首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of acetoacetate (A) and beta-hydroxybutyrate (B) have been studied following the injection as a pulse or continued infusion of [3-14C]acetoacetate (A*) or [14C]beta-hydroxybutyrate (B*) into six newly diagnosed, untreated, ketotic diabetic patients, ten obese subjects in the postabsorptive state, and the ten obese subjects after 1-2 weeks starvation (50 cal per day). Employing a compartmental model of acetoacetate and beta-hydroxybutyrate kinetics developed using CONSAM for normal subjects, the rate coefficients (Lij), rates of release of newly synthesized acetoacetate and beta-hydroxybutyrate into the blood (UA, UB), and fractional removal of each compound (FCRA and FCRB) were calculated. Ketone body release into blood (UA + UB) in diabetic subjects was threefold higher than normal (mean +/- SD, 208 +/- 118 versus 81 +/- 66 mumol min-1 m-2) and in obese subjects the rate increased on starvation from 171 +/- 70 to 569 +/- 286 mumol min-1 m-2. In each case most of the increase was in beta-hydroxybutyrate. The major change in diabetes and on starvation of the obese subjects was in the rate coefficient for removal of ketone bodies. Normally 0.168 +/- 0.109 min-1, it was 0.055 +/- 0.040 min-1 in the diabetic patients and fell from 0.066 +/- 0.040 to 0.027 +/- 0.019 min-1 in the obese subjects on starvation. In normal subjects, FCRA was similar to FCRB (0.226 +/- 0.142 versus 0.188 +/- 0.124 min-1). However, in diabetics, FCRA was 0.074 +/- 0.044 and FCRB was 0.050 +/- 0.034 min-1 and both were lower than normal. On starvation of obese subjects, FCRA fell from 0.199 +/- 0.047 to 0.089 +/- 0.035 min-1, whereas FCRB fell from 0.141 +/- 0.040 to 0.033 +/- 0.012 min-1. Therefore, the removal of beta-hydroxybutyrate was impaired more than that of acetoacetate in all patients. Our results confirm previous observations that ketosis is associated with high rates of ketogenesis and a decrease in fractional clearance. In addition, we found that in diabetes, obesity, and in obese subjects following starvation, most of the increased synthesis was in beta-hydroxybutyrate and that the clearance of beta-hydroxybutyrate decreased more than that of acetoacetate.  相似文献   

2.
Using deuterium-labeled glycerol as tracer and gas-liquid chromatography-mass spectrometry techniques for the determination of isotopic enrichment, we have developed a simple and ethically acceptable method of determining glycerol appearance rate in humans under steady-state and nonsteady-state conditions. In normal subjects, the appearance rate of glycerol in the post-absorptive state was 2.22 +/- 0.20 mumol X kg-1 X min-1, a value in agreement with those reported in studies with radioactively labeled tracers. The ratio nonesterified fatty acid (NEFA) appearance rate/glycerol appearance rate ranged from 1.95 to 3.40. In insulin-dependent diabetic patients with a mild degree of metabolic control, the appearance rate of glycerol was 2.48 +/- 0.29 mumol X kg-1 X min-1. The volume of distribution of glycerol, determined by the bolus injection technique, was (mean) 0.306 l X kg-1 in normal subjects and 0.308 l X kg-1 in insulin-independent diabetic patients. To evaluate the usefulness of the method for determination of glycerol kinetics in nonsteady-state conditions, we infused six normal subjects with natural glycerol and calculated the isotopically determined glycerol appearance rate using a single compartment model (volume of distribution 0.31 l X kg-1). During these tests, the expected glycerol appearance rates were successively 5.03 +/- 0.33, 7.48 +/- 0.39, 9.94 +/- 0.34, 7.48 +/- 0.39, and 5.03 +/- 0.33 mumol +/- kg-1 X min-1, whereas the corresponding isotopically determined appearance rates were 4.62 +/- 0.45, 6.95 +/- 0.56, 10.85 +/- 0.51, 7.35 +/- 0.34, and 5.28 +/- 0.12 mumol X kg-1 X min-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Glutamate stimulates resting ventilation by altering neural excitability centrally. Hypoxia increases central ventilatory drive through peripheral chemoreceptor stimulation and may also alter cerebral perfusion and glutamate metabolism locally. Therefore the effect of hypoxia and peripheral chemodenervation on cerebrospinal fluid (CSF) transfer rate of in vivo tracer amidated central nervous system glutamate was studied in intact and chemodenervated pentobarbital-anesthetized dogs during normoxia and after 1 h of hypoxia induced with 10 or 12% O2 in N2 breathing at constant expired ventilation and arterial CO2 tension. Chemodenervation was performed by bilateral sectioning of the carotid body nerves and cervical vagi. CSF transfer rates of radiotracer 13NH4+ and [13N]glutamine synthesized via the reaction, glutamate + NH4(+)----glutamine, in brain glia were measured during normoxia and after 1 h of hypoxia. At normoxia, maximal glial glutamine efflux rate jm = 103.3 +/- 11.2 (SE) mumol.l-1.min-1 in all animals. After 1 h of hypoxia in intact animals, jm = 78.4 +/- 10.0 mumol.l-1.min-1. In denervated animals, jm was decreased to 46.3 +/- 4.3 mumol.l-1.min-1. During hypoxia, mean cerebral cortical glutamate concentration was higher in denervated animals (9.98 +/- 1.43 mumol/g brain tissue) than in intact animals (7.63 +/- 1.82 mumol/g brain tissue) and corresponding medullary glutamate concentration tended to be higher in denervated animals. There were no differences between mean glutamine and gamma-aminobutyric acid concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effects of eccentric exercise on whole body protein metabolism were compared in five young untrained [age 24 +/- 1 yr, maximal O2 uptake (VO2max) = 49 +/- 6 ml.kg-1.min-1] and five older untrained men (age 61 +/- 1 yr, VO2max = 34 +/- 2 ml.kg-1.min-1). They performed 45 min of eccentric exercise on a cycle ergometer at a power output equivalent to 80% VO2max (182 +/- 18 W). Beginning 5 days before exercise and continuing for at least 10 days after exercise, they consumed a eucaloric diet providing 1.5 g.kg-1.day-1 of protein. Leucine metabolism in the fed state was measured before, immediately after, and 10 days after exercise, with intravenous L-[1-13C]leucine as a tracer (0.115 mumol.kg-1.min-1). Leucine flux increased 9% immediately after exercise (P less than 0.011) and remained elevated 10 days later, with no effect of age. Leucine oxidation increased 19% immediately after exercise and remained 15% above baseline 10 days after exercise (P less than 0.0001), with no effect of age. In the young men, urinary excretion of 3-methylhistidine per gram of creatinine did not increase until 10 days postexercise (P less than 0.05), but in the older men, it increased 5 days after exercise and remained high through 10 days postexercise (P less than 0.05), averaging 37% higher than in the young men. These data suggest that eccentric exercise produces a similar increase in whole body protein breakdown in older and young men, but myofibrillar proteolysis may contribute more to whole body protein breakdown in the older group.  相似文献   

5.
Intracellular ATP has been reported either to stimulate [Jacquez, J.A. (1983) Biochim. Biophys. Acta 727, 367-378] or to inhibit [Hebert, D. N., & Carruthers, A. (1986) J. Biol. Chem. 261, 10093-10099] human erythrocyte sugar transport. This current study provides a rational explanation for these divergent findings. Protein-mediated 3-O-methyl-alpha-D-glucopyranoside (3OMG) uptake by intact human red blood cells (lacking intracellular sugar) at ice temperature in isotonic KCl containing 2 mM MgCl2, 2 mM EGTA, and 5 mM Tris-HCl, pH 7.4 (KCl medium), is characterized by a Km(app) of 0.4 +/- 0.1 mM and a Vmax of 114 +/- 20 mumol L-1 min-1. Lysis of red cells in 40 volumes of EGTA-containing hypotonic medium and resealing in 10 volumes of KCl medium increase the Km(app) and Vmax for uptake to 7.1 +/- 1.8 mM and 841 +/- 191 mumol L-1 min-1, respectively. Addition of ATP (4 mM) to the resealing medium restores Michaelis and velocity constants for zero-trans 3OMG uptake to 0.42 +/- 0.11 mM and 110 +/- 15 mumol L-1 min-1, respectively. Addition of CaCl2 to extracellular KCl medium (calculated [Ca2+]o = 101 microM) reduces the Vmax for zero-trans 3OMG uptake in intact cells and ATP-containing ghosts by 79 +/- 4% and 61 +/- 9%, respectively. Intracellular Ca2+ (15 microM) reduces the Vmax for 3OMG uptake by ATP-containing ghosts by 38 +/- 12%. In nominally ATP-free ghosts, extracellular (101 microM) and intracellular (11 microM) Ca2+ reduce the Vmax for 3OMG uptake by 96 and 94%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We evaluated whether acute anemia results in altered blood glucose utilization during sustained exercise at 26.8 m/min on 0% grade, which elicited approximately 60-70% maximal O2 consumption. Acute anemia was induced in female Sprague-Dawley rats by isovolumic plasma exchange transfusion. Hemoglobin and hematocrit were reduced 33% by exchange transfusion to 8.6 +/- 0.4 g/dl and 26.5 +/- 1%, respectively. Glucose kinetics were determined by primed continuous infusion of [6-3H]glucose. Rates of O2 consumption were similar during rest (pooled means 25.1 +/- 1.8 ml.kg-1.min-1) and exercise (pooled means 46.8 +/- 3.0 ml.kg-1.min-1). Resting blood glucose and lactate concentrations were not different in anemic animals (pooled means 5.1 +/- 0.2 and 0.9 +/- 0.02 mM, respectively). Exercise resulted in significantly decreased blood glucose (4.0 +/- 0.2 vs. 4.6 +/- 0.1 mM) and elevated lactate (6.1 +/- 0.4 vs. 2.3 +/- 0.5 mM) concentrations in anemic animals. Glucose turnover rates (Rt) were not different between anemic and control animals at rest and averaged 58.8 +/- 3.6 mumol.kg-1.min-1. Exercise resulted in a 30% greater increase in Rt in anemic (141.7 +/- 3.2 mumol.kg-1.min-1) than in control animals (111.2 +/- 5.2 mumol.kg-1.min-1). Metabolic clearance rates (MCR = Rt/[glucose]) were not different at rest (11.6 +/- 7.4) but were significantly greater in anemic (55.2 +/- 5.7 ml.kg-1.min-1) than in control animals (24.3 +/- 1.4 ml.kg-1.min-1) during exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We evaluated whether elevated blood lactate concentration during exercise in anemia is the result of elevated production or reduced clearance. Female Sprague-Dawley rats were made acutely anemic by exchange transfusion of plasma for whole blood. Hemoglobin and hematocrit were reduced 33%, to 8.6 +/- 0.4 mg/dl and 26.5 +/- 1.1%, respectively. Blood lactate kinetics were studied by primed continuous infusion of [U-14C]lactate. Blood flow distribution during rest and exercise was determined from injection of 153Gd- and 113Sn-labeled microspheres. Resting blood glucose (5.1 +/- 0.2 mM) and lactate (1.9 +/- 0.02 mM) concentrations were not different in anemic animals. However, during exercise blood glucose was lower in anemic animals (4.0 +/- 0.2 vs. 4.6 +/- 0.1 mM) and lactate was higher (6.1 +/- 0.4 vs. 2.3 +/- 0.5 mM). Blood lactate disposal rates (turnover measured with recyclable tracer, Ri) were not different at rest and averaged 136 +/- 5.8 mumol.kg-1.min-1. Ri was significantly elevated in both control (260.9 +/- 7.1 mumol.kg-1.min-1) and anemic animals (372.6 +/- 8.6) during exercise. Metabolic clearance rate (MCR = Ri/[lactate]) did not differ during rest (151 +/- 8.2 ml.kg-1.min-1); MCR was reduced more by exercise in anemic animals (64.3 +/- 3.8) than in controls (129.2 +/- 4.1). Plasma catecholamine levels were not different in resting rats, with pooled mean values of 0.45 +/- 0.1 and 0.48 +/- 0.1 ng/ml for epinephrine (E) and norepinephrine (NE), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Sixteen newly diagnosed non insulin dependent diabetic patients were treated for 3 months with an individual energy restricted diet. The effect on weight, hyperglycaemia and insulin response to oral glucose was measured in all subjects, and in 7, peripheral insulin resistance was estimated using a hyperinsulinaemic glucose clamp at two insulin infusion rates (40 and 400 mU m-2 X min-1). After diet, fasting plasma glucose fell from 12.0 +/- 0.7 mmol/l (mean +/- SEM) to 7.4 +/- 0.5 mmol/l (P less than 0.001) and weight fell from 92.9 +/- 4.2 kg to 85.0 +/- 3.1 kg (P less than 0.001). The plasma insulin response to oral glucose was unchanged after diet therapy. Insulin induced glucose disposal (M) was also unaffected by diet at insulin infusion rates of 40 mU m-2 X min-1 (12.5 +/- 1.5 mumol X kg-1 X min-1 vs 15.7 +/- 1.6 mumol X kg-1 X min-1) and 400 mU m-2 X min-1 (49.5 +/- 2.7 mumol X kg-1 X min-1 vs 55.1 +/- 2.5 mumol X kg-1 X min-1). These results show that 3 months reduction of energy consumption with weight loss in newly diagnosed non insulin dependent diabetics improves B-cell responsiveness to glucose but has no effect on liver glucose output or on peripheral insulin action.  相似文献   

9.
The reaction velocity of glucose-6-phosphate dehydrogenase (G6PDH) and phosphogluconate dehydrogenase (PGDH) was quantified with a cytophotometer by continuous monitoring of the reaction product as it was formed in liver cryostat sections from normal, young mature female rats at 37 degrees C. Control incubations were performed in media lacking both substrate and coenzyme for G6PDH activity and lacking substrate for PGDH activity. All reaction rates were non-linear but test minus control reactions showed linearity with incubation time up to 5 min using Nitro BT as final electron acceptor. End point measurements after incubation for 5 min at 37 degrees C revealed that the highest specific activity of G6PDH was present in the intermediate area (Vmax = 7.79 +/- 1.76 mumol H2 cm-3 min-1) and of PGDH in the pericentral and intermediate areas (Vmax = 17.19 +/- 1.73 mumol H2 cm-3 min-1). In periportal and pericentral areas, Vmax values for G6PDH activity were 4.48 +/- 1.03 mumol H2 cm-3 min-1) and 3.47 +/- 0.78 mumol H2 cm-3 min-1), respectively. PGDH activity in periportal areas showed a Vmax of 10.84 +/- 0.33 mumol H2 cm3 min-1. Variation of the substrate concentration for G6PDH activity yielded similar KM values of 0.17 +/- 0.07 mM, 0.15 +/- 0.13 mM and 0.22 +/- 0.11 mM in periportal, pericentral and intermediate areas, respectively. KM values of 0.87 +/- 0.12 mM in periportal and of 1.36 +/- 0.10 mM in pericentral and intermediate areas were found for PGDH activity. The significant difference between KM values for PGDH in areas within the acinus support the hypothesis that PGDH is present in the cytoplasmic matrix and in the microsomes. A discrepancy existed between KM and Vmax values determined in cytochemical assays using cryostat sections and values calculated from biochemical assays using diluted homogenates. In cytochemical assays, the natural microenvironment for enzymes is kept for the demonstration of their activity and thus may give more accurate information on enzyme reactions as they take place in vivo.  相似文献   

10.
A method has been devised to quantitate rates of ketogenesis (acetoacetate + beta-hydroxybutyrate production) in discrete regions of the liver lobule based on changes in NADH fluorescence. In perfused livers from fasted rats, ketogenesis was inhibited nearly completely with either 2-bromoctanoate (600 microM) or 2-tetradecylglycidic acid (25 microM). During inhibition of ketogenesis, a linear relationship (r = 0.90) was observed between decreases in NADH fluorescence detected from the liver surface and decreases in ketone body production. NADH fluorescence was monitored subsequently from individual regions of the liver lobule by placing microlight guides on periportal and pericentral regions of the liver lobule visible on the liver surface. Rates of ketogenesis in sublobular regions were calculated from regional decreases in NADH fluorescence and changes in the rate of ketone body formation by the whole liver during infusion of inhibitors. In the presence of bromoctanoate, ketogenesis was reduced 80% and local rates of ketogenesis were decreased 31 +/- 4 mumol/g/h in periportal areas and 28 +/- 3 mumol/g/h in pericentral regions. Similar results were observed with tetradecylglycidic acid. Therefore, it was concluded that submaximal rates of ketogenesis from endogenous, mainly long-chain fatty acids are nearly equal in periportal and pericentral regions of the liver lobule in liver from fasted rats. Rates of ketogenesis and NADH fluorescence were strongly correlated during fatty acid infusion. Infusion of 250 microM oleate increased NADH fluorescence maximally by 8 +/- 1% over basal values in periportal regions and 17 +/- 4% in pericentral areas. Local rates of ketogenesis, calculated from these changes in fluorescence, increased 35 +/- 6 mumol/g/h in periportal areas and 55 +/- 5 mumol/g/h in pericentral regions. Thus, oleate stimulated ketogenesis nearly 60% more in pericentral than in periportal regions of the liver lobule.  相似文献   

11.
Transport of 3-O-methyl-D-glucose (3-OMG) in rat red blood cells (RBCs) has been examined at 24 degrees C. The Km and Vm of zero-trans net uptake are 2.3 +/- 0.48 mM and 0.055 +/- 0.003 mumol (ml cell water)-1) min-1, whereas the Km and Vm for net exit are 2.1 +/- 0.12 mM and 0.12 +/- 0.01 mumol (ml cell water)-1 min-1. The Km and Vm for infinite-trans exchange uptake are 2.24 +/- 0.14 mM and 0.20 +/- 0.04 mumol (ml cell water)-1 min-1. In agreement with Whitesell et al. (Abumrad, N.A., Briscoe, P., Beth, A.H. and Whitesell, R.R. (1988) Biochim. Biophys. Acta 938, 222-230), we find that there is no significant acceleration of the rate of exchange exit over net exit. Substitution of D2O for water results in an increase in the Vm for zero-trans net uptake to 0.091 +/- 0.004 mumol (ml cell water)-1 min-1. There is no change in the Vm or Km for exchange uptake or net or exchange exit. Counterflow experiments indicate, in agreement with Helgerson and Carruthers (1989) Biochemistry 28, 4580-4594), that there is some compartmentalization of 3-OMG within the cells, perhaps resulting from slow complexation of the sugar with some intracellular component. The data can be simulated by assuming that transport across the membrane is mediated by either a fixed 2-site, or an alternating 1-site symmetrical transporter. With both models the observed asymmetries in net and exchange kinetics and in counterflow can be ascribed entirely to the complexation reaction of the sugar to an intracellular component. Also the D2O effects can entirely be attributed to an increase in the rate of sugar movement between bound and free compartments.  相似文献   

12.
To determine whether the reduced blood lactate concentrations [La] during submaximal exercise in humans after endurance training result from a decreased rate of lactate appearance (Ra) or an increased rate of lactate metabolic clearance (MCR), interrelationships among blood [La], lactate Ra, and lactate MCR were investigated in eight untrained men during progressive exercise before and after a 9-wk endurance training program. Radioisotope dilution measurements of L-[U-14C]lactate revealed that the slower rise in blood [La] with increasing O2 uptake (VO2) after training was due to a reduced lactate Ra at the lower work rates [VO2 less than 2.27 l/min, less than 60% maximum VO2 (VO2max); P less than 0.01]. At power outputs closer to maximum, peak lactate Ra values before (215 +/- 28 mumol.min-1.kg-1) and after training (244 +/- 12 mumol.min-1.kg-1) became similar. In contrast, submaximal (less than 75% VO2max) and peak lactate MCR values were higher after than before training (40 +/- 3 vs. 31 +/- 4 ml.min-1.kg-1, P less than 0.05). Thus the lower blood [La] values during exercise after training in this study were caused by a diminished lactate Ra at low absolute and relative work rates and an elevated MCR at higher absolute and all relative work rates during exercise.  相似文献   

13.
DNA binding of chick progesterone receptor B form (PRB) has been examined and compared to that of the A form (PRA). We found that the elution profiles of the two receptors overlap on DNA-cellulose columns. Both PRA or PRB could bind to plasmid DNA equivalently as assayed by sedimentation velocity studies. However, DNA-binding activity of the two receptor forms showed differential sensitivity to reducing agents and to sulfhydryl (SH) reactive reagents. Reducing agents stabilized DNA-binding activity of PRA more efficiently than they stabilized PRB. Moreover, removal of reducing agents from receptor preparations caused preferential loss of DNA binding by PRB compared to the PRA. DNA-binding activity of PRA was readily destroyed by sulfhydryl modifying reagents such as N-ethylmaleimide and iodoacetamide while PRB was 3-4 times less sensitive to these reagents. We conclude the DNA-binding activity of PRB is less stable due to altered accessibility of SH groups despite the amino acid sequence identity of the DNA-binding domains of PRA and PRB.  相似文献   

14.
To evaluate the ontogeny of neonatal glucose homeostasis, glucose production and lactate production have been measured in nine prematurely born appropriate for gestational age neonates [birth weight 1985 +/- 100 g, (SEM) gestational age 33.6 +/- 0.7 weeks] and five full term appropriate for gestational age neonates [birth weight 3254 +/- 111 g, gestational age 40.8 +/- 0.4 wks] and compared to six non pregnant, nondiabetic adults [weight of 57.7 +/- 2.2 kg, age 32 +/- 2 years]. Ra glucose (preterm) averaged 27.7 +/- 2.8 mumol.kg-1 min-1 (5.0 +/- 0.5 mg.kg-1 min-1) and Ra glucose (term) averaged 28.9 +/- 3.9 mumol.kg-1 min-1 (5.2 +/- 0.7 mg.kg-1 min-1); both were higher than the Ra glucose of the adult controls (16.1 +/- 2.8 mumol.kg-1 min-1 (2.9 +/- 0.5 mg.kg-1 min-1) (P less than 0.05 vs preterm and P less than 0.05 vs. term). Ra lactate (preterm) averaged 100 +/- 11.9 mumol.kg-1 min-1 (9.1 +/- 1.1 mg.kg-1 min-1) and Ra lactate (term) average 77.2 +/- 13.0 mumol.kg-1 min-1 (7.1 +/- 1.2 mg.kg-1 min-1); both were higher than the Ra lactate of the adult controls 35.9 +/- 6.5 mumol.kg-1 min-1 (3.3 +/- 0.6 mg.kg-1 min-1) (P less than 0.01 vs preterm and P less than 0.05 vs. term). The potential for gluconeogenesis from lactate was estimated by determining the ratio of [Ra Lactate/Ra Glucose]. The [Ra Lactate/Ra Glucose] (preterm) (187 +/- 12 (x10(-2)) was similar to that of the [Ra Lactate/Ra Glucose] (term) (136 +/- 16) (x10(-2)).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The characteristics of L-lysine transport were investigated at brush-border (maternal) and basal (fetal) sides of the syncytiotrophoblast in the term guinea-pig placenta artificially perfused either through the umbilical vessels in situ or through both circulations simultaneously. Cellular uptake, efflux and transplacental transfer were determined using a single-circulation paired-tracer dilution technique. Unidirectional L-[3H]lysine uptake (%) (perfusate lysine 50 microM) was high on maternal (M = 87 +/- 1) and fetal (F = 73 +/- 2) sides. L-[3H]Lysine efflux back into the ipsilateral circulation was asymmetrical (F/M ratio = 2.3) and transplacental flux occurred in favour of the fetal circulation. Unidirectional lysine influx kinetics (0.05-8.00 mM) gave Km values of 1.75 +/- 0.70 mM and 0.90 +/- 0.25 mM at maternal and fetal sides, respectively; corresponding Vmax values were 1.95 +/- 0.38 and 0.87 +/- 0.10 mumol.min-1.g-1. At both sides, lysine influx (50 microM) could be inhibited (about 60-80%) by 4 mM L-lysine and L-ornithine and less effectively (about 10-40%) by L-citrulline, L-arginine, D-lysine and L-histidine. At the basal side: (i) lysine influx kinetics were greatly modified in the presence of 10 mM L-alanine (Km = 6.25 +/- 3.27 mM; Vmax = 2.62 +/- 0.94 mumol.min-1.g-1), but unchanged by equimolar L-phenylalanine or L-tryptophan; (ii) in the converse experiments, lysine (10 mM) did not affect the kinetic characteristics for either L-alanine or L-phenylalanine; (iii) L-lysine and L-alanine influx kinetics were not dependent on the sodium gradient; (iv) the inhibition of L-[3H]lysine uptake by 4 mM L-homoserine was partially (60%) Na+-dependent. At the maternal side the kinetic characteristics for alanine influx were highly Na+-dependent, while lysine influx was partially Na+-dependent only at low concentrations (0.05-0.5 mM). Bilateral perfusion with 2,4-dinitrophenol (1 mM) reduced L-[3H]lysine uptake into the trophoblast and abolished transplacental transfer. It is suggested that lysine transport in the guinea-pig placenta is mediated by a specific transport system (y+) for cationic amino-acids. The asymmetry in the degree of sodium-dependency at both trophoblast membranes may in part explain the maternal-to-foetal polarity of placental amino-acid transfer in vivo.  相似文献   

16.
N-Formylnorleucylleucylphenylalanine (f-Nle-LeuPhe) bound to rabbit peritoneal polymorphonuclear leukocytes at 4 degrees C exists in at least two compartments that can be differentiated by their off rates. The off rate of one compartment is similar to that of the receptor characterized previously, about 0.4 min-1 (Aswanikumar, S., Corcoran, B., Schiffmann, E., Day, A. R., Freer, R. J., Showell, H. J., Becker, E. L., and Pert, C. B. (1977) Biochem. Biophys. Res. Commun. 74, 810-817; Sullivan, S. J., and Zigmond, S. H. (1980) J. Cell Biol. 85, 703-711); the off rate of the second compartment is about 0.005 min-1. Lysis of the cells at 4 degrees C with 1% Triton does not affect the peptide release from either compartment. Accumulation of peptide at 4 degrees C into the fast off-rate compartment is rapid, reaching a plateau in about 5 min, while peptide in the slow off-rate compartment continues to increase for up to 4 h. The rate of accumulation in the slow off-rate compartment is approximately proportional to the amount of peptide bound to the fast off-rate compartment. Cells lysed at 4 degrees C before binding are still able to accumulate peptide into both compartments. Three possible models to explain the data are presented.  相似文献   

17.
We utilized a technique, previously used to study myocardial cells (G. A. Langer, J. S. Frank, and L. M. Nudd, 1979, Amer. J. Physiol. 237, H239-H246), to study 45Ca2+ isotope exchange kinetics in hepatocyte monolayers, cultured on scintillation disks, and perfused in a flow-through chamber. Isolated rat hepatocytes were plated directly on Primaria-coated disks impregnated with scintillation fluors which made up the walls of the perfusion chamber. Following the labeling of the cells with radioactive calcium (45Ca2+), to apparent asymptote, the washout of 45Ca2+ from the cells was measured. A large very fast turnover compartment, as well as small fast and slow turnover compartments, were identified in each experiment. Surface calcium (Ca2+) was determined by its displacement with 1 mM La3+ after asymptote had been reached during 45Ca2+ labeling (1.59 mmol Ca2+/kg dry wt). The rate constant for this compartment was faster than the washout of the chamber (greater than 3.4 min-1 with a t1/2 less than 12 s). The rate constants for the fast and slow exchangeable compartments were 0.11 min-1 (t1/2 = 6.5 min) and 0.013 min-1 (t1/2 = 56 min), respectively. The fast compartment contained 0.40 mmol Ca2+/kg dry wt and the slow compartment contained 0.27 mmol Ca2+/kg dry wt. Neither the fast nor the slow compartment was lanthanum displaceable. Release of 45Ca2+ in response to 100 microM phenylephrine, 10 nM angiotensin II, and 100-microM 2,5-ditert-butyl hydroquinone was measured during the washout phase. Ca2+ released by these compounds was determined to be 0.50 mmol 0.44, and 0.43 mmol Ca2+/kg dry cell wt, respectively. These agents had an effect only during the washout of the fast compartment. In conclusion, this novel technique of on-line measurement of 45Ca2+ exchange in hepatocyte monolayers identified three exchangeable compartments: (1) a very rapidly exchangeable surface compartment, (2) a fast "microsomal" hormone-releasable compartment, and (3) a slow, non-hormone-releasable compartment.  相似文献   

18.
Hepatic glutathione (GSH) plays an important role in the detoxification of reactive molecular intermediates. Because of evidence that the intrahepatic turnover of glutathione in the rat may be largely accounted for by efflux from hepatocytes into the general circulation, the quantitation of plasma GSH turnover in vivo could provide a noninvasive index of hepatic glutathione metabolism. We developed a method to estimate plasma glutathione turnover and clearance in the intact, anesthetized rat using a 30-min unprimed, continuous infusion of 35S-labelled GSH. A steady state of free plasma glutathione specific radioactivity was achieved within 10 min, as determined by high-pressure liquid chromatography with fluorometric detection after precolumn derivatization of the plasma samples with monobromobimane. The method was tested after two treatments known to alter hepatic GSH metabolism: 90 min after intraperitoneal injection of 4 mmol/kg buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, and after a 48-h fast. Liver glutathione concentration (mean +/- SEM) was 5.00 +/- 0.53 mumol/g wet weight in control rats. It decreased to 3.10 +/- 0.35 mumol/g wet weight after BSO injection and to 3.36 +/- 0.14 mumol/g wet weight after fasting (both p less than 0.05). Plasma glutathione turnover was 63.0 +/- 7.46 nmol.min-1.100 g-1 body weight in control rats, 35.0 +/- 2.92 nmol.min-1.g-1 body weight in BSO-treated rats, and 41.7 +/- 2.28 nmol.min-1.g-1 body weight after fasting (both p less than 0.05), thus reflecting the hepatic alterations. This approach might prove useful in the noninvasive assessment of liver glutathione status.  相似文献   

19.
1. Parameters of in vivo glucose utilization by sea bass (132 +/- 6 g, mean +/- SEM) acclimated at 15 degrees C in sea-water were measured after single injection of labelled glucose. 2. Glucose turnover rate (RG; mumol . min-1 . kg-1) was found to be 0.55-065 (2-3H glucose) and 0.34 +/- 0.42 (U14C glucose). 3. Glucose transit time was 443-449 min, glucose mass 233-261 mumol . kg-1, and glucose recycling 37%. 4. Oxygen consumption (MO2) amounted to 94 +/- 6.2 mumol . min-1 . kg-1. 5. The comparison with other fish species, mammals and birds, taking into account body size, temperature, diet, exercise, in poikilotherms and homeotherms leads to the calculation of a glucose turnover index (RGI = RG x 6 x 100 x MO2(-1)). 6. Value of this, generally lower in ectotherm teleosts (2-9), than in endotherms: mammals, birds and thunidae (22-60), confirms the minor quantitative importance of glucose in the metabolism of most fish.  相似文献   

20.
Cerebral vasodilation in hypoxia may involve endothelium-derived relaxing factor-nitric oxide (NO). An inhibitor of NO formation, N omega-nitro-L-arginine (LNA, 100 micrograms/kg i.v.), was given to conscious sheep (n = 6) during normoxia and again in hypocapnic hypoxia (arterial PO2 approximately 38 Torr). Blood samples were obtained from the aorta and sagittal sinus, and cerebral blood flow (CBF) was measured with 15-microns radiolabeled microspheres. During normoxia, LNA elevated (P < 0.05) mean arterial pressure from 82 +/- 3 to 88 +/- 2 (SE) mmHg and cerebral perfusion pressure (CPP) from 72 +/- 3 to 79 +/- 3 mmHg, CBF was unchanged, and cerebral lactate release (CLR) rose temporarily from 0.0 +/- 1.9 to 13.3 +/- 8.7 mumol.min-1 x 100 g-1 (P < 0.05). The glucose-O2 index declined (P < 0.05) from 1.67 +/- 0.16 to 1.03 +/- 0.4 mumol.min-1 x 100 g-1. Hypoxia increased CBF from 59.9 +/- 5.4 to 122.5 +/- 17.5 ml.min-1 x 100 g-1 and the glucose-O2 index from 1.75 +/- 0.43 to 2.49 +/- 0.52 mumol.min-1 x 100 g-1 and decreased brain CO2 output, brain respiratory quotient, and CPP (all P < 0.05), while cerebral O2 uptake, CLR, and CPP were unchanged. LNA given during hypoxia decreased CBF to 77.7 +/- 11.8 ml.min-1 x 100 g-1 and cerebral O2 uptake from 154 +/- 22 to 105.2 +/- 12.4 mumol.min-1 x 100 g-1 and further elevated mean arterial pressure to 98 +/- 2 mmHg (all P < 0.05), CLR was unchanged, and, surprisingly, brain CO2 output and respiratory quotient were reduced dramatically to negative values (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号