首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The respective roles of organic solvent and of water in butyl butyrate synthesis from n-butanol and n-butyric acid in n-hexane by Mucor miehei lipase have been investigated by analysis of the kinetics and the reaction balances. Esterificaton was found to take place in both low water systems containing solid enzyme in hexane and in biphasic aqueous enzyme solution/hexane systems. In the solid enzyme system, the enzyme adsorbed the water produced, thus delaying the appearance of a discrete aqueous phase. As expected, the presence of some water was indispensable for this system, as its removal or exclusion by various means (adsorption, distillation) affected enzyme activity. However, water removal had little effect on the final yield of esterification. Reaction velocities were quite similar for the solid enzyme/hexane system and for the biphasic aqueous enzyme solution/hexane system. In the latter case, the butyl butyrate formed was almost exclusively found in the organic phase. Ethyl butyrate, a more polar compound, was synthesized with a lower yield. These results allow the conclusion that the reaction took place in a phase consisting of either solid hydrated enzyme with no discrete aqueous phase or of an aqueous enzyme solution by basically similar mechanisms according to the amount of water available to the system, the esterification being driven to completion by transfer of the ester into the organic phase because of a favourable partition coefficient. Offprint requests to: F. Monot  相似文献   

2.
The activity of Thermoanaerobium brockii alcohol dehydrogenase (TBADH) adsorbed on mesoporous silica SBA-15 was compared with that of the free enzyme in water and in biphasic system (water phase up to 50% v/v water). TBADH was active at a water concentration ≥10% v/v. In the reduction reaction of sulcatone to sulcatol carried out in biphasic systems, the yield obtained with SBA-15-adsorbed TBADH was up to 5.5-fold higher than that with the free enzyme, which suggests a higher stability of the immobilized enzyme toward the organic solvent. The nature of the organic solvent substantially influenced the degree of conversion that, for example, was 7.4% in toluene and 31.6% in petroleum ether.  相似文献   

3.
Biodiesel is increasingly perceived as an important component of solutions to the important current issues of fossil fuel shortages and environmental pollution. Utilization of soluble lipase offers an alternative approach to lipase-catalyzed biodiesel production using immobilized enzyme or whole-cell catalysis. Soluble lipase NS81020, produced by submerged fermentation of genetically modified Aspergillus oryzae microorganism, was first proposed here as the catalyst of biodiesel preparation with oleic acid in the biphasic aqueous-oil systems. The effect factors such as enzyme concentration, water content, temperature, molar ratio of methanol to oil, stirring rate and pH of buffer solution on the esterification rate were investigated systematically. The reaction time could be shortened with the increasing of enzyme concentration as long as the maximum enzyme absorptive capacity on the interface in the biphasic aqueous-oil systems was not achieved. The optimal water content in the biphasic aqueous-oil systems was 10 wt% by oleic acid weight. The reaction rate was enhanced with the increasing molar ratio of methanol to oil, the increasing stirring rate or the decreasing temperature. Although soluble lipase NS81020 had lower activity at pH 10.55, hydroxyl ion conduced to restrain hydrolysis of methyl ester and facilitated the reaction toward the methyl ester formation.  相似文献   

4.
A new approach to preparative organic synthesis in aqueous–organic systems is suggested. It is based on the idea that the enzymatic process is carried out in a biphasic system “water–water-immiscible organic solvent.” Thereby the enzyme is localized in the aqueous phase—this eliminates the traditional problem of stabilizing the enzyme against inactivation by a nonaqueous solvent. Hence, in contrast to the commonly used combinations “water–water-miscible organic solvent,” in the suggested system the content of water may be infinitely low. This allows one to dramatically shift the equilibrium of the reactions forming water as a reaction product (synthesis of esters and amides, polymerization of amino acids, sugars and nucleotides, dehydration reactions, etc.) toward the products. The fact that the system consists of two phases provides another very important source for an equilibrium shift, i.e., free energies of the transfer of a reagent from one phase to the other. Equations are derived describing the dependence of the equilibrium constant in a biphasic system on the ratio of the volumes of the aqueous and nonaqueous phases and the partition coefficients of the reagents between the phases. The approach has been experimentally verified with the synthesis of N-acetyl-L -tryptophan ethyl ester from the respective alcohol and acid. Porous glass was impregnated with aqueous buffer solution of chymotrypsin and suspended in chloroform containing N-acetyl-L -tryptophan and ethanol. In water (no organic phase) the yield of the ester is about 0.01%, whereas in this biphasic system it is practically 100%. The idea is applicable to a great number of preparative enzymatic reactions.  相似文献   

5.
The study concerned the pH profile of the apparent equilibrium constant for synthesis of N-benzoyl-L -phenylalanine ethyl ester from the respective acid and ethanol in the biphasic system chloroform + 5% (v/v) water. The substitution of water (as a reaction medium) for the biphasic aqueous–organic system shifted the pH profile toward neutral pH values. As a result the pH range thermodynamically conducive to synthesis of the final product in the biphasic system coincided with the pH optimum of the catalytic activity of the enzyme used (α-chymotrypsin). This approach should, in principle, be considered as general: first, per se it is independent of a catalyst (enzyme) nature; second, the biphasic method helps the shift ionic equilibria involving not only organic acids, but also bases. A physical mechanism of the ionic equilibrium shift is the same is both cases, namely, a preferable extraction from water into an organic phase of one generally nonionic (more hydrophobic) form of the reagent.  相似文献   

6.
7.
Different modes of conditioning of a crude lipase from Rhizomucor miehei were investigated in terms of activity for synthesis of butyl butyrate either by esterification or transesterification in organic media. It was found that lyophilisation alone had a positive effect on reaction rates and that this effect was greatly enhanced when incorporating the substrates of the reaction prior to lyophilisation.These improvements were no longer observed when adding water to the reaction medium. Removal of the insoluble matter from the crude enzyme had a favourable effect on activity only in biphasic water-organic solvent media. Correspondence to: F. Monot  相似文献   

8.
The performance of a crude extract lipase from Pseudomonas fluorescensin esterification was evaluated in microaqueous, biphasic and surfactant-enriched biphasic systems containing various amounts of water (from almost no water to pure water). The results showed a strong negative influence of the water content on the thermodynamic equilibrium of the reaction in biphasic systems. From a kinetic point of view, the enzyme was more efficient in systems involving a water/organic solvent interface (4 times in the biphasic system, 12 times in the surfactant-enriched biphasic system).  相似文献   

9.
Enzymatic stereoselective hydrolysis of (R,S)-1-phenylethyl propionate was performed in a stirred tank and in a biphasic enzyme membrane reactor. Lipase from Pseudomonas sp. was proved to be a good enantioselective catalyst for this reaction. The enzyme was covalently immobilized in a porous polyamide membrane (flat sheet as well as hollow-fibres) via glutaraldehyde. An influence of membrane hydrophobicity on reactor performance was observed. Initial lipase activity and productivity in the processes were equal to 1.05 × 10?4, 1.3 × 10?5 and 1.0 × 10?5 mole/(h × mg of enzyme) in the case of native lipase, in the aromatic polyamide hydrophobic membrane reactor and in the hydrophilic polyamide-6 membrane reactor, respectively. The influence of some factors such as temperature, pH, buffer concentration, initial substrate concentration and addition of β-cyclodextrin derivatives on reaction rate and enantioselectivity was investigated and discussed. In the enzyme membrane reactor both organic and aqueous phases circulated countercurrently on both sides of the membrane. At a conversion degree of under 55–60%, pure enantiomer of the remaining ester (i.e. > 98%) was obtained.  相似文献   

10.
The performance of lipases from Candida rugosa and wheat germ have been investigated in three reaction media using three acetate hydrolyses as model reactions (ethyl acetate, allyl acetate, and prenyl acetate). The effect of substrate properties and water content were studied for each system (organic solvent, biphasic system, and reverse micelles). Not unexpectedly, the effect of water content is distinct for each system, and the optimal water content for enzyme activity is not always the same as that for productivity. A theoretical model has been used to simulate and predict enzyme performance in reverse micelles, and a proposed partitioning model for biphasic systems agrees well with experimental results. While the highest activities observed were in the micellar system, productivity in microemulsions is limited by low enzyme concentrations. Biphasic systems, however, support relatively good activity and productivity. The addition of water to dry organic solvents, combined with the dispersion of lyophilized enzyme powders in the solvent, resulted in significant enzyme aggregation, which not surprisingly limits the applicability of the "anhydrous" enzyme suspension approach. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
O-acetylserine sulfhydrylase (OASS) is the pyridoxal 5′-phosphate dependent enzyme that catalyses the formation of L-cysteine in bacteria and plants. Its inactivation is pursued as a strategy for the identification of novel antibiotics that, targeting dispensable proteins, holds a great promise for circumventing resistance development. In the present study, we have investigated the reactivity of Salmonella enterica serovar Typhimurium OASS-A and OASS-B isozymes with fluoroalanine derivatives. Monofluoroalanine reacts with OASS-A and OASS-B forming either a stable or a metastable α-aminoacrylate Schiff’s base, respectively, as proved by spectral changes. This finding indicates that monofluoroalanine is a substrate analogue, as previously found for other beta-halogenalanine derivatives. Trifluoroalanine caused different and time-dependent absorbance and fluorescence spectral changes for the two isozymes and is associated with irreversible inhibition. The time course of enzyme inactivation was found to be characterised by a biphasic behaviour. Partially distinct inactivation mechanisms for OASS-A and OASS-B are proposed.  相似文献   

12.
Summary The alcohol-oxidase-mediated oxidation of hexanol to hexanal was conducted by whole cells of Pichia pastoris in a biphasic reaction medium consisting of 3% water and 97% (v/v) water-saturated hexane. At substrate levels of ca. 10 g/l, hexanal was produced at a rate of 0.2 g/g cell dry wt. per hour with product yields and carbon recoveries of 96% or greater. Although the substrate range of P. pastoris alcohol oxidase has been documented as C1–C5 aliphatic alcohols and benzyl alcohol, the use of a biphasic organic reaction medium showed that this enzyme can also oxidize higher molecular weight aliphatic alcohols of C6–C11, as well as the aromatic alcohols phenethyl alcohol and 3-phenyl-1-propanol. The ability of alcohol oxidase to oxidize low-water-soluble alcohols greatly extends the utility of this enzyme.Issued as NRCC no. 30955 Offprint requests to: W. D. Murray  相似文献   

13.
N-(Benzyloxycarbonyl)-L-aspartyl-L-phenylalanine methyl ester (Z-AspPheOMe), a precursor of the aspartame, and N-(benzyloxycarbonyl)-L-phenylalanyl-Lphenylalanine methyl ester (Z-PhePheOMe) were synthesized from the respective amino acid derivatives with an immobilized thermolysin (EC 3.4.24.4) in ethyl acetate. Various factors affecting the synthesis of these dipeptide precursors were clarified. The initial synthetic rate was the highest at the water content of 3.5% for both reactions. The substrate concentration dependencies of the initial synthetic rate of Z-AspkPheOMe and Z-PhePheOMe with the immobilized enzyme in ethyl acetate were different from those in an aqueous buffer solution saturated with ethyl acetate but similar to those in the aqueous/organic biphasic system using the free enzyme. Particularly, the initial synthetic rate of Z-AspPhOMe increased in order higher than first order with respect to the concentration of L-phenylalanine methyl ester (PheOMe), whereas it decreased sharply with the concentration of N-(benzyloxycarbonyl)-L-aspartic acid (Z-Asp). Such kinetic behavior could be explained by regarding the inside of the immobilized enzyme as being a biphasic mode composed from the organic phase and aqueous phase where the enzymatic reaction takes place. The reaction in the aqueous/organic biphasic system using the free enzyme could be simulated by taking into consideration the partition of the substrate and the initial rate of synthesis in the aqueous buffer saturated with ethyl acetate. Based on this analysis, the rate of reaction with the immobilized enzyme in ethyl acetate could also be predicted. Z-AsPheOMe and Z-PhePheOMe were synthesized by the fed-batch method where the acid component of the substrate was intermittently added during the course of reaction and by the batch method. In the synthesis of Z-AspPheOMe, the synthetic rate and maximum yield of reaction as well as the stability of the immobilized enzyme were higher in the fed-batch reaction than those in the batch reaction. In the synthesis of Z-PhePheOMe, the results obtained by both methods were similar. (c) 1994 John Wiley & Sons, Inc.  相似文献   

14.
 Reconstituted whole-cell preparations of lyophilized Methylosinus trichosporium OB3b were used to demonstrate soluble methane monooxygenase activity in a two-phase (biphasic) matrix consisting of a buffered aqueous phase and 2,2,4-trimethylpentane (isooctane). The rate of conversion of gaseous propylene to propylene oxide, a non-metabolized liquid, was used as the primary measure of enzyme activity. Appreciable soluble methane monooxygenase activity was detected when the volume of the aqueous phase represented at least 1% of the total volume, although the initial rate of product formation did increase as the volume of the aqueous phase increased. In comparison to the aqueous system, the specific rate and yields in the biphasic system were much less sensitive to increases in the concentrations of formate and protein (the methane monooxygenase). However, there was some evidence that the enzyme system was more stable in the biphasic matrix, since the rate of propylene oxide formation remained linear for an extended period of time. V (app.) in the biphasic system decreased by a factor of 0.6 relative to the same parameter in the aqueous system. Conversely, K m(app.) for propylene was 1.6 times greater in the biphasic system. Hence, the apparent catalytic efficiency in the aqueous system was four times that in the biphasic system, as indicated by a decrease in the corresponding ratios of V (app.) to K m(app.). Received: 21 July 1995/Received last revision: 1 February 1996/Accepted: 5 December 1996  相似文献   

15.
We have developed different activity/stability tests to evaluate the possibilities of fully dispersed chymotrypsin derivatives as industrial catalysts in biphasic systems. We have tested different immiscible organic solvents (log P ranged from 0.65 to 2.8) and used different enzyme derivatives (soluble chymotrypsin and one-point and multipoint covalent attached derivatives). Special emphasis has been given to the role of the "exact composition of the aqueous phase."High phosphate concentrations largely protect every hymotrypsin derivative from the distorting effects of dissolved solvent molecules. The effects on the activity and stability of soluble chymotrypsin due to saturating solvent concentrations in an aqueous solution, and the much more severe effects of contact with the phase interface in a stirred biphasic system, all show the opposite trend for the influence of solvent polarity to that generally observed for biocatalysts. For example, deleterious effects decline in the order chloroform, dichloromethane, ethyl acetate. On the contrary, with or without stirring, our stabilized chymotrypsin-agarose derivatives are much more stable against these water-immiscible solvents, and their relative effects follow the normal trend. From these integrated activity and stability tests we can conclude that fully dispersed immobilized-stabilized derivatives seem to be an interesting alternative to develop industrial biphasic processes catalyzed by chymotrypsin.  相似文献   

16.
Lignification of the plant cell wall could serve as the first line of defense against pathogen attack, but the molecular mechanisms of virulence and disease between oil palm and Ganoderma boninense are poorly understood. This study presents the biochemical, histochemical, enzymology and gene expression evidences of enhanced lignin biosynthesis in young oil palm as a response to G. boninense (GBLS strain). Comparative studies with control (T1), wounded (T2) and infected (T3) oil palm plantlets showed significant accumulation of total lignin content and monolignol derivatives (syringaldehyde and vanillin). These derivatives were deposited on the epidermal cell wall of infected plants. Moreover, substantial differences were detected in the activities of enzyme and relative expressions of genes encoding phenylalanine ammonia lyase (EC 4.3.1.24), cinnamate 4‐hydroxylase (EC 1.14.13.11), caffeic acid O‐methyltransferase (EC 2.1.1.68) and cinnamyl alcohol dehydrogenase (CAD, EC 1.1.1.195). These enzymes are key intermediates dedicated to the biosynthesis of lignin monomers, the guaicyl (G), syringyl (S) and ρ‐hydroxyphenyl (H) subunits. Results confirmed an early, biphasic and transient positive induction of all gene intermediates, except for CAD enzyme activities. These differences were visualized by anatomical and metabolic changes in the profile of lignin in the oil palm plantlets such as low G lignin, indicating a potential mechanism for enhanced susceptibility toward G. boninense infection.  相似文献   

17.
The inactivation and unfolding of aminoacyclase (EC 3.5.1.14) during denaturation by different concentrations of trifluoroethanol (TFE) have been studied. A marked decrease in enzyme activity was observed at low TFE concentrations. The kinetic theory of the substrate reaction during irreversible inhibition of enzyme activity described previously by Tsou [Tsou (1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436] was applied to study the kinetics of the inactivation course of aminoacyclase during denaturation by TFE. The inactivation rate constants for the free enzyme and substrate-enzyme complex were determined by Tsou's method. The inactivation reaction was a monophasic first-order reaction. The kinetics of the unfolding course were a biphasic process consisting of two first-order reactions. At 2% TFE concentration, the inactivation rate of the enzyme was much faster than the unfolding rate. At a higher concentration of TFE (10%), the inactivation rate was too fast to be determined by conventional methods, whereas the unfolding course remained as a biphasic process with fast and slow reactions occurring at measurable rates. The results suggest that the aminoacyclase active site containing Zn2+ ions is situated in a limited and flexible region of the enzyme molecule that is more fragile to the denaturant than the protein as a whole.  相似文献   

18.
Stability performance of the acid protease ofCynara cardunculus L. in biphasic systems containing ethyl acetate,n-hexane or isooctane was investigated and compared with that of pepsin. Activity retention was higher in the system containingn-hexane. In this system 100% retention was observed up to 144 hours. Pre-saturation of phases was found to increase enzyme stability in the cases ofn-hexane and isooctane and to be an absolute requirement in the case of ethyl acetate. The results obtained suggest also that, when dealing with pre-saturated phases, log P cannot be used straightforwardly to predict enzyme stability in biphasic systems.  相似文献   

19.
A biphasic increase of hemolymph glucose levels was observed following injection to bees of cupric gluconate or sulfate, both potent agents for the control of Varroa jacobsoni, a parasitic mite of hives. The simultaneous injection to bees of 0.3 μM BAYg5421 (an inhibitor of α-glucosidases) quenched the response, suggesting a direct effect of 2 nmol/bee cupric ions on trehaloses' activity. One nanomol of injected cupric gluconate increased the trehalose (Tre) activity by 233% in crude hemolymph extracts at 1 mM trehalose concentration, and exhibited biphasic dose-related effects with a maximum 15% increase at 0.5 mM cupric ion and a stabilized 20% inhibition from 4 mM, regardless of the anionic moiety. Upon partial purification of the enzyme complex, two fractions (FI = 75% and FII = 25% of total activity) were isolated that exhibited, respectively, less and more marked positive cooperativity than crude extract. Form I showed almost no susceptibility to either cupric derivatives, which indicated form II as the most likely target, with 68% and 72% increases with 0.25 mM cupric sulfate and 0.5 mM cupric gluconate, in presence of 16 mM trehalose.  相似文献   

20.
Lysoglycosphingolipids were produced from glycosphingolipids by using sphingolipid ceramide N-deacylase, which cleaves the N-acyl linkage between fatty acids and sphingosine bases in various glycosphingolipids. The enzyme reaction was done in a biphasic media prepared with water;-immiscible organic solvent and aqueous buffer solution containing the enzyme. We investigated the effects of organic solvents and detergents on lysoglycosphingolipid production in the biphasic system. Among the organic solvents tested, n-butylbenzene, cumene, cyclodecane, cyclohexane, n-decane, diisopropylether, n-heptadecane, and methylcyclohexane promoted hydrolysis of GM1, whereas benzene, chloroform, ethyl acetate, and toluene inhibited GM1 hydrolysis. Hydrolysis of asialo GM1, GD1a, GalCer, and sulfatide was also enhanced by the addition of n-decane. The hydrolytic activity of the enzyme was enhanced by the addition of 0.8% sodium taurodeoxycholate or sodium cholate to the aqueous phase. The most effective hydrolysis of various glycosphingolipids by the enzyme was thus obtained in the aqueous-n-decane biphasic system containing 0.8% sodium taurodeoxycholate. Under this condition, the fatty acids released from GM1 by the action of the enzyme were trapped and diffused into the organic phase, while lysoGM1 remained in the aqueous phase.Thus the almost complete hydrolysis of GM1 was achieved using the biphasic system, while at most 70% of hydrolysis was obtained using normal aqueous media possibly due to the inhibition of hydrolysis reaction by accumulation of fatty acids in the reaction mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号