首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of human oxyhemoglobin coagulation in neutral phosphate buffer in the presence of mercury acetate at 20 degrees has been studied using turbidimetric methods. The addition of small amounts of concentrated Hg2+ solution leads to rapid local protein coagulation with subsequent dissolution of the formed coagulate. Coagulation can be inhibited by addition of Tris that binds to mercury ions. The pattern of oxyhemoglobin coagulation is determined by molar Hg2+/protein ration rather than by total Hg2+ concentration.  相似文献   

2.
By the dynamics of human oxyhemoglobin coagulation in the presence of phenyl mercury acetate in tris-AcOH buffer, pH 7.2 the number of moles of PhHg+ stechiometrically bound with protein at different temperatures was estimated. Within the temperature range 15-30 degrees C this value is constant--32-34 mole per 1 mole of HBO2-tetramer. Within the range 30-40 degrees C it rises to approximately 40. Coagulation of oxyhemoglobin modified with PhHg+ cation is reversible in contrast to HBO2 coagulation modified with uncharged PhHgCl.  相似文献   

3.
1. The solvent action of a neutral salt upon a protein, oxyhemoglobin, has been found identical to the solvent action of a neutral salt upon a bi-bivalent or uni-quadrivalent compound. 2. The solubility of oxyhemoglobin in phosphate solutions of varying ionic strength has been defined by the equation: log See PDF for Equation in which µ is the ionic strength, and S 0 is the solubility in the absence of salt. 3. The values of S 0 have been calculated to be 12.2, 11.2, and 13.1 gm. per liter respectively at pH 6.4, 6.6, and 6.8. 4. The relatively great solubility of oxyhemoglobin in water has been ascribed to the strong affinity constants for acid and base of certain groups in oxyhemoglobin. 5. The small change in the solubility of oxyhemoglobin effected by neutral salts suggests that but few such groups are dissociated in oxyhemoglobin in the state in which it crystallizes near its isoelectric point. 6. Certain of the other properties of oxyhemoglobin, such as its low viscosity, are considered in the light of its molecular weight and its valence type.  相似文献   

4.
Coagulation of bovine oxyhemoglobin in the presence of mercuric acetate in concentrations within a range including concentrations exceeding those required to block the single pair of thiol groups of the protein has been investigated in Tris-acetate buffer. The values of initial coagulation rate plotted against mercury-to-hemoglobin molar ratio give curves exhibiting a clear break points at ratios corresponding to full blocking of the mentioned thiol groups. Larger amounts of mercury reagents producing enhanced protein coagulation effect depend approximately quadratically on the mercury concentration. Interaction of the excess mercuric ions with some mercury-binding sites located on or near the dimer-dimer contact surfaces of the protein producing stronger coagulation effect is suggested.  相似文献   

5.
Isoelectric focusing in ampholytes of pH 6–8 range has been carried out in polyacrylamide gels using ammonia buffer at pH 10.0 and acetate buffer at pH 4.0 for the cathode and anode solutions, respectively. This system requires low voltages but compares well with isoelectric focusing using strong acid and strong base electrode solutions. The advantages of this method are the less extreme pH's in the electrode solutions and lower resistance in the neutral region of the pH gradients.  相似文献   

6.
Herold S  Exner M  Nauser T 《Biochemistry》2001,40(11):3385-3395
The second-order rate constants for the reactions between nitrogen monoxide and oxymyoglobin or oxyhemoglobin, determined by stopped-flow spectroscopy, increase with increasing pH. At pH 7.0 the rates are (43.6 +/- 0.5) x 10(6) M(-1) x s(-1) for oxymyoglobin and (89 +/- 3) x 10(6) M(-1) x s(-1) for oxyhemoglobin (per heme), whereas at pH 9.5 they are (97 +/- 3) x 10(6) M(-1) x s(-1) and (144 +/- 3) x 10(6) M(-1) x s(-1), respectively. The rate constants for the reaction between oxyhemoglobin and NO* depend neither on the association grade of the protein (dimer/tetramer) nor on the concentration of the phosphate buffer (100-1 mM). The nitrogen monoxide-mediated oxidations of oxymyoglobin and oxyhemoglobin proceed via intermediate peroxynitrito complexes which were characterized by rapid scan UV/vis spectroscopy. The two complexes MbFe(III)OONO and HbFe(III)OONO display very similar spectra with absorption maxima around 500 and 635 nm. These species can be observed at alkaline pH but rapidly decay to the met-form of the proteins under neutral or acidic conditions. The rate of decay of MbFe(III)OONO increases with decreasing pH and is significantly larger than those of the analogous complexes of the two subunits of hemoglobin. No free peroxynitrite is formed during these reactions, and nitrate is formed quantitatively, at both pH 7.0 and 9.0. This result indicates that, as confirmed from protein analysis after reacting the proteins with NO* for 10 times, when peroxynitrite is coordinated to the heme of myoglobin or hemoglobin it rapidly isomerizes to nitrate without nitrating the globins in physiologically significant amounts.  相似文献   

7.
The interaction of deoxyhemoglobin with the red cell membrane is characterized by comparing the affinity of deoxyhemoglobin for the membrane with that of oxyhemoglobin. The two techniques used, namely light scattering induced changes and quenching of the fluorescence intensity of a membrane embedded probe, demonstrate that deoxyhemoglobin exhibits a much lower affinity for the membrane than that of oxyhemoglobin. The binding constant of 2×10 M?1 calculated for deoxyhemoglobin at 5 mM phosphate buffer and pH=6.0 is two orders of magnitude lower than the one calculated for oxyhemoglobin. It is estimated that under physiological conditions the only species capable of interacting with the membrane is the oxyhemoglobin.  相似文献   

8.
A protease was purified from Xenopus embryos. Proteolytic activity of the protease against BSA had an optimum pH of 3.8 in acetate buffer and was not detectable at neutral pH. However, when embryonic proteins were used as substrates and digested in phosphate buffer, proteolysis of embryonic proteins was enhanced and was detectable from pH 5.0 to pH 7.0. Digestion of three proteins were mainly detected in digestion of total embryonic proteins. The proteins digested had the same mobilities (on SDS polyacrylamide gel) as yolk proteins. The protease was present in the cytoplasm and around yolk granules. We propose that this protease mainly cleaves a certain yolk proteins in the cytoplasm of Xenopus embryos.  相似文献   

9.
The initial velocity of coagulation of human oxyhemoglobin in tris-HCl buffer measured by turbidimetric method, pH 7.2 in the presence of phenylmercuryacetate made it possible to estimate the amount of moles of this reagent stechiometrically binding with hemoglobin without coagulation of the latter. At 15-30 degrees C this amount is 30-34 mole per hemoglobin-tetramer. At temperature increase from 30 to 42.5 degrees C the amount of the reagent necessary for protein coagulation sharply decreases. A model is proposed assuming that oxyhemoglobin coagulation proceeds only during binding of the reagent with specific protein sites.  相似文献   

10.
The contribution of the interaction of chloride ions with deoxy and oxyhemoglobin to the Bohr effect can be described by a simple binding model. Applying this model to experiment data reveals that at physiological pH and ionic strength about half of the release of Bohr protons is due to a difference in chloride ion binding to deoxy- and oxyhemoglobin. The chloride-independent part of the Bohr effect corresponds with the shift in pK which His-146 beta shows upon oxygenation. The proton absorptioon by hemoglobin observed upon oxygenation below pH 6 is apparently due to a chloride-ion-induced proton uptake, which is larger for oxyhemoglobin than for deoxyhemoglobin. The analysis of the experimental data indicates the existence of only two oxygen-linked chloride ion binding sites in both deoxy and oxyhemoglobin. In deoxyhemoglobin the binding sites most likely consist of Val-1 alpha of one chain and Arg-141 alpha of the partner chain. The sites in oxyhemoglobin consist of groups with a pK value in the neutral pH range; they do not contain lysyl or arginyl residues.  相似文献   

11.
A sphingomyelinase, which specifically hydrolyzes sphingomyelin into ceramide and phosphocholine, was solubilized from nuclear matrix fraction of rat ascites hepatoma, AH7974 cells. The solubilized enzyme was subjected to Mono Q column chromatography in an FPLC system. The sphingomyelinase which was adsorbed on the column and eluted at 0.25-0.5 M NaCl was characterized. The enzyme required 10 mM MgCl2, 0.01% Triton X-100, 1 mM dithiothreitol, and a higher concentration of buffer than 1 M for its maximal activity, and the optimal pH was 6.7-7.2 in 2 M Tris/acetic acid or 7.5 in 2 M potassium acetate/acetic acid. N-Ethylmaleimide completely inhibited the enzyme activity at 0.2 mM. Therefore, this enzyme is classified as a Mg2+-dependent, neutral sphingomyelinase. The sphingomyelinase sedimented at 4.3S through a 10-30% glycerol gradient containing 2 M potassium acetate. This enzyme was highly specific to sphingomyelin and did not hydrolyze phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol. Various characteristics of the nuclear sphingomyelinase were similar to those of the plasma membrane enzyme except its requirement for a high concentration of buffer and SH-reagent.  相似文献   

12.
Dinitrosyl iron complexes (DNIC) with thiolate ligands and S-nitrosothiols, which are NO and NO+ donors, share the earlier demonstrated ability of nitrite for inhibition of catalase. The efficiency of inhibition sharply (by several orders in concentration of these agents) increases in the presence of chloride, bromide, and thiocyanate. The nitro compounds tested--nitroarginine, nitroglycerol, nitrophenol, and furazolidone--gained the same inhibition ability after incubation with ferrous ions and thiols. This is probably the result of their transformation into DNIC. None of these substances lost the inhibitory effect in the presence of the well known NO scavenger oxyhemoglobin. This fact suggests that NO+ ions rather than neutral NO molecules are responsible for the enzyme inactivation due to nitrosation of its structures. The enhancement of catalase inhibition in the presence of halide ions and thiocyanate might be caused by nitrosyl halide formation. The latter protected nitrosonium ions against hydrolysis, thereby ensuring their transfer to the targets in enzyme molecules. The addition of oxyhemoglobin plus iron chelator o-phenanthroline destroying DNIC sharply attenuated the inhibitory effect of DNIC on catalase. o-Phenanthroline added alone did not influence this effect. Oxyhemoglobin is suggested to scavenge nitrosonium ions released from decomposing DNIC, thereby preventing catalase nitrosation. The mixture of oxyhemoglobin and o-phenanthroline did not affect the inhibitory action of nitrite or S-nitrosothiols on catalase.  相似文献   

13.
14.
T Kuwajima  H Asai 《Biochemistry》1975,14(3):492-497
Fluorescent organic phosphates, beta-naphthyl diphosphate, beta-naphthyl triphosphate, and beta-naphthyl tetraphosphate, were synthesized from beta-naphthyl monophosphate using Pi and N,N'-dicyclohexylcarbodiimide. These organic phosphates were interacted with bovine oxyhemoglobin, all in no buffer, 0.1 M NaCl, at 25 degrees and in the pH range 5.5-7.0. Equilibrium binding parameters were determined by measuring the fluorescence quenching upon their interaction. It is indicated that bovine oxyhemoglobin has more than one binding site, one of which is very strong. The strength of binding to the stronger site is in the order beta-naphthyl tetraphosphate greater than beta-naphthyl triphosphate greater than beta-naphthyl diphosphate. The logarithms of association constants of these phosphates depend linearly on the net charges of these phosphates at any pH. The results were accounted for by electrostatic effects using a simple charge model. In that model, the average positive net charges in oxyhemoglobin involved in the binding of beta-naphthyl phosphate are shown as a function of pH. It is shown that the binding of these fluorescent organic phosphates is prevented reversibly by the excess addition of nonfluorescent organic and iorganic phosphates, inositol hexaphosphate, tripolyphosphate, and pyrophosphate. Assuming competitive binding in a single strong site, the association constants of these nonfluorescent phosphates were also determined by measuring the recovery of the fluorescence intensity upon the release of fluorescent phosphates. At pH 6.18, the association constant of pyrophosphate is lower than that of tripolyphosphate by one order.  相似文献   

15.
Pooled human milk oligosaccharides were separated into neutral and several acidic oligosaccharide fractions by preparative anion-exchange chromatography (AEC) using AG 1-X2. The oligosaccharides were eluted stepwise using deionized water and three different concentrations of ammonium acetate buffer, pH 6.8. The elution order of the compounds was determined directly by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of the AEC effluent without any cleanup or concentration steps. Up to a concentration of 500 mM ammonium acetate, the masses of acidic oligosaccharides could be detected by screening the fractions in an automated mode. The combination of the improved chromatographic procedure, the applied MALDI matrices, and operating parameters is suitable for the detection of neutral oligosaccharides as well as acidic oligosaccharides. The method provides high sensitivity and mass accuracy, including for the high-molecular-weight monosialylated oligosaccharides up to 2751.5 Da. The applied ionic strength of the anion-exchange eluents enables a rapid and an unambiguous composition assignment by MALDI-MS for neutral, monosialylated, and disialylated oligosaccharides from human milk. The acidic fractions have to be desalted by electrodialysis and were finally analyzed by HPAEC-PAD to get a high-resolution "fingerprint" of structures present in each fraction. From these analyses, it can be concluded that the isomeric variety of monosialylated oligosaccharides occurring in human milk is higher than estimated before.  相似文献   

16.
The aggregation propensity of humanized antibody after heat treatment is evaluated in the presence of six buffer species. The comparison under equivalent pH showed high aggregation propensity on phosphate and citrate buffer. In contrast, 2-(N-Morpholino) ethane sulfonate (MES), 3-(N-Morpholino) propane sulfonate (MOPS), acetate and imidazole buffer showed lower aggregation propensity than the above two buffers. Meanwhile, unfolding temperature evaluated by differential scanning calorimetry measurement was not altered among these buffer species. The light scattering analysis suggested that heat-denatured intermediate was aggregated slightly on MES and acetate buffer. Therefore, it was found that the different aggregation propensity among buffer species was caused from the aggregation propensity of heat-denatured intermediate rather than the unfolding temperature. Furthermore, it was revealed that the aggregation dependency on buffer species is accounted for by the specific molecular interaction between buffer and IgG, rather than the ionic strength. On the contrary, on the analyses of unfolding and aggregation propensity by molecular dissection of IgG into Fab and Fc fragments, aggregation propensity of Fc fragment on MES, acetate and phosphate buffer was almost the same as whole IgG. From the above results, it was suggested that the specific interaction between buffer molecule and Fc domain of IgG was involved in the aggregation propensity of heat-denatured IgG.  相似文献   

17.
A comparative study was made of gamma-inactivation of subtilisin-72 solutions in 5 X 10(-3) M acetate buffer and 0.1 M NaCl in the presence and absence of Ca2+ ions. It was shown that the acetate buffer had a protective action, and the influence of Ca2+ ions depended on the ionic strength of the solution. In general, Ca2+ ions exerted a stabilizing effect irrespective of the subtilisin concentration in the acetate buffer, but this effect competed with the destabilizing influence of the ionic strength increased by Ca2+ ions.  相似文献   

18.
A 2 M sodium acetate buffer at pH 4.2 was tried to simplify the step of pH adjustment in a laboratory dry-grind procedure. Ethanol yields or conversion efficiencies of 18 sorghum hybrids improved significantly with 2.0–5.9% (3.9% on average) of relative increases when the method of pH adjustment changed from traditional HCl to the acetate buffer. Ethanol yields obtained using the two methods were highly correlated (R 2 = 0.96, P < 0.0001), indicating that the acetate buffer did not influence resolution of the procedure to differentiate sorghum hybrids varying in fermentation quality. Acetate retarded the growth of Saccharomyces cerevisiae, but did not affect the overall fermentation rate. With 41–47 mM of undissociated acetic acid in mash of a sorghum hybrid at pH 4.7, rates of glucose consumption and ethanol production were inhibited during exponential phase but promoted during stationary phase. The maximum growth rate constants (μ max) were 0.42 and 0.32 h−1 for cells grown in mashes with pH adjusted by HCl and the acetate buffer, respectively. Viable cell counts of yeast in mashes with pH adjusted by the acetate buffer were 36% lower than those in mashes adjusted by HCl during stationary phase. Coupled to a 5.3% relative increase in ethanol, a 43.6% relative decrease in glycerol was observed, when the acetate buffer was substituted for HCl. Acetate helped to transfer glucose to ethanol more efficiently. The strain tested did not use acetic acid as carbon source. It was suggested that decreased levels of ATP under acetate stress stimulate glycolysis to ethanol formation, increasing its yield at the expense of biomass and glycerol production. Names are necessary to report factually on available data; however, the U.S. Department of Agriculture neither guarantees nor warrants the standard of the product, and use of the name by the U.S. Department of Agriculture implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

19.
Abstract

6-Amino-4-oxo-hexanoic acid with a fluorescent probe attached to the amino function, derivative of the levulinic acid has been developed for protection of hydroxyl groups. It is introduced by reaction of its symetrical anhydride and rapidly removed under mild conditions using a hydrazine-pyridinium acetate buffer at near neutral pH and room temperature. It can be used within the scope of a new DNA sequencing method and as a sensitive detectable protecting group.  相似文献   

20.
The use of buffer catalysts having a wide range of pK (dissociation) values (4-12) provides the first estimates of two generally useful empirical parameters of amino proton exchange in compounds of adenine and cytosine. These are a nucleobase amino group dissociation constant (pKD) and the 'encounter frequency' for proton transfer (kD), which can be used to predict amino proton exchange rates. Values of amino pKD fall in the range 8.6-9.4 for the unsubstituted nucleobases and their endocyclic N-methylated derivatives. Similar values of kD are obtained for all nucleobases (1 X 10(8) M-1 s-1). These constants were obtained from a statistical fit of second-order catalytic rate constants for amino proton exchange, measured by amino 1H-NMR lineshape at varying field frequencies (100, 300 and 360 MHz). These results confirm the requirement for buffer conjugate base formation and nucleobase protonation, but point to a different mechanism of exchange at low pH; most probably direct amino protonation for adenine, but not for cytosine compounds. Anionic buffer conjugate bases (phosphate and acetate) show a greater catalytic effect than neutral (nitrogen) bases, especially with cytosine compounds. The use of high concentrations of sodium perchlorate to sharpen amino 1H resonances of 1-methyladenosine is examined, with respect to chemical and rotational exchange and NMR line broadening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号