首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results of the Virtual Intracranial Stenting Challenge (VISC) 2007, an international initiative whose aim was to establish the reproducibility of state-of-the-art haemodynamical simulation techniques in subject-specific stented models of intracranial aneurysms (IAs). IAs are pathological dilatations of the cerebral artery walls, which are associated with high mortality and morbidity rates due to subarachnoid haemorrhage following rupture. The deployment of a stent as flow diverter has recently been indicated as a promising treatment option, which has the potential to protect the aneurysm by reducing the action of haemodynamical forces and facilitating aneurysm thrombosis. The direct assessment of changes in aneurysm haemodynamics after stent deployment is hampered by limitations in existing imaging techniques and currently requires resorting to numerical simulations. Numerical simulations also have the potential to assist in the personalized selection of an optimal stent design prior to intervention. However, from the current literature it is difficult to assess the level of technological advancement and the reproducibility of haemodynamical predictions in stented patient-specific models. The VISC 2007 initiative engaged in the development of a multicentre-controlled benchmark to analyse differences induced by diverse grid generation and computational fluid dynamics (CFD) technologies. The challenge also represented an opportunity to provide a survey of available technologies currently adopted by international teams from both academic and industrial institutions for constructing computational models of stented aneurysms. The results demonstrate the ability of current strategies in consistently quantifying the performance of three commercial intracranial stents, and contribute to reinforce the confidence in haemodynamical simulation, thus taking a step forward towards the introduction of simulation tools to support diagnostics and interventional planning.  相似文献   

2.
《Journal of biomechanics》2014,47(14):3524-3530
To investigate the hemodynamic performance of overlapping bare-metal stents intervention treatment to thoracic aortic aneurysms (TAA), three simplified TAA models, representing, no stent, with a single stent and 2 overlapped stents deployed in the aneurismal sac, were studied and compared in terms of flow velocity, wall shear stress (WSS) and pressure distributions by means of computational fluid dynamics. The results showed that overlapping stents intervention induced a flow field of slow velocity near the aneurismal wall. Single stent deployment in the sac reduced the jet-like flow formed prior to the proximal neck of the aneurysm, which impinged on the internal wall of the aneurysm. This jet-like flow vanished completely in the overlapping double stents case. Overlapping stents intervention led to an evident decrease in WSS; meanwhile, the pressure acting on the wall of the aneurysm was reduced slightly and presented more uniform distribution. The results therefore indicated that overlapping stents intervention may effectively isolate the thoracic aortic aneurysm, protecting it from rupture. In conclusion, overlapping bare-metal stents may serve a purpose similar to that of the multilayer aneurysm repair system (MARS) manufactured by Cardiatis SA (Isnes, Belgium).  相似文献   

3.
Polymeric stents can be considered as an alternative to metallic stents thanks to their lessened incidence of restenosis and controlled deployment. The purpose of this study was to investigate the feasibility of developing a temperature-responsive braided stent using shape memory polyurethane (SMPU) through finite element analysis. It was assumed that braided stents were manufactured using SMPU fibers. The mechanical behavior of SMPU fibers was modeled using a constitutive equation describing their one-dimensional thermal-induced shape memory behavior. Then, the braided stents were analyzed to investigate their mechanical behavior using finite element analysis software, in which the constitutive equation was implemented through a user material subroutine. The diameter of the SMPU fibers and braiding angle were chosen as the design parameters and their values were adjusted to ensure that the mechanical properties of the braided polymer stents match those of metallic stents. Finally, the deployment process of the braided stents inside narrowed vessels was simulated, showing that the SMPU stents can be comfortably implanted while minimizing the overpressure onto the vessel walls, due to their thermo-responsive shape memory behavior.  相似文献   

4.
Previous research on the effects of intracranial stents on arterial hemodynamics has involved computational hemodynamics (CHD) simulations applied to artificially generated stent models. In this study, accurate geometric reconstructions of in-vitro (PTFE tube) and ex-vivo (canine artery) deployed stents based on ultra-high resolution MicroCT imaging were used. The primary goal was to compare the hemodynamic effects of deployment in these two different models and to identify flow perturbations due to deployment anomalies such as stent malapposition and strut prolapse, important adverse mechanics occurring in clinical practice, but not considered in studies using idealized stent models.Ultra-high resolution MicroCT data provided detailed visualization of deployment characteristics allowing for accurate in-stent flow simulation. For stent cells that are regularly and symmetrically deployed, the near wall flow velocities and wall shear stresses were similar to previously published results derived from idealized models. In-stent hemodynamics were significantly altered by misaligned or malapposed stent cells, important effects not realistically captured in previous models. This research shows the feasibility and value of an ex-vivo stent model for MicroCT based CHD studies. It validates previous in-vitro studies and further contributes to the understanding of in-stent hemodynamics associated with adverse mechanics of self-expanding intracranial stents.  相似文献   

5.
The mechanical function of a stent deployed in a damaged artery is to provide a metallic tubular mesh structure. The purpose of this study was to determine the exact mechanical characteristics of stents. In order to achieve this, we have used finite-element analysis to model two different type of stents: tubular stents (TS) and coil stents (CS). The two stents chosen for this modeling present the most extreme mechanical characteristics of the respective types. Seven mechanical properties were studied by mathematical modeling with determination of: (1) stent deployment pressure, (2) the intrinsic elastic recoil of the material used, (3) the resistance of the stent to external compressive forces, (4) the stent foreshortening, (5) the stent coverage area, (6) the stent flexibility, and (7) the stress maps. The pressure required for deployment of CS was significantly lower than that required for TS, over 2.8 times greater pressure was required for the tubular model. The elastic recoil of TS is higher than CS (5.4% and 2.6%, respectively). TS could be deformed by 10% at compressive pressures of between 0.7 and 1.3 atm whereas CS was only deformed at 0.2 and 0.7 atm. The degree of shortening observed increases with deployment diameter for TS. CS lengthen during deployment. The metal coverage area is two times greater for TS than for CS. The ratio between the stiffness of TS and that of CS varies from 2060 to 2858 depending on the direction in which the force is applied. TS are very rigid and CS are significantly more flexible. Stress mapping shows stress to be localized at link nodes. This series of finite-element analyses illustrates and quantifies the main mechanical characteristics of two different commonly used stents. In interventional cardiology, we need to understand their mechanisms of implantation and action.  相似文献   

6.
Cardiovascular stents are commonly made from 316L stainless steel and are deployed within stenosed arterial lesions using balloon expansion. Deployment involves inflating the balloon and plastically deforming the stent until the required diameter is obtained. This plastic deformation induces static stresses in the stent, which will remain for the lifetime of the device. In order to determine these stresses, finite element models of the unit cells of geometrically different, commercially available balloon expandable stents have been created, and deployment and elastic recoil have been simulated. In this work the residual stresses associated with deployment and recoil are compared for the various stent geometries, with a view to establishing appropriate initial stress states for fatigue loading for the stents. The maximum, minimum, and mean stresses induced in the stent due to systolic/diastolic pressure are evaluated, as are performance measures such as radial and longitudinal recoil.  相似文献   

7.
Deployment of stent-grafts, derived from synthetic biomaterials, is an established minimally invasive approach for effectively treating abdominal aortic aneurysms (AAAs). However, a notable disadvantage associated with this surgical technique is migration of the deployed stent-graft due to poor biocompatibility and inadequate integration in vivo. Recently, tissue-engineered extracellular matrices (ECMs) have shown early promise as integrating stabilisation collars in this setting due to their ability to induce a constructive tissue remodelling response after in vivo implantation. In the present study the effects of stent loading on an ECM?s mechanical properties were investigated by characterising the compression and loading effects of endovascular stents on porcine urinary bladder matrix (UBM) scaffolds. Results demonstrated that the maximum stress was induced when the stent force was 8-times higher than a standard commercially available stent-graft and this represented about 20% of the failure strength of the UBM material. In addition, the influence of stent shape was also investigated. Findings demonstrated that the stress induced was higher for circular stents at low forces and a higher stress was induced on square stents when increased force was applied. Our findings demonstrate that porcine UBM possesses sufficient mechanical strength to withstand the compression and loading effects of commercially available stent-grafts in the setting of endovascular aneurysm repair.  相似文献   

8.
Computational mechanics of Nitinol stent grafts   总被引:1,自引:0,他引:1  
A finite element analysis of tubular, diamond-shaped stent grafts under representative cyclic loading conditions for abdominal aortic aneurysm (AAA) repair is presented. Commercial software was employed to study the mechanical behavior and fatigue performance of different materials found in commercially available stent-graft systems. Specifically, the effects of crimping, deployment, and cyclic pressure loading on stent-graft fatigue life, radial force, and wall compliances were simulated and analyzed for two types of realistic but different Nitinol materials (NITI-1 and NITI-2) and grafts (expanded polytetrafluoroethylene-ePTFE and polyethylene therephthalate-PET). The results show that NITI-1 stent has a better crimping performance than NITI-2. Under representative cyclic pressure loading, both NITI-1 and NITI-2 sealing stents are located in the safe zone of the fatigue-life diagram; however, the fatigue resistance of an NITI-1 stent is better than that of an NITI-2 stent. It was found that the two types of sealing stents do not damage a healthy neck artery. In the aneurysm section, the NITI-1&ePTFE, NITI-1&PET, and NITI-2&PET combinations were free of fatigue fracture when subjected to conditions of radial stress between 50 and 150mmHg. In contrast, the safety factor for the NITI-2&ePFTE combination was only 0.67, which is not acceptable for proper AAA stent-graft design. In summary, a Nitinol stent with PET graft may greatly improve fatigue life, while its compliance is much lower than the NITI-ePTFE combination.  相似文献   

9.
A simulation framework for drug-eluting stents (DES) is presented that simulates the two distinct operational phases of a DES: stent deployment is simulated first, a mechanical porohyperelastic/elasto-plastic/contact analysis. This analysis calculates the interstitial fluid velocity as the result of interstitial fluid pressure gradients and mechanical deformations of the vessel wall. The deformed geometry, interstitial fluid velocity field and porosity field are extracted and used as input for the drug release simulation: a reaction-advection-diffusion (RAD) transport analysis calculating the spatial and temporal drug distribution. The advantage of this approach is that the deformed geometry and interstitial fluid velocity field are not assumed a priori, but are actually calculated using a stent deployment simulation. The framework is demonstrated simulating a DES in an idealised, 3D vessel. Varying mechanical and transport properties based on literature data are assigned to each of the three layers in the wall. The results of the drug release simulation for a period of one week show that the drug distributes longitudinally but will remain in the proximity of the stented area.  相似文献   

10.
An aneurysm is a local artery ballooning greater than 50% of its nominal diameter with a risk of sudden rupture. Minimally invasive repair can be achieved by inserting surgically a stent-graft, called an endovascular graft (EVG), which is either straight tubular curved tubular or bifurcating. However post-procedural complications may arise because of elevated stagnant blood pressure in the cavity, i.e., the sac formed by the EVG and the weakened aneurysm wall In order to investigate the underlying mechanisms leading to elevated sac-pressures and hence to potentially dangerous wall stress levels and aneurysm rupture, a transient 3-D stented abdominal aortic aneurysm model and a coupled fluid-structure interaction solver were employed. Simulation results indicate that, even without the presence of endoleaks (blood flowing into the cavity), elevated sac pressure can occur due to complex fluid-structure interactions between the luminal blood flow, EVG wall, intra-sac stagnant blood, including an intra-luminal thrombus, and the aneurysm wall. Nevertheless, the impact of sac-blood volume changes due to leakage on the sac pressure and aneurysm wall stress was analyzed as well. While blood flow conditions, EVG and aneurysm geometries as well as wall mechanical properties play important roles in both sac pressure and wall stress generation, it is always the maximum wall stress that is one of the most critical parameters in aneurysm rupture prediction. All simulation results are in agreement with experimental data and clinical observations.  相似文献   

11.
Polyvinyl alcohol (PVA) cryogel covered stents may reduce complications from thrombosis and restenosis by decreasing tissue prolapse. Finite element analysis was employed to evaluate the effects of PVA cryogel layers of varying thickness on tissue prolapse and artery wall stress for two common stent geometries and two vessel diameters. Additionally, several PVA cryogel covered stents were fabricated and imaged with an environmental scanning electron microscope. Finite element results showed that covered stents reduced tissue prolapse up to 13% and artery wall stress up to 29% with the size of the reduction depending on the stent geometry, vessel diameter, and PVA cryogel layer thickness. Environmental scanning electron microscope images of expanded covered stents showed the PVA cryogel to completely cover the area between struts without gaps or tears. Overall, this work provides both computational and experimental evidence for the use of PVA cryogels in covered stents.  相似文献   

12.
We investigated the flow modifications induced by a large panel of commercial-off-the-shelf (COTS) intracranial stents in an idealized sidewall intracranial aneurysm (IA). Flow velocities in IA silicone model were assessed with and without stent implantation using particle imaging velocimetry (PIV). The use of the recently developed multi-time-lag method has allowed for uniform and precise measurements of both high and low velocities at IA neck and dome, respectively. Flow modification analysis of both regular (RSs) and flow diverter stents (FDSs) was subsequently correlated with relevant geometrical stent parameters. Flow reduction was found to be highly sensitive to stent porosity variations for regular stents RSs and moderately sensitive for FDSs. Consequently, two distinct IA flow change trends, with velocity reductions up to 50% and 90%, were identified for high-porosity RS and low-porosity FDS, respectively. The intermediate porosity (88%) regular braided stent provided the limit at which the transition in flow change trend occurred with a flow reduction of 84%. This transition occurred with decreasing stent porosity, as the driving force in IA neck changed from shear stress to differential pressure. Therefore, these results suggest that stents with intermediate porosities could possibly provide similar flow change patterns to FDS, favourable to curative thrombogenesis in IAs.  相似文献   

13.
Endovascular intervention using traditional neurovascular stents and densely braided flow diverters (FDs) have become the preferred treatment strategies for traditionally challenging intracranial aneurysms. Modeling stent and FD deployment in patient-specific aneurysms and its flow modification results prior to the actual intervention can potentially predict the patient outcome and treatment optimization. We present a clinically focused, streamlined virtual stenting workflow that efficiently simulates stent and FD treatment in patient-specific aneurysms based on expanding a simplex mesh structure. The simplex mesh is generated using an innovative vessel-specific initialization technique, which uses the patient’s parent artery diameter to identify the initial position of the simplex mesh inside the artery. A novel adaptive expansion algorithm enables the acceleration of deployment process by adjusting the expansion forces based on the distance of the simplex mesh from the parent vessel. The virtual stenting workflow was tested by modeling the treatment of two patient-specific aneurysms using the Enterprise stent and the Pipeline Embolization Device (commercial FD). Both devices were deployed in the aneurysm models in a few seconds. Computational fluid dynamics analyses of pre- and post-treatment aneurysmal hemodynamics show flow reduction in the aneurysmal sac in treated aneurysms, with the FD diverting more flow than the Enterprise stent. The test results show that this workflow can rapidly simulate clinical deployment of stents and FDs, hence paving the way for its future clinical implementation.  相似文献   

14.
BackgroundMultiple overlapping uncovered stents (MOUS) system has shown potentials in managing complex aortic aneurysms with side branches involvement. It promotes the development of thrombus by modulating local flow pattern that reduces the wall tension, while maintaining patency of side branches. However the modulation of local hemodynamic parameters depends on various factors that have not been assessed comprehensively.MethodsAneurysm 3D geometry was reconstructed based on CT images. One-way fluid-structure interaction analysis was performed to quantify structural stress concentration in the wall, and changes of blood velocity, wall shear stress (WSS), oscillatory shear index (OSI), relative residence time (RRT) and pressure in the sac due to the stent deployment.ResultsHigh structural stress concentration due to stent deployment was found in the landing zone and it increased linearly with the number of stents deployed. The wall tension in the sac was unaffected by the stent deployment. Stress within the wall was insensitive to the different overlapping pattern. After one stent was deployed, the mean flow velocity in the sac reduced by 36.4%. The deployment of the 2nd stent further reduced the mean sac velocity by 10%. WSS decreased while both OSI and RRT increased after stent deployment, however pressure in the sac remained nearly unchanged. Except for the cases with complete stents struts alignment, different overlapping pattern had little effect on flow parameters.ConclusionsMechanical parameters modulated by the MOUS are insensitive to different overlapping pattern suggesting that endovascular procedure can be performed with less attention to the overlapping pattern.  相似文献   

15.
Mechanical behaviour modelling of balloon-expandable stents   总被引:9,自引:0,他引:9  
Endoprostheses are small struts placed by intravascular way to restore the vascular lumen and flow conditions. The purpose of this work is to provide models for evaluation and characterisation of some mechanical properties of a balloon-expandable stent by using the finite element method. Here we present the results for a metallic tubular peripheral prosthesis: the P308 Palmaz stent. We focus on the mechanisms linked to the structure expansion and its long-term behaviour. Several models are constructed in order to determine the stent shape after dilation and to assess the stress and strain fields in its wall due to this transformation. They inform us about the shortening percentage on expansion, degrees of radial and longitudinal recoil, and weaknesses of the structure. Various methods, differing in their levels of complexity, are then attempted to exhibit the predominant factors responsible for the crushing of a stent under external pressure. Moreover, the sensitivity of this critical pressure to geometric imperfections is studied. Lastly, since this kind of material is implanted for a lifetime, we test the stent with regard to fatigue life. Beyond safety considerations, this type of characterisation provides mechanical properties that are often difficult to obtain by experiments. If it was available for various stents, such information could be used to choose the appropriate prosthesis for specific applications. Moreover, confronted with observations from practitioners, they might lead to a better understanding of the failure or success of a particular design and to work on the product optimisation.  相似文献   

16.
Since their first introduction, stents have revolutionised the treatment of atherosclerosis; however, the development of in-stent restenosis still remains the Achilles' heel of stent deployment procedures. Computational modelling can be used as a means to model the biological response of arteries to different stent designs using mechanobiological models, whereby the mechanical environment may be used to dictate the growth and remodelling of vascular cells. Changes occurring within the arterial wall due to stent-induced mechanical injury, specifically changes within the extracellular matrix, have been postulated to be a major cause of activation of vascular smooth muscle cells and the subsequent development of in-stent restenosis. In this study, a mechanistic multi-scale mechanobiological model of in-stent restenosis using finite element models and agent-based modelling is presented, which allows quantitative evaluation of the collagen matrix turnover following stent-induced arterial injury and the subsequent development of in-stent restenosis. The model is specifically used to study the influence of stent deployment diameter and stent strut thickness on the level of in-stent restenosis. The model demonstrates that there exists a direct correlation between the stent deployment diameter and the level of in-stent restenosis. In addition, investigating the influence of stent strut thickness using the mechanobiological model reveals that thicker strut stents induce a higher level of in-stent restenosis due to a higher extent of arterial injury. The presented mechanobiological modelling framework provides a robust platform for testing hypotheses on the mechanisms underlying the development of in-stent restenosis and lends itself for use as a tool for optimisation of the mechanical parameters involved in stent design.  相似文献   

17.
A method to correct stent related complications non-invasively, is the local delivery of therapeutic agents. Different drugs have been delivered on stents, after being either dispersed or encapsulated in polymeric materials, and placed on stents to form drug-eluting-stents (DE-stents). Investigation of possibility to cover polymer - coated metallic stents, with liposomal drugs, for preparation of novel DE-liposome-coated-stents, has been initiated few years ago. In this context our research has been focused on answering the following questions: (i) Can liposomes be applied as coatings on polymer covered stents? (ii) Can drug release from liposome coated-stents be controlled? And: (iii) how is haemo-compatibility of stents affected? The results of the experiments carried out demonstrate that liposomal formulations of drugs can be used as coating systems of polymer covered stents for achieving sustained release of drugs at the site of interest. By modifying liposome characteristics, different amounts of drugs may be placed on the stents and their release rates can be adjusted for maximum therapeutic benefit. Finally, haemocompatibility of stents is highly improved (mainly in terms of cell adhesion and activation of coagulation system), when stents are coated with heparin-encapsulating -DRV liposomes.  相似文献   

18.
Effects of stent porosity on hemodynamics in a sidewall aneurysm model   总被引:1,自引:0,他引:1  
Computation and experiment have been complementarily performed to study the fluid flow inside a stented lateral aneurysm anchored on the straight parent vessel. The implicit solver was based on the time-dependent incompressible Navier-Stokes equations of laminar flow. Solutions were generated by a cell-center finite-volume method that used second-order upwind and second-order center flux difference splitting for the convection and diffusion term, respectively. The second-order Crank-Nicolson method was used in the time integration term. Experimental techniques used were flow visualization (FV) and particle tracking velocimetry (PTV). Experimentally, the straight afferent vessel had an inner diameter 10mm. The diameters of the aneurysmal orifice, neck, and fundus were 14, 10, and 15 mm, respectively, and the distance between the orifice and dome measured 20mm. A 30 mm long helix-shaped stent was tested. Four stent porosities of 100%, 70%, 50%, and 25% were examined. Volume-flow rate waveform of a cerebral artery was considered with a maximum Reynolds number of 250 and Womersley number of 3.9. Results are presented in terms of the pulsatile main and secondary flow velocity vector fields, the volume inflow rates into the aneurysm, and the wall shear stress (WSS) and wall pressure at the aneurysm dome. Some comparisons of computed results with the present FV and PTV results and with the data available from the literature are also made. The maximum flow velocity inside the aneurysm ostium and the WSS in the dome region at the peak flow can, respectively, be suppressed to less than 5% of the parent vessel bulk velocity (or 20% of the unstented case) and 8% of the unstented case if the stent porosity is smaller than 40% (about the porosity of the two-layer stents). In general, the three-layer stents seem not as effective as the two-layer stents in reducing the magnitude of aneurysm inflow rate and WSS.  相似文献   

19.

Objective

SPARC is a key determinant of invasion and metastasis in some tumors, such as gliomas, melanomas and prostate tumors. SPARC can change the composition and structure of the matrix and promote angiogenesis; these effects are closely related to clinical stage and the prognosis of tumors such as meningiomas. However, little is known about the expression of SPARC in intracranial aneurysms. The goal of this study was to establish the role of SPARC in human intracranial aneurysms.

Methods

Thirty-one intracranial aneurysms were immunohistochemically stained for SPARC, MMP-2 and MMP-9. As controls, normal Circle of Willis arteries were similarly immunostained. All specimens were retrieved during autopsies and were embedded in paraffin. To evaluate the expression levels of SPARC, MMP-2 and MMP-9, western blotting was also performed in three available intracranial aneurysm specimens. The limited availability of fresh intracranial aneurysm tissue was the result of the majority of patients choosing endovascular embolization.

Results

The results showed that SPARC, MMP-2 and MMP-9 were strongly expressed in intracranial aneurysm tissues; however, these proteins were expressed minimally or not at all in normal Circle of Willis arteries. The western blot results showed that the expression levels of SPARC, MMP-2 and MMP-9 were significantly up-regulated in intracranial aneurysms relative to the expression levels in the normal Circle of Willis arteries. Data analysis showed that SPARC was significantly correlated with MMP-2 and MMP-9, also with age and risk factors but not with the Hunt-Hess grade or with sex.

Conclusion

The results indicate that SPARC is widely expressed in human intracranial aneurysms, and its expression correlates with MMP-2 and MMP-9 expression, age and risk factors but not with the Hunt-Hess grade. The results of this study suggest that SPARC has a pathogenic role in the alteration of the extracellular matrix of intracranial arteries during aneurysm formation.  相似文献   

20.

One of the effective treatment options for intracranial aneurysms is stent-assisted coiling. Though, previous works have demonstrated that stent usage would result in the deformation of the local vasculature. The effect of simple stent on the blood hemodynamics is still uncertain. In this work, hemodynamic features of the blood stream on four different ICA aneurysm with/without interventional are investigated. To estimate the relative impacts of vessel deformation, four distinctive ICA aneurysm is simulated by the one-way FSI technique. Four hemodynamic factors of aneurysm blood velocity, wall pressure and WSS are compared in the peak systolic stage to disclose the impact of defamation by the stent in two conditions. The stent usage would decrease almost all of the mentioned parameters, except for OSI. Stenting reduces neck inflow rate, while the effect of interventional was not consistent among the aneurysms. The deformation of an aneurysm has a strong influence on the hemodynamics of an aneurysm. This outcome is ignored by most of the preceding investigations, which focused on the pre-interventional state for studying the relationship between hemodynamics and stents. Present results show that the application of stent without coiling would improve most hemodynamic factors, especially when the deformation of the aneurysm is high enough.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号