance (g s), maximal efficiency of photosystem II (PSII) photochemistry (F v/F m), efficiency of excitation energy capture by open PSII reaction centers ( F\textv /F\textm F^{\prime}_{\text{v}} /F^{\prime}_{\text{m}} ), photochemical quenching of variable chlorophyll fluorescence (q P), and the electron transport rate (ETR), whereas minimal fluorescence yield (F 0) and nonphotochemical quenching of variable chlorophyll fluorescence (q N) were increased. The youngest fully expanded leaves had higher A, ETR, and q P compared with older leaves. Higher temperature with old leaves led to significant malondialdehyde (MDA) accumulation, a proxy for lipid peroxidation damage from active oxygen species (AOS). MDA content was significantly negatively correlated with A, F v/F m, F\textv /F\textm F^{\prime}_{\text{v}} /F^{\prime}_{\text{m}} , and q P. Thus, the results suggest that photosynthetic potentials, including stomatal regulation and PSII activity, may be restricted at high temperature, together with increasing cell peroxidation, which may be closely associated with leaf age.  相似文献   

12.
Desulfovibrio vulgaris (strain Marburg) was grown on H2 and sulfate as sole energy source in a chemostat limited by the sulfate supply. The biomass concentration and the sulfate concentration in the culture were determined as a function of the dilution rate. From the data a K S (saturation constant) for sulfate of 10 M, a max of 0.23 h–1, and a of 13 g/mol were calculated. The organism was also grown in chemostat culture on H2 and sulfite, H2 and thiosulfate, and pyruvate (without sulfate). was found to be 35 g/mol, 36 g/mol, and Y pyr max 10 g/mol. The growth yields are discussed with respect to ATP gains in dissimilatory sulfate reduction.  相似文献   

13.
Araucaria angustifolia is an endangered tropical/subtropical coniferous of great interest for conservation due its economical, ecological, and social value. Only 3% of original Araucaria forests remain, which are generally confined to small forest fragments. Forest fragmentation can have serious consequences on genetic process in tree population, affecting long-term fitness and adaptability. To investigate the effects of forest fragmentation on genetic diversity and the structure of A. angustifolia populations, the genetic diversity of eight microsatellite loci was compared in four small fragmented populations (<22 ha), four tree groups (five to 11 trees) occurring in pastures and in three plots in a large continuous population. The clearest effect of fragmentation was the loss of rare alleles (p ≤ 0.05) in fragmented populations (19.4% to 47.2%) and intermediate frequency (0.05 < p ≤ 0.25) and rare alleles (p ≤ 0.05) in tree groups (19% to 86.1%) in comparison to continuous populations. Fragmented populations have significant higher fixation index ( [^(F)]\textIS = 0.121 \widehat{F}_{\text{IS}} = 0.121 , P < 0.05) than continuous populations ( [^(F)]\textIS = 0.083 \widehat{F}_{\text{IS}} = 0.083 , P < 0.05). High genetic differentiation was detected among tree groups ( [^(G)]\textST = 0.258 \widehat{G}_{{{\text{ST}}}}^{\prime } = 0.258 , P < 0.01) and low among fragments ( [^(G)]\textST = 0.031 \widehat{G}_{{{\text{ST}}}}^{\prime } = 0.031 , P < 0.05) and continuous populations ( [^(G)]\textST = 0.026 \widehat{G}_{{{\text{ST}}}}^{\prime } = 0.026 , P < 0.05), showing a significant bottleneck effect in tree groups. Evidence that forest fragments have experienced a recent bottleneck was confirmed in at least two studied fragments. The implications of the results for conservation of the fragmented A. angustifolia populations are discussed.  相似文献   

14.
Described here is a set of three-dimensional (3D) NMR experiments that rely on CACA-TOCSY magnetization transfer via the weak 3 \textJ\textCa\textCa ^{ 3} {\text{J}}_{{{\text{C}}\alpha {\text{C}}\alpha }} coupling. These pulse sequences, which resemble recently described 13C detected CACA-TOCSY (Takeuchi et al. 2010) experiments, are recorded in 1H2O, and use 1H excitation and detection. These experiments require alternate 13C-12C labeling together with perdeuteration, which allows utilizing the small 3 \textJ\textCa\textCa ^{ 3} {\text{J}}_{{{\text{C}}\alpha {\text{C}}\alpha }} scalar coupling that is otherwise masked by the stronger 1JCC couplings in uniformly 13C labeled samples. These new experiments provide a unique assignment ladder-mark that yields bidirectional supra-sequential information and can readily straddle proline residues. Unlike the conventional HNCA experiment, which contains only sequential information to the 1 3 \textCa ^{ 1 3} {\text{C}}^{\alpha } of the preceding residue, the 3D hnCA-TOCSY-caNH experiment can yield sequential correlations to alpha carbons in positions i1, i + 1 and i2. Furthermore, the 3D hNca-TOCSY-caNH and Hnca-TOCSY-caNH experiments, which share the same magnetization pathway but use a different chemical shift encoding, directly couple the 15N-1H spin pair of residue i to adjacent amide protons and nitrogens at positions i2, i1, i + 1 and i + 2, respectively. These new experimental features make protein backbone assignments more robust by reducing the degeneracy problem associated with the conventional 3D NMR experiments.  相似文献   

15.
The lead absorbed by the roots induce oxidative stress conditions through the Reactive oxygen species (ROS) production for the pea plants cultivated hydroponically for 96 h on a Hoagland medium with the addition of 0.1 and 0.5 mM of Pb(NO3)2. The alterations in \textO2 - · {\text{O}}_{2}^{ - \cdot } and H2O2 concentrations were monitored spectrophotometrically which show a rapid increase in \textO2 - · {\text{O}}_{2}^{ - \cdot } production during the initial 2 h, and in case of H2O2, during the eighth hour of cultivation. The level of ROS remained higher at all the time points for the roots of the plants cultivated with Pb2+ and it was proportional to metal concentration. The production of \textO2 - · {\text{O}}_{2}^{ - \cdot } and H2O2 was visualized by means of fluorescence microscope technique. They are produced in nonenzymatic membrane lipid peroxidation and its final product is Malondialdehyde, the level of which increased together with the level of H2O2. As stress intensity raised (duration of treatment and Pb2+ concentration), so did the activities of superoxide dismutases, catalase and ascorbate peroxidase antioxidative enzymes and of low-molecular antioxidants, particularly glutathione (GSH), homoglutathione (h-GSH) and cysteine substrate toward their synthesis. The root cells redox state (GSH/GSSG) dropped proportionally to lead stress intensity.  相似文献   

16.
As a result of increased anthropogenic nitrogen (N) loading in surface waters of agricultural watersheds, there is enhanced interest to understand and quantify N removal mechanisms. Denitrification, an important N removal mechanism in aquatic systems, may contribute to reducing N pollution in agricultural headwater streams. However, the key factors controlling this process in lotic systems remain unclear. The objective of our study was to examine the factors regulating rates of denitrification in the sediments of agricultural headwater streams in the mid-western USA. Denitrification rates were variable among streams and treatments (<0.1–28.0 μg N g AFDM−1 h−1) and on average, were higher than those reported for similar headwater streams. Carbon quantity and quality, and pH had no effect on denitrification, while temperature and nitrate ( ) concentrations had a positive effect on rates of denitrification. Specifically, controlled denitrification following Michaelis-Menten kinetics. We calculated a value of km (1.0 mg -N L-1) that was comparable to other studies in aquatic sediments but was well below the median in-stream concentrations (5.2–17.4 mg -N L−1) observed at the study sites. Despite high rates of denitrification, this removal mechanism is most likely saturated in the agricultural headwater streams we examined, suggesting that these systems are not effective at removing in-stream N. Handling editor: D. Ryder  相似文献   

17.
Total height, diameter, index volume, stem straightness, apical dominance, and survival were assessed at 8 years from seed in an open-pollinated progeny test of 36 families of European chestnut (Castanea sativa Miller) established at two sites in the Atlantic area of Galicia, Spain. Iterative spatial analysis was applied to eliminate the effect of the spatial dependence in the original data and to estimate accurately genetic parameters for evaluating the potential for selection of the measured trees. Spatial analysis was very beneficial for growth traits and survival, but less so if at all for form traits. Estimated individual heritabilities ranged from moderate to high for growth traits ([^(h)]i2 = 0.29 - 0.42 \widehat{h}_i^2 = 0.29 - 0.42 ) and stem straightness ([^(h)]i2 = 0.24 - 0.42 \widehat{h}_i^2 = 0.{24} - 0.{42} ). High coefficients of additive genetic variance were obtained for volume ( [^(\textC)]\textV\textA = 36.5 - 41.5% \widehat{\text{C}}{{\text{V}}_{\text{A}}} = {36}.{5} - {41}.{5}\% ) and straightness ( [^(\textC)]\textV\textA = 44.26 - 53.84% \widehat{\text{C}}{{\text{V}}_{\text{A}}} = {44}.{26} - {53}.{84}\% ). Phenotypic and estimated genetic correlations between growth traits were very high, and correlations between sites indicated that there was no important family × site interaction. No adverse correlations between traits were evident. The results indicate the ample potential for selection in the current progeny trial, where responses to within-family and combined selection for growth traits may be high. Accordingly, three selection scenarios were addressed with the aim to initiate the selection of individuals for implementing the Forest Breeding Plan of Galicia for European chestnut.  相似文献   

18.
The natural abundance hydrogen-isotope composition of leaf water ( ) and leaf organic matter ( D org ) was measured in leaves of C3 and C4 dicotyledons and monocotyledons. The value of leaf water showed a marked diurnal variation, greatest enrichment being observed about midday. However, this variation was greater in the more slowly transpiring C4 plants than in C3 plants under comparable environmental conditions. A model based on analogies with a constant feed pan of evaporating water was developed and the difference between C3 and C4 plants expressed in terms of either differences in kinetic enrichment or different leaf morphology. Microclimatic and morphological features of the leaves which may be associated with this factor are discussed. There was no daily excursion in the D org value in leaves of either C3 or C4 plants. When D org values were referenced to the mean values during the period of active photosynthesis, the discrimination against deuterium during photosynthetic metabolism (D) was greater in C3 plants (-117 to -121) than in C4 plants (-86 to -109).These results show that the different water use strategies of C3 and C4 plants are responsible for the measured difference in deuterium-isotope composition of leaf water. However, it is unlikely that these physical processes account fully for the differences in hydrogen-isotope composition of the products of C3 and C4 photosynthetic metabolism.Symbols Hydrogen-isotope composition of leaf water - D org hydrogen-isotope composition of leaf organic matter  相似文献   

19.
Summary The energy requirements of Adélie penguin (Pygoscelis adeliae) chicks were analysed with respect to body mass (W, 0.145–3.35 kg, n=36) and various forms of activity (lying, standing, minor activity, locomotion, walking on a treadmill). Direct respirometry was used to measure O2 consumption ( ) and CO2 production. Heart rate (HR, bpm) was recorded from the ECG obtained by both externally attached electrodes and implantable HR-transmitters. The parameters measured were not affected by hand-rearing of the chicks or by implanting transmitters. HR measured in the laboratory and in the field were comparable. Oxygen uptake ranged from in lying chicks to at maximal activity, RQ=0.76. Metabolic rate in small wild chicks (0.14–0.38 kg) was not affected by time of day, nor was their feeding frequency in the colony (Dec 20–21). Regressions of HR on were highly significant (p< 0.0001) in transmitter implanted chicks (n=4), and two relationships are proposed for the pooled data, one for minor activities ( ), and one for walking ( ). Oxygen consumption, mass of the chick (2–3 kg), and duration of walking (T, s) were related as , whereas mass-specific O2 consumption was related to walking speed (S, m·s-1) as .Abbreviations bpm beats per minute - D distance walked (m) - ECG electrocardiogram - HR heart rate (bpm) - ns number of steps - RQ respiratory quotient - S walking speed (m·s-1) - T time walked (s) - W body mass (kg)  相似文献   

20.
Nitschke U  Ruth AA  Dixneuf S  Stengel DB 《Planta》2011,233(4):737-748
The emission of molecular iodine (I2) from the stipe, the meristematic area and the distal blade of the brown macroalga Laminaria digitata (Hudson) Lamouroux (Phaeophyceae) was monitored under low light and dark conditions. Photosynthetic parameters were determined to investigate both the extent of stress experienced by different thallus parts and the effects of emersion on photosynthesis. Immediately after air exposure, intense I2 emission was detectable from all thallus parts. I2 emission declined continuously over a period of 180 min following the initial burst, but was not affected by the light regime. The total number of mole of I2 emitted by stipes was approximately 10 times higher than those emitted from other thallus parts. Initial I2 emission rates (measured within 30 min of exposure to air) were highest for stipes (median values: 2,999 and 5,222 pmol g−1 dw min−1 in low light and dark, respectively) and lower, by one order of magnitude, for meristematic regions and distal blades. After exposure to air for between 60 and 180 min, I2 emission rates of all thallus parts were reduced by 70–80%. Air exposure resulted in a decrease of the maximum photosystem II (PSII) efficiency (F v/F m) by 3%, and in a 25–55% increase of the effective PSII quantum efficiency ( \Updelta F/F\textm \Updelta F/F^{\prime}_{\text{m}} ); this was caused by a higher fraction of open reaction centres (qP), whereas the efficiency of the latter in capturing energy ( F\textv /F\textm F^{\prime}_{\text{v}} /F^{\prime}_{\text{m}} ) remained constant. The results indicate the presence of an iodine pool which is easily volatilised and depleted due to air exposure, even under apparently low stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号