共查询到20条相似文献,搜索用时 15 毫秒
1.
Kumon Y Yokochi T Nakahara T Yamaoka M Mito K 《Applied microbiology and biotechnology》2002,60(3):275-280
A novel method is proposed for the production of long-chain polyunsaturated fatty acids (LCPUFA) by labyrinthulids. The method comprises a monoxenic culture with Psychlobacter phenylpyruvicus, using agar medium in which oil was dispersed. Soybean oil (SBO) was selected as the optimum material for an oil-dispersed agar medium. The labyrinthulids showed three-dimensional growth and an anastomosing ectoplasmic network in the SBO-dispersed agar medium. The oil plate changed from an opaque culture to a more transparent culture, due to growth of the labyrinthulids. The optimum culture conditions were 25-30 degrees C, an initial pH of 6-10 and artificial seawater with a salt concentration of 50-100%. These conditions are close to those where these strains were isolated. The maximum LCPUFA production (0.59 g/l) and dry cell weight (4.93 g/l) was obtained using strain S3-2 (isolated from Ishigaki Island) with 1.5% SBO at 14 days. This value was about 30 times more than that using glucose instead of SBO. The method proposed is promising in terms of the production of LCPUFA from reproducible oils. 相似文献
2.
Anna K. Beike Carsten Jaeger Felix Zink Eva L. Decker Ralf Reski 《Plant cell reports》2014,33(2):245-254
Key message
Mosses have high contents of polyunsaturated fatty acids. Tissue-specific differences in fatty acid contents and fatty acid desaturase (FADS)-encoding gene expression exist. The arachidonic acid-synthesizing FADS operate in the ER.Abstract
Polyunsaturated fatty acids (PUFAs) are important cellular compounds with manifold biological functions. Many PUFAs are essential for the human diet and beneficial for human health. In this study, we report on the high amounts of very long-chain (vl) PUFAs (≥C20) such as arachidonic acid (AA) in seven moss species. These species were established in axenic in vitro culture, as a prerequisite for comparative metabolic studies under highly standardized laboratory conditions. In the model organism Physcomitrella patens, tissue-specific differences in the fatty acid compositions between the filamentous protonema and the leafy gametophores were observed. These metabolic differences correspond with differential gene expression of fatty acid desaturase (FADS)-encoding genes in both developmental stages, as determined via microarray analyses. Depending on the developmental stage and the species, AA amounts for 6–31 %, respectively, of the total fatty acids. Subcellular localization of the corresponding FADS revealed the endoplasmic reticulum as the cellular compartment for AA synthesis. Our results show that vlPUFAs are highly abundant metabolites in mosses. Standardized cultivation techniques using photobioreactors along with the availability of the P. patens genome sequence and the high rate of homologous recombination are the basis for targeted metabolic engineering in moss. The potential of producing vlPUFAs of interest from mosses will be highlighted as a promising area in plant biotechnology. 相似文献3.
A Caponnetto R Rondinone P Zunin 《Bollettino della Società italiana di biologia sperimentale》1984,60(11):2131-2134
The medium C-chain fatty acids increased in the muscle, lungs, pancreas and adipose tissue (and not in the liver) of the rats injected with CCl4 or nourished with "balanced" diet for the lipids. When CCl4 and balanced diet are furnished together, these acids decrease strongly: the discussion of the results is difficult. 相似文献
4.
Polyunsaturated fatty acids (PUFAs) are important for the normal development and function of all organisms, and are essential in maintaining human health. Impaired PUFA metabolism is thought to be associated with pathogenesis of many chronic diseases. Dietary supplementation of PUFAs, such as gamma-linolenic acid, arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which bypass the defective or dysfunctional steps of the biosynthetic pathway has been found to significantly alleviate the symptoms of the disease. These findings have drawn a great deal of interest from general public and food manufacturers. As the demand of these beneficial PUFAs has drastically increased in recent years, there are also increasing efforts in finding the alternate sources of PUFAs that are more economical and sustainable. One option is to modify the oil-seed crops to produce PUFAs through genetic engineering technique. This review examines the isolation, identification and expression of genes encoding the enzymes required for the biosynthesis of the above mentioned PUFAs in plants. 相似文献
5.
Schizophrenia, autism and depression do not inherit by Mendel's law, and the search for a genetic basis seems unsuccessful. Schizophrenia and autism relate to low birth weight and pregnancy complications, which are associated with developmental adaptations by "programming". Epigenetics might constitute the basis of programming and depend on folate status and one-carbon metabolism in general. Early folate status of patients with schizophrenia might be compromised as suggested by (i) coinciding incidences of schizophrenia and neural tube defects (NTDs) in the Dutch hunger winter, (ii) coinciding seasonal fluctuations in birth of patients with schizophrenia and NTDs, (iii) higher schizophrenia incidence in immigrants and (iv) higher incidence in methylene tetrahydrofolate reductase 677C-->T homozygotes. Recent studies in schizophrenia and autism point at epigenetic silencing of critical genes or chromosomal loci. The long-chain polyunsaturated fatty acids (LCPUFA), arachidonic acid (AA, from meat) and docosahexaenoic acid (fish) are components of brain phospholipids and modulators of signal transduction and gene expression. Patients with schizophrenia and, possibly, autism exhibit abnormal phospholipid metabolism that might cause local AA depletion and impaired eicosanoid-mediated signal transduction. National fish intakes relate inversely with major and postpartum depressions. Five out of six randomized controlled trials with eicosapentaenoic acid (fish) have shown positive effects in schizophrenia, and 4 of 6 were favorable in depression and bipolar disorders. We conclude that folate and LCPUFA might be important in both the etiology and severity of at least some psychiatric diseases. 相似文献
6.
Agostoni C Scaglioni S Bonvissuto M Bruzzese MG Giovannini M Riva E 《Prostaglandins, leukotrienes, and essential fatty acids》2001,64(2):111-115
Hyperphenylalaninemic (HPA) children display low levels of long-chain polyunsaturated fatty acids (LCPUFA), particularly docosahexaenoic acid (DHA), in circulating lipids and erythrocytes. We have investigated the effects on the blood fatty acid status and lipid picture of a balanced supplementation with LCPUFA in HPA children through a double-blind, placebo-controlled trial. A total of 20 well-controlled HPA, school-age children were randomized to receive through a 12-month trial fat capsules supplying either 26% fatty acid as LCPUFA (including 4.6%gamma -linolenic acid, 7.4% arachidonic acid, AA, 5.5% eicosapentaenoic acid and 8% DHA) or placebo (olive oil). The study supplementation was administered in order to provide 0.3-0.5% of the individual daily energy requirements as LCPUFA. Reference data were obtained from healthy children of comparable age. Among HPA children (whose DHA status was poor at baseline), those supplemented with LCPUFA showed an increase of around 100% in the baseline DHA levels in plasma phospholipids and erythrocytes. No changes of AA levels were observed. Blood lipid levels did not significantly change. A balanced supplementation with LCPUFA in treated HPA children may improve the DHA status without adversely affecting the AA status. 相似文献
7.
The uptake and integrated intracellular metabolism of (n - 6) and (n - 3) polyunsaturated fatty acids was studied in isolated rat cardiac myocytes and in the perfused heart. Labeled linolenic acid (18:3(n - 3)) uptake and its subsequent metabolism into carbon dioxide as well as acylation into lipids was nonsaturable over a substrate range of 0.02 to 0.4 mM. [1-14C]Linoleic acid (18:2(n - 6)), dihomo-gamma-linolenic acid (20:3(n - 6)) and arachidonic acid (20:4(n - 6)) were transported into myocytes at rates similar to those for linolenic acid. Conversely both [1-14C]-gamma-linolenic acid (18:3(n - 6)) and eicosapentaenoic acid (20:5(n - 3)) were taken up at a slower rate. Oxidation of 18:3(n - 6) was 4-5-fold greater when compared with C18-C20 polyunsaturated fatty acids. When myocytes were incubated with labeled 18:2(n - 6), 18:3(n - 6), 18:3(n - 3), 20:4(n - 6) or 20:5(n - 3), it was not possible to detect any desaturation or chain-elongation products. Identical results were obtained when hearts were perfused with 1-14C-labeled linoleic acid. 相似文献
8.
Wang H Lu S Du J Yao Y Berschneider HM Black DD 《American journal of physiology. Gastrointestinal and liver physiology》2001,280(6):G1137-G1144
Long-chain polyunsaturated fatty acids (LC-PUFA) are important in the development of the immature nervous system, and adding these fatty acids to infant formula has been proposed. To determine the effect of n-3 LC-PUFA on apolipoprotein secretion and lipid synthesis in newborn swine enterocytes, differentiated IPEC-1 cells were incubated for 24 h with docosahexaenoic acid (DHA; 22:6) or eicosapentaenoic acid (EPA; 20:5) complexed with albumin at a fatty acid concentration of 0.8 mM or albumin alone (control) added to the apical medium. Oleic acid (OA; 18:1) was used a control for lipid-labeling studies. Both DHA and EPA reduced apolipoprotein (apo) B secretion by one-half, whereas EPA increased apo A-I secretion. The increased apo A-I secretion occurred primarily in the high-density lipoprotein fraction. These changes in apoprotein secretion were not accompanied by significant changes in synthesis. Modest decreases in apo B mRNA levels were observed for DHA and EPA, whereas there were no changes in apo A-I mRNA abundance. EPA reduced cellular triacylglycerol labeling by one-half, and DHA and EPA decreased cellular phospholipid labeling compared with OA. Labeled triacylglycerol secretion was decreased 75% by EPA, and DHA doubled labeled phospholipid secretion. If present in vivo, these effects should be considered before supplementing infant formula with these fatty acids. 相似文献
9.
Juan G. Gormaz Ramón Rodrigo Luis A. Videla Megan Beems 《Progress in lipid research》2010,49(4):407-419
Non-alcoholic fatty liver disease (NAFLD) has a high occurrence in most countries. Recent studies estimate its prevalence to be near 30% in United States, Italian and Japanese general adult populations. NAFLD commonly presents along with obesity and insulin resistance (IR), pathologies that share with NAFLD metabolic and inflammatory components. These conditions, particularly NAFLD, are associated with alterations in the bioavailability of long-chain polyunsaturated fatty acids (LCPUFAs). In the human population, the bioavailability of LCPUFAs depends both on endogenous biosynthesis and diet amount of preformed LCPUFAs. However, the lower liver LCPUFAs product/precursor ratio namely (20:5n?3 + 22:6n?3)/18:3n?3, 20:4n?6/18:2n?6 present in common Western diets, makes critical an adequate pathway activity to ensure minimum bioavailability of LCPUFAs in most Western populations. The key step of this biosynthesis involves Δ5 and Δ6-desaturases, whose activities are altered in NAFLD. During the disease, the presence of molecular activators of these two enzymes does not correlate with the scarce LCPUFAS biosynthesis observed. The key to this apparent contradiction, or at least part of it, could be explained on the basis of the possible sensitivity of the desaturases to oxidative stress; a metabolic condition strongly linked to inflammatory pathologies such as NAFLD, obesity and IR and that, according to latest research, not only would be consequence but also possibly a cause of these diseases. The present review is focused on the relationship between NAFLD and the bioavailability of LCPUFAs, with special reference to the role that oxidative stress could play in the modulation of the liver fatty acid desaturase activity. 相似文献
10.
11.
Dietary long-chain polyunsaturated fatty acids (LCPUFA) in infancy are necessary for normal brain growth and development, and may play an important role in the development of infant cognition. Several randomized, controlled studies have evaluated the effects of feeding both term and preterm infants formula containing LCPUFA or no LCPUFA on a variety of measures of cognitive behaviour. Studies of the relation of LCPUFA to performance on tests of psychomotor development have produced inconsistent results, with supplemented infants demonstrating either higher scores or no differences in comparison to controls. This pattern suggests that global tests of development may be insufficiently sensitive for detecting the effects of LCPUFA on infant cognitive function. In contrast, studies assessing the influence of LCPUFA on development of specific cognitive behaviours have shown a significant advantage for supplemented infants on measures of visual attention and problem solving. These results suggest that LCPUFA may enhance more efficient information processing or attention regulation in infants. Whether there are any long-term effects of dietary LCPUFA in infancy on childhood cognition is not known. 相似文献
12.
Long-chain polyunsaturated fatty acids (LCPUFAs) and their metabolites are considered essential factors to support bone and joint health. The n-6 PUFAs suppress the osteoblasts differentiation via increasing peroxisome proliferator-activated receptor gamma (PPARγ) expression and promoting adipogenesis while n-3 PUFAs promote osteoblastogenesis by down-regulating PPARγ and enhancing osteoblastic activity. Arachidonic acid (AA) and its metabolite prostaglandin E2 (PGE2) are key regulators of osteoclast differentiation via induction of the receptor activator of nuclear factor kappa-Β ligand (RANKL) pathway. Marine-derived n-3 LCPUFAs have been shown to inhibit osteoclastogenesis by decreasing the osteoprotegerin (OPG)/RANKL signalling pathway mediated by a reduction of pro-inflammatory PGE2 derived from AA. Omega-3 PUFAs reduce the expression of cartilage degrading enzyme matrix metalloproteinase-13 (MMP-13) and a disintegrin and metalloprotease with thrombospondin motifs-5 (ADAMTS-5) protein, oxidative stress and thereby apoptosis via nuclear factor kappa-betta (NF-kβ) and inducible nitric oxide synthase (iNOS) pathways. In this review, a diverse range of important effects of LCPUFAs on bone cells and chondrocyte was highlighted through different mechanisms of action established by cell cultures and animal studies. This review allows a better understanding of the possible role of LCPUFAs in bone and chondrocyte metabolism as potential therapeutics in combating the pathological complications such as osteoporosis and osteoarthritis. 相似文献
13.
Larissa Freitas Tânia Bueno Victor H. Perez Júlio C. Santos Heizir Ferreira de Castro 《World journal of microbiology & biotechnology》2007,23(12):1725-1731
The ability of three commercially available lipases to mediate the hydrolysis of the soybean oil to yield concentrated of
essential fatty acids was evaluated. The tested lipases were from microbial (Candida rugosa and Thermomyces lanuginosa) and animal cells (Porcine pancreatic lipase). In terms of free fatty acids, microbial lipases were more effective to promote
the enzymatic hydrolysis of the soybean oil (over 70%) than the porcine pancreatic lipase (24%). In spite of this, porcine
pancreatic lipase (PPL) showed the most satisfactory specificity towards both essential fatty acids and was, therefore, chosen
to carry out additional studies. An experimental design was performed taking into consideration the enzyme and NaCl amounts
as independent variables. The main effects were fitted by multiple regression analysis to a linear model and maximum fatty
acids concentration could be obtained using 3.0 wt% of lipase and 0.08 wt% of NaCl. The mathematical model representing the
hydrolysis degree was found to describe adequately the experimental results. Under these conditions, concentrations of 29.5 g/L
and 4.6 g/L for linoleic and linolenic acids, respectively, were obtained. 相似文献
14.
João R. Araújo Ana Correia-Branco Carla Ramalho Elisa Keating Fátima Martel 《The Journal of nutritional biochemistry》2013,24(10):1741-1750
The long-chain polyunsaturated fatty acids (LC-PUFAs) arachidonic (AA) and docosahexaenoic (DHA) acids are essential for fetal development. Gestational diabetes mellitus (GDM) is a pregnancy disorder associated with perinatal and lifelong risk complications for both the mother and the newborn. Our aim was to investigate the influence of GDM, and some of its associated conditions, upon the placental uptake of AA and DHA. Uptake of 14C-AA and 14C-DHA by human trophoblasts obtained from normal pregnancies (NTB cells) was mediated by both saturable (for lower substrate concentrations) and non-saturable (for higher substrate concentrations) mechanisms. Uptake of both fatty acids was inhibited by other LC-PUFAs and, markedly, by the long-chain acyl-CoA synthetase (ACSL) inhibitor, triacsin C. Human trophoblasts obtained from GDM pregnancies (DTB cells) showed a significantly lower 14C-AA and 14C-DHA accumulation, through a decrease in both the saturable and the non-saturable components of uptake, which was associated with a decrease in ACSL1 mRNA levels. Uptake of LC-PUFAs by NTB cells increased (by 20–25%) after short-term exposure to TNF-α (14C-AA and 14C-DHA) and insulin (14C-DHA). In conclusion, GDM, distinctly from its associated conditions, markedly decreases placental uptake of LC-PUFAs, which probably contributes to the deleterious effects of this disease for the newborn. 相似文献
15.
Different metabolic behavior of long-chain n-3 polyunsaturated fatty acids in human platelets 总被引:3,自引:0,他引:3
Whereas numerous studies deal with the effects and metabolism of eicosapentaenoic acid (20:5(n - 3)) in platelets, very few concern docosahexaenoic acid (22:6(n - 3)), although both acids are consumed in equal amounts from most fish fat. The present paper reports the modulation of 22:6(n - 3) oxygenation as well as that of endogenous arachidonic acid (20:4(n - 6)) in 22:6(n - 3)-rich platelets. Like the oxygenation of 20:5(n - 3), the lipoxygenation of 22:6(n - 3) occurred at a low level when incubated alone, but was markedly increased in the presence of 20:4(n - 6), suggesting a similar peroxide tone dependency. 20:5(n - 3) could not replace 20:4(n - 6) in the increasing 22:6(n - 3) lipoxygenation, whereas 22:6(n - 3) shared the potentiating effect of 20:4(n - 6) on both the cyclooxygenation and the lipoxygenation of 20:5(n - 3). On the other hand, 20:5(n - 3), 22:6(n - 3) or 20:5(n - 3) + 22:6(n - 3) enrichment of platelet phospholipids inhibited the formation of cyclooxygenase but not lipoxygenase products from endogenous 20:4(n - 6) in thrombin-stimulated platelets. In doing so, 22:6(n - 3) appeared even more potent than 20:5(n - 3), although it was not liberated after acylation in phospholipids, the opposite of what was observed with 20:5(n - 3). Therefore, it seems that, in contrast to 20:5(n - 3), which may compete with endogenous 20:4(n - 6) at the cyclooxygenase level, 22:6(n - 3) would affect the latter enzyme activity in a different way. We conclude that 20:5(n - 3) and 22:6(n - 3) behave differently and might act synergistically on the inhibition of platelet functions after fish fat intake. 相似文献
16.
17.
18.
Xi Xie Kaiwen Sun Dauenpen Meesapyodsuk Yu Miao Xiao Qiu 《Environmental microbiology》2020,22(9):3772-3783
Thraustochytrium is a unicellular marine protist for the commercial production of very long-chain polyunsaturated fatty acids (VLCPUFAs). Biosynthesis of these VLCPUFAs in the protist is catalysed by a PUFA synthase comprising three subunits, each with multiple catalytic domains. Among these domains, two tandem FabA-like dehydratase domains (DH1 and DH2) in subunit-C together are responsible for introducing double bonds in VLCPUFAs. Domain swapping analysis in yeast showed that the defective phenotype of a Scfas1 mutant could be complemented by expressing an engineered ScFAS1 gene in which the DH domain was replaced by a single DH1 or mutated DH2 of the two. Heterologous expression of the PUFA synthase in E. coli showed that the mutation of DH1 of the two or deletion of DH1 or substitution of DH1 with DH2 resulted in the complete loss of activity in the biosynthesis of VLCPUFAs. Mutation of DH2 of the two or deletion of the DH2 domain produced a small amount of DPA, but not docosahexaenoic acid (DHA). These results indicate that each of the two FabA-like domains of the PUFA synthase possesses distinct function. DH1 domain is essential for the biosynthesis of VLCPUFAs, but DH2 domain is required for the biosynthesis of DHA. 相似文献
19.
20.
Aihua Liu James Chang Yanhua Lin Zhengqing Shen Paul S. Bernstein 《Journal of lipid research》2010,51(11):3217-3229
Retinal long-chain PUFAs (LC-PUFAs, C12-C22) play important roles in normal human retinal function and visual development, and some epidemiological studies of LC-PUFA intake suggest a protective role against the incidence of advanced age-related macular degeneration (AMD). On the other hand, retinal very long-chain PUFAs (VLC-PUFAs, Cn>22) have received much less attention since their identification decades ago, due to their minor abundance and more difficult assays, but recent discoveries that defects in VLC-PUFA synthetic enzymes are associated with rare forms of inherited macular degenerations have refocused attention on their potential roles in retinal health and disease. We thus developed improved GC-MS methods to detect LC-PUFAs and VLC-PUFAs, and we then applied them to the study of their changes in ocular aging and AMD. With ocular aging, some VLC-PUFAs in retina and retinal pigment epithelium (RPE)/choroid peaked in middle age. Compared with age-matched normal donors, docosahexaenoic acid, adrenic acid, and some VLC-PUFAs in AMD retina and RPE/choroid were significantly decreased, whereas the ratio of n-6/n-3 PUFAs was significantly increased. All these findings suggest that deficiency of LC-PUFAs and VLC-PUFAs, and/or an imbalance of n-6/n-3 PUFAs, may be involved in AMD pathology. 相似文献