首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We estimate parameters of a general isolation-with-migration model using resequence data from mitochondrial DNA (mtDNA), the Y chromosome, and two loci on the X chromosome in samples of 25-50 individuals from each of 10 human populations. Application of a coalescent-based Markov chain Monte Carlo technique allows simultaneous inference of divergence times, rates of gene flow, as well as changes in effective population size. Results from comparisons between sub-Saharan African and Eurasian populations estimate that 1500 individuals founded the ancestral Eurasian population approximately 40 thousand years ago (KYA). Furthermore, these small Eurasian founding populations appear to have grown much more dramatically than either African or Oceanian populations. Analyses of sub-Saharan African populations provide little evidence for a history of population bottlenecks and suggest that they began diverging from one another upward of 50 KYA. We surmise that ancestral African populations had already been geographically structured prior to the founding of ancestral Eurasian populations. African populations are shown to experience low levels of mitochondrial DNA gene flow, but high levels of Y chromosome gene flow. In particular, Y chromosome gene flow appears to be asymmetric, i.e., from the Bantu-speaking population into other African populations. Conversely, mitochondrial gene flow is more extensive between non-African populations, but appears to be absent between European and Asian populations.  相似文献   

2.
The island of Sardinia shows a unique high incidence of several autoimmune diseases with multifactorial inheritance, particularly type 1 diabetes and multiple sclerosis. The prior knowledge of the genetic structure of this population is fundamental to establish the optimal design for association studies in these diseases. Previous work suggested that the Sardinians are a relatively homogenous population, but some reports were contradictory and data were largely based on variants subject to selection. For an unbiased assessment of genetic structure, we studied a combination of neutral Y-chromosome variants, 21 biallelic and 8 short tandem repeats (STRs) in 930 Sardinian males. We found a high degree of interindividual variation but a homogenous distribution of the detected variability in samples from three separate regions of the island. One haplogroup, I-M26, is rare or absent outside Sardinia and is very common (0.37 frequency) throughout the island, consistent with a founder effect. A Bayesian full likelihood analysis (BATWING) indicated that the time from the most recent common ancestor (TMRCA) of I-M26, was 21.0 (16.0-25.5) thousand years ago (KYA) and that the population began to expand 14.0 (7.8-22.0) KYA. These results suggest a largely pre-Neolithic settlement of the island with little subsequent gene flow from outside populations. Consequently, Sardinia is an especially attractive venue for case-control genome wide association scans in common multifactorial diseases. Concomitantly, the high degree of interindividual variation in the current population facilitates fine mapping efforts to pinpoint the aetiologic polymorphisms.  相似文献   

3.
Over time, populations of species can expand, contract, fragment and become isolated, creating subpopulations that must adapt to local conditions. Understanding how species maintain variation after divergence as well as adapt to these changes in the face of gene flow is of great interest, especially as the current climate crisis has caused range shifts and frequent migrations for many species. Here, we characterize how a mycophageous fly species, Drosophila innubila, came to inhabit and adapt to its current range which includes mountain forests in south‐western USA separated by large expanses of desert. Using population genomic data from more than 300 wild‐caught individuals, we examine four populations to determine their population history in these mountain forests, looking for signatures of local adaptation. In this first extensive study, establishing D. innubila as a key genomic "Sky Island" model, we find D. innubila spread northwards during the previous glaciation period (30–100 KYA) and have recently expanded even further (0.2–2 KYA). D. innubila shows little evidence of population structure, consistent with a recent establishment and genetic variation maintained since before geographic stratification. We also find some signatures of recent selective sweeps in chorion proteins and population differentiation in antifungal immune genes suggesting differences in the environments to which flies are adapting. However, we find little support for long‐term recurrent selection in these genes. In contrast, we find evidence of long‐term recurrent positive selection in immune pathways such as the Toll signalling system and the Toll‐regulated antimicrobial peptides.  相似文献   

4.
Fertilization proteins of marine broadcast spawning species often show signals of positive selection. Among geographically isolated populations, positive selection within populations can lead to differences between them, and may result in reproductive isolation upon secondary contact. Here, we test for positive selection in the reproductive compatibility locus, bindin, in two populations of a sea star on either side of a phylogeographic break. We find evidence for positive selection at codon sites in both populations, which are under neutral or purifying selection in the reciprocal population. The signal of positive selection is stronger and more robust in the population where effective population size is larger and bindin diversity is greater. In addition, we find high variation in coding sequence length caused by large indels at two repetitive domains within the gene, with greater length diversity in the larger population. These findings provide evidence of population‐divergent positive selection in a fertilization compatibility locus, and suggest that sexual selection can lead to reproductive divergence between conspecific marine populations.  相似文献   

5.
The cave bear spread from Western Europe to the Near East during the Riss glaciation (250 KYA) before becoming extinct approximately 12 KYA. During that period, the climatic conditions were highly dynamic, oscillating between glacial and temperate episodes. Such events have constrained the geographic repartition of species, the movements of populations and shaped their genetic diversity. We retrieved and analyzed ancient DNA from 21 samples from five European caves ranging from 40 to 130 KYA. Combined with available data, our data set accounts for a total of 41 sequences of cave bear, coming from 18 European caves. We distinguish four haplogroups at the level of the mitochondrial DNA control region. The large population size of cave bear could account for the maintenance of such polymorphism. Extensive gene flow seems to have connected European populations because two haplogroups cover wide geographic areas. Furthermore, the extensive sampling of the deposits of the Scladina cave located in Belgium allowed us to correlate changes in climatic conditions with the intrapopulational genetic diversity over 90 KY.  相似文献   

6.
Xue Y  Zerjal T  Bao W  Zhu S  Shu Q  Xu J  Du R  Fu S  Li P  Hurles ME  Yang H  Tyler-Smith C 《Genetics》2006,172(4):2431-2439
The human population has increased greatly in size in the last 100,000 years, but the initial stimuli to growth, the times when expansion started, and their variation between different parts of the world are poorly understood. We have investigated male demography in East Asia, applying a Bayesian full-likelihood analysis to data from 988 men representing 27 populations from China, Mongolia, Korea, and Japan typed with 45 binary and 16 STR markers from the Y chromosome. According to our analysis, the northern populations examined all started to expand in number between 34 (18-68) and 22 (12-39) thousand years ago (KYA), before the last glacial maximum at 21-18 KYA, while the southern populations all started to expand between 18 (6-47) and 12 (1-45) KYA, but then grew faster. We suggest that the northern populations expanded earlier because they could exploit the abundant megafauna of the "Mammoth Steppe," while the southern populations could increase in number only when a warmer and more stable climate led to more plentiful plant resources such as tubers.  相似文献   

7.
Previous studies of immunity in wild populations have focused primarily on genes of the major histocompatibility complex (MHC); however, studies of model species have identified additional immune-related genes that also affect fitness. In this study, we sequenced five non-MHC immune genes in six greater prairie-chicken (Tympanuchus cupido) populations that have experienced varying degrees of genetic drift as a consequence of population bottlenecks and fragmentation. We compared patterns of geographic variation at the immune genes with six neutral microsatellite markers to investigate the relative effects of selection and genetic drift. Global F(ST) outlier tests identified positive selection on just one of five immune genes (IAP-1) in one population. In contrast, at other immune genes, standardized G'(ST) values were lower than those at microsatellites for a majority of pairwise population comparisons, consistent with balancing selection or with species-wide positive or purifying selection resulting in similar haplotype frequencies across populations. The effects of genetic drift were also evident as summary statistics (e.g., Tajima's D) did not differ from neutrality for the majority of cases, and immune gene diversity (number of haplotypes per gene) was correlated positively with population size. In summary, we found that both genetic drift and selection shaped variation at the five immune genes, and the strength and type of selection varied among genes. Our results caution that neutral forces, such as drift, can make it difficult to detect current selection on genes.  相似文献   

8.
B D Latter 《Genetics》1998,148(3):1143-1158
Multilocus simulation is used to identify genetic models that can account for the observed rates of inbreeding and fitness decline in laboratory populations of Drosophila melanogaster. The experimental populations were maintained under crowded conditions for approximately 200 generations at a harmonic mean population size of Nh approximately 65-70. With a simulated population size of N = 50, and a mean selective disadvantage of homozygotes at individual loci approximately 1-2% or less, it is demonstrated that the mean effective population size over a 200-generation period may be considerably greater than N, with a ratio matching the experimental estimate of Ne/Nh approximately 1.4. The buildup of associative overdominance at electrophoretic marker loci is largely responsible for the stability of gene frequencies and the observed reduction in the rate of inbreeding, with apparent selection coefficients in favor of the heterozygote at neutral marker loci increasing rapidly over the first N generations of inbreeding to values approximately 5-10%. The observed decline in fitness under competitive conditions in populations of size approximately 50 in D. melanogaster therefore primarily results from mutant alleles with mean effects on fitness as homozygotes of sm < or = 0.02. Models with deleterious recessive mutants at the background loci require that the mean selection coefficient against heterozygotes is at most hsm approximately 0.002, with a minimum mutation rate for a single Drosophila autosome 100 cM in length estimated to be in the range 0.05-0.25, assuming an exponential distribution of s. A typical chromosome would be expected to carry at least 100-200 such mutant alleles contributing to the decline in competitive fitness with slow inbreeding.  相似文献   

9.
常飞  邹文超  高芳銮  沈建国  詹家绥 《遗传》2015,37(3):292-301
文章以马铃薯Y病毒(Potato virus Y, PVY) P3和pipo基因为分子标记,比较分析烟草和马铃薯两个寄主的PVY遗传多样性和群体分化,并评估突变、选择、基因流等遗传力所起的作用。通过P3和pipo基因计算获得的烟草和马铃薯群体分化指数FST分别为0.116和0.120,且统计检验差异显著,表明烟草和马铃薯寄主的PVY之间中度分化。变异分析结果显示,烟草分离物P3和pipo基因的核苷酸序列一致性分别为85.2%~100%和76.5%~100%,而马铃薯分离物的P3和pipo基因的核苷酸序列一致性分别为95.7%~100%和93.0%~100%,表明烟草PVY变异程度高于马铃薯。同时,P3基因内检测到大量的净化选择位点,表明该基因大部分位点的变异为有害突变,在进化过程中被剔除。此外,P3基因内还检测到两个显著正向选择位点,表明这两个位点的变异为有益突变,有利于病毒的生存竞争。在pipo基因中未检测到显著的选择位点,表明该基因上的变异基本不受自然选择影响。通过P3和pipo基因计算烟草和马铃薯群体间的基因流Nm值分别为1.91和1.83,表明这两个群体间存在较强的基因交流。以上结果表明,来源于烟草和马铃薯寄主的PVY遗传差异显著,突变、自然选择以及基因流都影响两者的遗传多样性及遗传分化程度。  相似文献   

10.
One of the most isolated populations of fin whales occurs in the Gulf of California (GOC) with 400-800 individuals. This population shows reduced neutral genetic variation in comparison to the North Pacific population and thus might also display limited adaptive polymorphism. We sampled 36 fin whales from the GOC and assessed genetic variation at exon 2 of the major histocompatibility complex class II DQB-1 genes responsible for eliciting immune responses. Three divergent alleles were found with higher nonsynonymous than synonymous substitution rates within the peptide-binding region positions as well as the likely retention of ancient alleles, indicating that positive selection has shaped diversity in this species. Limited levels of nonneutral polymorphism, in addition to previously described low levels of neutral polymorphism, are consistent with the results of previous studies on vertebrate populations that have remained small and demographically stable for a very long time. Such low genetic variation in the GOC fin whales could be explained by 2 demographic scenarios: an ancient isolated population with limited gene flow or a more recent founder event after the last glacial maximum with very restricted gene flow.  相似文献   

11.
Sánchez-Gracia A  Rozas J 《Genetics》2007,175(4):1923-1935
Nucleotide variation at the genomic region encompassing the odorant-binding protein genes OS-E and OS-F (OS region) was surveyed in two populations of Drosophila simulans, one from Europe and the other from Africa. We found that the European population shows an atypical and large haplotype structure, which extends throughout the approximately 5-kb surveyed genomic region. This structure is depicted by two major haplotype groups segregating at intermediate frequency in the sample, one haplogroup with nearly no variation, and the other at levels more typical for this species. This pattern of variation was incompatible with neutral predictions for a population at a stationary equilibrium. Nevertheless, neutrality tests contrasting polymorphism and divergence data fail to detect any departure from the standard neutral model in this species, whereas they confirm the non-neutral behavior previously observed at the OS-E gene in D. melanogaster. Although positive Darwinian selection may have been responsible for the observed unusual nucleotide variation structure, coalescent simulation results do not allow rejecting the hypothesis that the pattern was generated by a recent bottleneck in the history of European populations of D. simulans.  相似文献   

12.
The evolution of the gene for a male ejaculatory protein, Acp26Aa, has been shown to be driven by positive selection when nonsibling species in the Drosophila melanogaster subgroup are compared. To know if selection has been operating in the recent past and to understand the details of its dynamics, we obtained DNA sequences of Acp26Aa and the nearby Acp26Ab gene from 39 D. melanogaster chromosomes. Together with the 10 published sequences, we analyzed 49 sequences from five populations in four continents. The southern African population is somewhat differentiated from all other populations, but its nucleotide diversity is lower at these two loci. We find the following results for Acp26Aa: (1) The R: S (replacement : silent changes) ratio is significantly higher in the between-species comparisons than in the within-species data by the McDonald and Kreitman test. Positive selection is probably responsible for the excess of amino acid replacements between species. (2) However, within-species nucleotide diversity is high. Neither the Tajima test nor the Fu and Li test indicates a reduction in nucleotide diversity due to positive selection in the recent past. (3) The newly derived nucleotides in D. melanogaster are at high frequency significantly more often than predicted by the neutral equilibrium. Since the nearby Acp26Ab gene does not show these patterns, these observations cannot be attributed to the characteristics of this chromosomal region. We suggest that positive selection is active, but may be weak, for each amino acid change in the Acp26Aa gene.   相似文献   

13.
采用聚合酶链式反应(PCR)技术分析测定了6个狍(Capreolus Pygargus)种群的分子遗传特征.遗传分析表明:狍迎春种群具有较低的单倍型多样性(H=0.622±0.138)和核苷酸多样性(π=0.386±0.00383),图强种群具有较高的单倍型多样性(H=0.857±0.044)和核苷酸多样(π=2.580±0.01914),Tajima'sD和Fu and Li'sD值检测结果表明这6个狍种群相对于中性进化的歧异度并没有明显的偏离(P>0.1);相关性分析表明:狍遗传多样性与纬度(r=0.770)和海拔(r=0.719)呈显著正相关,与年平均气温(r=-0.519)和无霜期(r=-0.652)呈显著负相关,与经度(r=-0.258)和年平均降水量(r=-0.205)呈显著的不相关.  相似文献   

14.
Host-pathogen interactions are of particular interest in studies of the interplay between population dynamics and natural selection. The major histocompatibility complex (MHC) genes of demographically fluctuating species are highly suitable markers for such studies, because they are involved in initiating the immune response against pathogens and display a high level of adaptive genetic variation. We investigated whether two MHC class II genes (DQA1, DRB) were subjected to contemporary selection during increases in the density of fossorial water vole (Arvicola terrestris) populations, by comparing the neutral genetic structure of seven populations with that estimated from MHC genes. Tests for heterozygosity excess indicated that DQA1 was subject to intense balancing selection. No such selection operated on neutral markers. This pattern of selection became more marked with increasing abundance. In the low-abundance phase, when populations were geographically isolated, both overall differentiation and isolation-by-distance were more marked for MHC genes than for neutral markers. Model-based simulations identified DQA1 as an outlier (i.e. under selection) in a single population, suggesting the action of local selection in fragmented populations. The differences between MHC and neutral markers gradually disappeared with increasing effective migration between sites. In the high-abundance year, DQA1 displayed significantly lower levels of overall differentiation than the neutral markers. This gene therefore displayed stronger homogenization than observed under drift and migration alone. The observed signs of selection were much weaker for DRB. Spatial and temporal fluctuations in parasite pressure and locus-specific selection are probably the most plausible mechanisms underlying the observed changes in selection pattern during the demographic cycle.  相似文献   

15.
To probe the role of natural selection in species origin, we performed a DNA polymorphism survey of the Drosophila melanogaster desaturase2 (ds2) locus. ds2 is responsible for a cuticular hydrocarbon difference between two behaviorally isolated races--Zimbabwe (Z) and Cosmopolitan (M). The ds2 allele prevalent in the Z populations is functional, while the allele from the M populations harbors a 16-bp deletion upstream of the gene which knocks out its expression. We find a signature of positive selection in the ds2 promoter, but not in the control gene, sas. This signature appears to be confined to the derived M population. We also find that the selection has been recent because the gene retains a signature of a selective sweep evidenced by the departure of Fay and Wu's H test from neutral expectation. We also find that ds2, as well as its duplicate pair ds1, has been maintained in the Drosophila genus for at least 40 Myr without any sign of adaptive change. Taken together with previous molecular genetic evidence, our results suggest that ds2 is one of the genes responsible for adaptive divergence of the Z and M races of D. melanogaster.  相似文献   

16.
Determining the molecular signatures of adaptive differentiation is a fundamental component of evolutionary biology. A key challenge is to identify such signatures in wild organisms, particularly between populations of highly mobile species that undergo substantial gene flow. The Canada lynx (Lynx canadensis) is one species where mainland populations appear largely undifferentiated at traditional genetic markers, despite inhabiting diverse environments and displaying phenotypic variation. Here, we used high‐throughput sequencing to investigate both neutral genetic structure and epigenetic differentiation across the distributional range of Canada lynx. Newfoundland lynx were identified as the most differentiated population at neutral genetic markers, with demographic modelling suggesting that divergence from the mainland occurred at the end of the last glaciation (20–33 KYA). In contrast, epigenetic structure revealed hidden levels of differentiation across the range coincident with environmental determinants including winter conditions, particularly in the peripheral Newfoundland and Alaskan populations. Several biological pathways related to morphology were differentially methylated between populations, suggesting that epigenetic modifications might explain morphological differences seen between geographically peripheral populations. Our results indicate that epigenetic modifications, specifically DNA methylation, are powerful markers to investigate population differentiation in wild and non‐model systems.  相似文献   

17.
The existence and mode of selection operating on heritable adaptive traits can be inferred by comparing population differentiation in neutral genetic variation between populations (often using F(ST) values) with the corresponding estimates for adaptive traits. Such comparisons indicate if selection acts in a diversifying way between populations, in which case differentiation in selected traits is expected to exceed differentiation in neutral markers [F(ST )(selected) > F(ST )(neutral)], or if negative frequency-dependent selection maintains genetic polymorphisms and pulls populations towards a common stable equilibrium [F(ST) (selected) < F(ST) (neutral)]. Here, we compared F(ST) values for putatively neutral data (obtained using amplified fragment length polymorphism) with estimates of differentiation in morph frequencies in the colour-polymorphic damselfly Ischnura elegans. We found that in the first year (2000), population differentiation in morph frequencies was significantly greater than differentiation in neutral loci, while in 2002 (only 2 years and 2 generations later), population differentiation in morph frequencies had decreased to a level significantly lower than differentiation in neutral loci. Genetic drift as an explanation for population differentiation in morph frequencies could thus be rejected in both years. These results indicate that the type and/or strength of selection on morph frequencies in this system can change substantially between years. We suggest that an approach to a common equilibrium morph frequency across all populations, driven by negative frequency-dependent selection, is the cause of these temporal changes. We conclude that inferences about selection obtained by comparing F(ST) values from neutral and adaptive genetic variation are most useful when spatial and temporal data are available from several populations and time points and when such information is combined with other ecological sources of data.  相似文献   

18.
Patterns of biodiversity predicted by the neutral theory rely on a simple phenomenological model of speciation. To further investigate the effect of speciation on neutral biodiversity, we analyze a spatially explicit neutral model based on population genetics. We define the metacommunity as a system of populations exchanging migrants, and we use this framework to introduce speciation with little or no gene flow (allopatric and parapatric speciation). We find that with realistic mutation rates, our metacommunity model driven by neutral processes cannot support more than a few species. Adding natural selection in the population genetics of speciation increases the number of species in the metacommunity, but the level of diversity found in the Barro Colorado Island is difficult to reach.  相似文献   

19.
The effect of multi-allelic balancing selection on nucleotide diversity at linked neutral sites was investigated by simulations of subdivided populations. The motivation is to understand the behaviour of self-recognition systems such as the MHC and plant self-incompatibility. For neutral sites, two types of subdivision are present: (1) into demes (connected by migration), and (2) into classes defined by different functional alleles at the selected locus (connected by recombination). Previous theoretical studies of each type of subdivision separately have shown that each increases diversity, and decreases the relative frequencies of low-frequency variants, at neutral sites or loci. We show here that the two types of subdivision act non-additively when sampling is at the whole population level, and that subdivision produces some non-intuitive results. For instance, in highly subdivided populations, genetic diversity at neutral sites may decrease with tighter linkage to a selected locus or site. Another conclusion is that, if there is population subdivision, balancing selection leads to decreased expected FST values for neutral sites linked to the selected locus. Finally, we show that the ability to detect balancing selection by its effects on linked variation, using tests such as Tajima's D, is reduced when genes in a subdivided population are sampled from the total population, rather than within demes.  相似文献   

20.
Studies examining the effects of anthropogenic habitat fragmentation on both neutral and adaptive genetic variability are still scarce. We compared tadpole fitness-related traits (viz. survival probability and body size) among populations of the common frog (Rana temporaria) from fragmented (F) and continuous (C) habitats that differed significantly in population sizes (C > F) and genetic diversity (C > F) in neutral genetic markers. Using data from common garden experiments, we found a significant positive relationship between the mean values of the fitness related traits and the amount of microsatellite variation in a given population. While genetic differentiation in neutral marker loci (F(ST)) tended to be more pronounced in the fragmented than in the continuous habitat, genetic differentiation in quantitative traits (Q(ST)) exceeded that in neutral marker traits in the continuous habitat (i.e. Q(ST) > F(ST)), but not in the fragmented habitat (i.e. Q(ST) approximately F(ST)). These results suggest that the impact of random genetic drift relative to natural selection was higher in the fragmented landscape where populations were small, and had lower genetic diversity and fitness as compared to populations in the more continuous landscape. The findings highlight the potential importance of habitat fragmentation in impairing future adaptive potential of natural populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号