首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Hyperhomocysteinemia has long been associated with atherosclerosis and thrombosis and is an independent risk factor for cardiovascular disease. Its causes include both genetic and environmental factors. Although homocysteine is produced in every cell as an intermediate of the methionine cycle, the liver contributes the major portion found in circulation, and fatty liver is a common finding in homocystinuric patients. To understand the spectrum of proteins and associated pathways affected by hyperhomocysteinemia, we analyzed the mouse liver proteome of gene-induced (cystathionine β-synthase (CBS)) and diet-induced (high methionine) hyperhomocysteinemic mice using two-dimensional difference gel electrophoresis and Ingenuity Pathway Analysis. Nine proteins were identified whose expression was significantly changed by 2-fold (p ≤ 0.05) as a result of genotype, 27 proteins were changed as a result of diet, and 14 proteins were changed in response to genotype and diet. Importantly, three enzymes of the methionine cycle were up-regulated. S-Adenosylhomocysteine hydrolase increased in response to genotype and/or diet, whereas glycine N-methyltransferase and betaine-homocysteine methyltransferase only increased in response to diet. The antioxidant proteins peroxiredoxins 1 and 2 increased in wild-type mice fed the high methionine diet but not in the CBS mutants, suggesting a dysregulation in the antioxidant capacity of those animals. Furthermore, thioredoxin 1 decreased in both wild-type and CBS mutants on the diet but not in the mutants fed a control diet. Several urea cycle proteins increased in both diet groups; however, arginase 1 decreased in the CBS+/− mice fed the control diet. Pathway analysis identified the retinoid X receptor signaling pathway as the top ranked network associated with the CBS+/− genotype, whereas xenobiotic metabolism and the NRF2-mediated oxidative stress response were associated with the high methionine diet. Our results show that hyperhomocysteinemia, whether caused by a genetic mutation or diet, alters the abundance of several liver proteins involved in homocysteine/methionine metabolism, the urea cycle, and antioxidant defense.Homocysteine (Hcy)1 is a thiol-containing amino acid that is produced in every cell of the body as an intermediate of the methionine cycle (Fig. 1, Reactions 1–5) (1). Once formed, the catabolism of homocysteine occurs via three enzymatic pathways. 1) Hcy is remethylated back to methionine using vitamin B12-dependent methionine synthase (Fig. 1, Reaction 4) and/or 2) betaine-homocysteine methyltransferase (BHMT) (Fig. 1, Reaction 5), and 3) Hcy is converted to cysteine via the transsulfuration pathway using CBS and γ-cystathionase (Fig. 1, Reactions 6 and 7). Under normal conditions ∼40–50% of the Hcy that is produced in the liver is remethylated, ∼40–50% is converted to cysteine, and a small amount is exported (13). However, when Hcy production is increased (i.e. increased dietary methionine/protein intake) or when Hcy catabolism is decreased (i.e. CBS deficiency or B vitamin deficiencies), excess Hcy is exported into the extracellular space, resulting in hyperhomocysteinemia (15).Open in a separate windowFig. 1.Homocysteine metabolism in liver and kidney. In classical homocystinuria, the initial enzyme of the transsulfuration pathway, CBS (Reaction 6), is deficient. MTHF, methylenetetrahydrofolate; THF, tetrahydrofolate; DHF, dihydrofolate; MeCbl, methylcobalamin; DMG, dimethylglycine; PLP, pyridoxal 5′-phosphate.Homocystinuria was first described in the 1960s by Carson et al. (6): they observed 10 pediatric patients with severely elevated levels of Hcy in the urine and hypermethioninemia. Normal concentrations of plasma total homocysteine (tHcy) range from 5 to 12 μm (7); however, in homocystinuria, tHcy levels can exceed 100 μm. Homocystinuric patients present with mental retardation, abnormal bone growth, fine hair, malar flush, and dislocation of the lens of the eye, and most die from premature cardiovascular disease (6, 8). Autopsy findings indicate widespread thromboembolism, arteriosclerosis, and fatty livers (6, 8). Mudd et al. (9, 10) identified the cause of homocystinuria as a defect in the enzyme cystathionine β-synthase. A recent study of newborn infants in Denmark estimated the birth prevalence for CBS heterozygosity to be about 1:20,000 (11).Plasma tHcy concentrations are also directly correlated with dietary methionine/protein intake (12, 13). Guttormsen et al. (13) demonstrated that a protein-rich meal affected tHcy for at least 8–24 h. When normal subjects were fed a low protein-containing breakfast (12–15 g), plasma methionine levels increased slightly after 2 h (22.5–27.5 μm), but tHcy levels did not change significantly. However, when these same subjects were fed a high protein meal (52 g), plasma methionine levels peaked after 4 h (38 μm), and tHcy rose steadily until a maximum level was reached 8 h postmeal (7.6 versus 8.5 μm) (13). Thus, the following questions can be raised. How does the hepatic proteome respond to a hyperhomocysteinemic diet, and are the changes that accompany such a diet the same as or different from those that may be observed in gene-induced hyperhomocysteinemia?Because hyperhomocysteinemia is a strong independent risk factor for cardiovascular, cerebrovascular, and peripheral vascular disease, most of the current research has focused on the mechanisms involved in Hcy-induced endothelial dysfunction (1424). The results of those studies have concluded that Hcy induces intracellular oxidative stress by generating ROS, which in turn lead to decreased bioavailable nitric oxide (NO), altered gene expression, increased endoplasmic reticulum stress, and activation of cholesterol biosynthesis. Also, several studies have examined the association between hyperhomocysteinemia and alcoholic liver disease, but few have looked at the effect of Hcy on the non-alcoholic liver even though fatty liver is a constant finding in homocystinuria (6, 8), and the liver is the major source of circulating Hcy (4, 5, 10). We hypothesize that 1) the liver proteome will respond to hyperhomocysteinemia by altering the expression of proteins involved in methionine/homocysteine metabolism and antioxidant defense and that 2) the set of proteins that are expressed when hyperhomocysteinemia is induced by CBS deficiency will differ from those expressed as a result of a high methionine diet. In the present study, we use a well established mouse model of CBS deficiency to study the early changes in the liver proteome that accompany hyperhomocysteinemia (25).  相似文献   

9.
10.
11.
Apoptotic caspases, such as caspase-7, are stored as inactive protease zymogens, and when activated, lead to a fate-determining switch to induce cell death. We previously discovered small molecule thiol-containing inhibitors that when tethered revealed an allosteric site and trapped a conformation similar to the zymogen form of the enzyme. We noted three structural transitions that the compounds induced: (i) breaking of an interaction between Tyr-223 and Arg-187 in the allosteric site, which prevents proper ordering of the catalytic cysteine; (ii) pinning the L2′ loop over the allosteric site, which blocks critical interactions for proper ordering of the substrate-binding groove; and (iii) a hinge-like rotation at Gly-188 positioned after the catalytic Cys-186 and Arg-187. Here we report a systematic mutational analysis of these regions to dissect their functional importance to mediate the allosteric transition induced by these compounds. Mutating the hinge Gly-188 to the restrictive proline causes a massive ∼6000-fold reduction in catalytic efficiency. Mutations in the Arg-187–Tyr-223 couple have a far less dramatic effect (3–20-fold reductions). Interestingly, although the allosteric couple mutants still allow binding and allosteric inhibition, they partially relieve the mutual exclusivity of binding between inhibitors at the active and allosteric sites. These data highlight a small set of residues critical for mediating the transition from active to inactive zymogen-like states.Caspases are a family of dimeric cysteine proteases whose members control the ultimate steps for apoptosis (programmed cell death) or innate inflammation among others (for reviews, see Refs. 1 and 2). During apoptosis, the upstream initiator caspases (caspase-8 and -9) activate the downstream executioner caspases (caspase-3, -6, and-7) via zymogen maturation (3). The activated executioner caspases then cleave upwards of 500 key proteins (46) and DNA, leading to cell death. Due to their pivotal role in apoptosis, the caspases are involved both in embryonic development and in dysfunction in diseases including cancer and stroke (7). The 11 human caspases share a common active site cysteine-histidine dyad (8), and derive their name, cysteine aspartate proteases, from their exquisite specificity for cleaving substrate proteins after specific aspartate residues (913). Thus, it has been difficult to develop active site-directed inhibitors with significant specificity for one caspase over the others (14). Despite difficulties in obtaining specificity, there has been a long-standing correlation between efficacy of caspase inhibitors in vitro and their ability to inhibit caspases and apoptosis in vivo (for review, see Ref. 31). Thus, a clear understanding of in vitro inhibitor function is central to the ability control caspase function in vivo.Caspase-7 has been a paradigm for understanding the structure and dynamics of the executioner caspases (1521). The substrate-binding site is composed of four loops; L2, L3, and L4 are contributed from one-half of the caspase dimer, and L2′ is contributed from the other half of the caspase dimer (Fig. 1). These loops appear highly dynamic as they are only observed in x-ray structures when bound to substrate or substrate analogs in the catalytically competent conformation (1719, 22) (Fig. 1B).Open in a separate windowFIGURE 1.Allosteric site and dimeric structure in caspase-7. A, the surface of active site-bound caspase-7 shows a large open allosteric (yellow) site at the dimer interface. This cavity is distinct from the active sites, which are bound with the active site inhibitor DEVD (green sticks). B, large subunits of caspase-7 dimers (dark green and dark purple) contain the active site cysteine-histidine dyad. The small subunits (light green and light purple) contain the allosteric site cysteine 290. The conformation of the substrate-binding loops (L2, L2′, L3, and L4) in active caspase-7 (Protein Data Bank (PDB) number 1f1j) is depicted. The L2′ loop (spheres) from one-half of the dimer interacts with the L2 loop from the other half of the dimer. C, binding of allosteric inhibitors influences the conformation of the L2′ loop (spheres), which folds over the allosteric cavity (PDB number 1shj). Subunit rendering is as in panel A. Panels A, B, and C are in the same orientation.A potential alternative to active site inhibitors are allosteric inhibitors that have been seeded by the discovery of selective cysteine-tethered allosteric inhibitors for either apoptotic executioner caspase-3 or apoptotic executioner caspase-7 (23) as well as the inflammatory caspase-1 (24). These thiol-containing compounds bind to a putative allosteric site through disulfide bond formation with a thiol in the cavity at the dimer interface (Fig. 1A) (23, 24). X-ray structures of caspase-7 bound to allosteric inhibitors FICA3 and DICA (Fig. 2) show that these compounds trigger conformational rearrangements that stabilize the inactive zymogen-like conformation over the substrate-bound, active conformation. The ability of small molecules to hold mature caspase-7 in a conformation that mimics the naturally occurring, inactive zymogen state underscores the utility and biological relevance of the allosteric mechanism of inhibition. Several structural changes are evident between these allosterically inhibited and active states. (i) The allosteric inhibitors directly disrupt an interaction between Arg-187 (next to the catalytic Cys-186) and Tyr-223 that springs the Arg-187 into the active site (Fig. 3), (ii) this conformational change appears to be facilitated by a hinge-like movement about Gly-188, and (iii) the L2′ loop folds down to cover the allosteric inhibitor and assumes a zymogen-like conformation (Fig. 1C) (23).Open in a separate windowFIGURE 2.Structure of allosteric inhibitors DICA and FICA. DICA and FICA are hydrophobic small molecules that bind to an allosteric site at the dimer interface of caspase-7. Binding of DICA/FICA is mediated by a disulfide between the compound thiol and Cys-290 in caspase-7.Open in a separate windowFIGURE 3.Movement of L2′ blocking arm. The region of caspase-7 encompassing the allosteric couple Arg-187 and Tyr-223 is boxed. The inset shows the down orientation of Arg-187 and Tyr-223 in the active conformation with DEVD substrate mimic (orange spheres) in the active site. In the allosteric/zymogen conformation, Arg-187 and Tyr-223 are pushed up by DICA (blue spheres).Here, using mutational analysis and small molecule inhibitors, we assess the importance of these three structural units to modulate both the inhibition of the enzyme and the coupling between allosteric and active site labeling. Our data suggest that the hinge movement and pinning of the L2-L2′ are most critical for transitioning between the active and inactive forms of the enzyme.  相似文献   

12.
FTY720, a sphingosine analog, is in clinical trials as an immunomodulator. The biological effects of FTY720 are believed to occur after its metabolism to FTY720 phosphate. However, very little is known about whether FTY720 can interact with and modulate the activity of other enzymes of sphingolipid metabolism. We examined the ability of FTY720 to modulate de novo ceramide synthesis. In mammals, ceramide is synthesized by a family of six ceramide synthases, each of which utilizes a restricted subset of acyl-CoAs. We show that FTY720 inhibits ceramide synthase activity in vitro by noncompetitive inhibition toward acyl-CoA and uncompetitive inhibition toward sphinganine; surprisingly, the efficacy of inhibition depends on the acyl-CoA chain length. In cultured cells, FTY720 has a more complex effect, with ceramide synthesis inhibited at high (500 nm to 5 μm) but not low (<200 nm) sphinganine concentrations, consistent with FTY720 acting as an uncompetitive inhibitor toward sphinganine. Finally, electrospray ionization-tandem mass spectrometry demonstrated, unexpectedly, elevated levels of ceramide, sphingomyelin, and hexosylceramides after incubation with FTY720. Our data suggest a novel mechanism by which FTY720 might mediate some of its biological effects, which may be of mechanistic significance for understanding its mode of action.FTY720 (2-amino-(2-2-[4-octylphenyl]ethyl)propane 1,3-diol hydrochloride), also known as Fingolimod, is an immunosuppressant drug currently being tested in clinical trials for organ transplantation and autoimmune diseases such as multiple sclerosis (1). FTY720 is a structural analog of sphingosine, a key biosynthetic intermediate in sphingolipid (SL)2 metabolism (see Fig. 1). In vivo, FTY720 is rapidly phosphorylated by sphingosine kinase 2 (2, 3) to form FTY720 phosphate (FTY720-P), an analog of sphingosine 1-phosphate (S1P) (see Fig. 1A). FTY720-P binds to S1P receptors (S1PRs) (4, 5) and thereby induces a variety of phenomena such as T-lymphocyte migration from lymphoid organs (69); accordingly, FTY720 treatment results in lymphopenia as lymphocytes (especially T-cells) become sequestered inside lymphoid organs (1012). The ability of FTY720 to sequester lymphocytes has stimulated its use in treatment of allograft rejection and autoimmune diseases (13), and FTY720 is currently under phase III clinical trials for treatment of relapsing-remitting multiple sclerosis (14).Open in a separate windowFIGURE 1.SL structure and metabolism. A, structures of SLs and SL analogs used in this study. B, metabolic inter-relationships between SLs and the metabolism of FTY720. The enzymes are denoted in italics. LPP3, lipid phosphate phosphatase 3; LPP1α, lipid phosphate phosphatase 1α.Apart from the binding of FTY720-P to S1PRs, the ability of FTY720 to inhibit S1P lyase (15) (see Fig. 1B), and its inhibitory effect on cytosolic phospholipase A2 (16), whose activity can be modulated by ceramide 1-phosphate (17), little is known about whether FTY720 or FTY720-P can modulate the activity of other enzymes of SL metabolism. Because FTY720 is an analog of sphingosine, one of the two substrates of ceramide synthase (CerS) (see Fig. 1), we now examine whether FTY720 can modulate CerS activity. CerS utilizes fatty acyl-CoAs to N-acylate sphingoid long chain bases. Six CerS exist in mammals, each of which uses a restricted subset of acyl-CoAs (1823). We demonstrate that FTY720 inhibits CerS activity and that the extent of inhibition varies according to the acyl chain length of the acyl-CoA substrate. Surprisingly, FTY720 inhibits CerS activity toward acyl-CoA via noncompetitive inhibition and toward sphinganine via uncompetitive inhibition. Finally, the mode of interaction of FTY720 with CerS in cultured cells depends on the amount of available sphinganine. Together, we show that FTY720 modulates ceramide synthesis, which may be of relevance for understanding its biological effects in vivo and its role in immunomodulation.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号