首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Outer membrane phospholipase A (OMPLA) is an integral membrane enzyme that hydrolyses phospholipids requiring Ca(2+) as cofactor. In vitro studies have shown that OMPLA is only active as a dimer. The structures of monomeric and dimeric OMPLA provided possible clues to the activation process. In the inhibited dimeric species calcium ions are located at the dimer interface ideally suited to stabilise the oxyanion intermediates formed during catalysis. The side chain hydroxyl function of Ser152 is one of the ligands of this interfacial calcium. In the crystal structure of monomeric OMPLA the interfacial calcium site is lacking, but calcium was found to bind at a site involving the carboxylates of Asp149 and Asp184. In the current study the relevance of the identified calcium sites has been studied by site-directed mutagenesis. The Ser152Asn variant confirmed the importance of the interfacial calcium site for catalysis, and also demonstrated that this site is essentially involved in the dimerisation process. Replacements of the ligands in monomeric OMPLA, i.e. Asp149Asn, Asp149Ala and Asp184Asn, only showed minor effects on catalytic activity and dimerisation. A stronger effect observed for the variant Asp184Ala was explained by the proximity of Asp184 to the catalytically important Ser152 residue. We propose that Asp149 and Asp184 provide an electronegative funnel that may facilitate Ca(2+) transfer to the interfacial calcium site.  相似文献   

2.
Outer membrane phospholipase A (OMPLA) is an integral membrane enzyme that hydrolyses phospholipids requiring Ca2+ as cofactor. In vitro studies have shown that OMPLA is only active as a dimer. The structures of monomeric and dimeric OMPLA provided possible clues to the activation process. In the inhibited dimeric species calcium ions are located at the dimer interface ideally suited to stabilise the oxyanion intermediates formed during catalysis. The side chain hydroxyl function of Ser152 is one of the ligands of this interfacial calcium. In the crystal structure of monomeric OMPLA the interfacial calcium site is lacking, but calcium was found to bind at a site involving the carboxylates of Asp149 and Asp184. In the current study the relevance of the identified calcium sites has been studied by site-directed mutagenesis. The Ser152Asn variant confirmed the importance of the interfacial calcium site for catalysis, and also demonstrated that this site is essentially involved in the dimerisation process. Replacements of the ligands in monomeric OMPLA, i.e. Asp149Asn, Asp149Ala and Asp184Asn, only showed minor effects on catalytic activity and dimerisation. A stronger effect observed for the variant Asp184Ala was explained by the proximity of Asp184 to the catalytically important Ser152 residue. We propose that Asp149 and Asp184 provide an electronegative funnel that may facilitate Ca2+ transfer to the interfacial calcium site.  相似文献   

3.
OMPLA is a phospholipase found in the outer membranes of many Gram-negative bacteria. Enzyme activation requires calcium-induced dimerisation plus bilayer perturbation. As the conformation of OMPLA in the different crystal forms (monomer versus dimer; with/without bound Ca(2+)) is remarkably similar we have used multi-nanosecond molecular dynamics (MD) simulations to probe possible differences in conformational dynamics that may be related to enzyme activation. Simulations of calcium-free monomeric OMPLA, of the Ca(2+)-bound dimer, and of the Ca(2+)-bound dimer with a substrate analogue covalently linked to the active site serine have been performed, all with the protein embedded in a phospholipid (POPC) bilayer. All simulations were stable, but differences in the dynamic behaviour of the protein between the various states were observed. In particular, the stability of the active site and the hydrophobic substrate-binding cleft varied. Dimeric OMPLA is less flexible than monomeric OMPLA, especially around the active site. In the absence of bound substrate analogue, the hydrophobic substrate-binding cleft of dimeric OMPLA collapses. A model is proposed whereby the increased stability of the active site in dimeric OMPLA is a consequence of the local ordering of water around the nearby calcium ion. The observed collapse of the substrate-binding cleft may explain the experimentally observed occurrence of multiple dimer conformations of OMPLA, one of which is fully active while the other shows significantly reduced activity.  相似文献   

4.
Within the large family of lipolytic enzymes, phospholipases constitute a very diverse subgroup with physiological functions such as digestion and signal transduction. Most phospholipases may associate with membranes at the lipid-water interface. However, in many Gram-negative bacteria, a phospholipase is present which is located integrally in the bacterial outer membrane. This phospholipase (outer membrane phospholipase A or OMPLA) is involved in transport across the bacterial outer membrane and has been implicated in bacterial virulence. OMPLA is calcium dependent and its activity is strictly regulated by reversible dimerisation. Recently the crystal structure of this integral membrane enzyme has been elucidated. In this review, we summarise the implications of these structural data for the understanding of the function and regulation of OMPLA, and discuss a mechanism for phospholipase dependent colicin release in Escherichia coli.  相似文献   

5.
Kingma RL  Egmond MR 《FEBS letters》2002,516(1-3):31-34
Outer membrane phospholipase A (OMPLA) activity is regulated by reversible dimerisation with the dimer being the active species. Observed lag phases in activity indicated that dimerisation may be slow relative to turnover. A covalent OMPLA dimer indeed did not display lag phase behaviour. A model for OMPLA kinetics was proposed accounting for a slow dimerisation step. Preincubation conditions determined the initial amount of monomer and influenced both lag times and final activities. Under the conditions used, substrate concentrations higher than 50 mol% inhibited OMPLA activity and increased lag times. Our results may shed more light on mechanisms controlling OMPLA activity in vivo.  相似文献   

6.
Escherichia coli outer membrane phospholipase A (OMPLA) is an integral membrane enzyme. OMPLA is active as a homodimer and requires calcium as a cofactor. The crystal structures of the monomeric and the inhibited dimeric enzymes were recently determined [Snijder, H. J., et al. (1999) Nature 401, 717-721] and revealed that OMPLA monomers are folded into a 12-stranded antiparallel beta-barrel. The active site consists of previously identified essential residues Ser144 and His142 in an arrangement resembling the corresponding residues of a serine hydrolase catalytic triad. However, instead of an Asp or Glu that normally is present in the triad of serine hydrolases, a neutral asparagine (Asn156) was found in OMPLA. In this paper, the importance of the catalytic Asn156 is addressed by site-directed mutagenesis studies. All variants were purified at a 30 mg scale, and were shown to be properly folded using SDS-PAGE and circular dichroism spectroscopy. Using chemical cross-linking, it was shown that all variants were not affected in their calcium-dependent dimerization properties. The Asn156Asp variant exhibited a 2-fold lower activity than wild-type OMPLA at neutral pH. Interestingly, the activity of the variant is 1 order of magnitude higher than that of the wild type at pH >10. Modest residual activities (5 and 2.5%, respectively) were obtained for the Asn156Ala and Asn156Gln mutants, showing that the active site of OMPLA is more tolerant toward replacements of this third residue of the catalytic triad than other serine hydrolases, and that the serine and histidine residues are minimally required for catalysis. In the X-ray structure of dimeric OMPLA, the cofactor calcium is coordinating the putative oxyanion via two water molecules. We propose that this may lessen the importance for the asparagine in the catalytic triad of OMPLA.  相似文献   

7.
The activity of outer membrane phospholipase A (OMPLA) is regulated by reversible dimerization. However, native OMPLA reconstituted in phospholipid vesicles was found to be present as a dimer but nevertheless inactive. To investigate the importance of dimerization for control of OMPLA activity, a covalent OMPLA dimer was constructed and its properties were compared to native OMPLA both in a micellar detergent and after reconstitution in a phospholipid bilayer. Unlike native OMPLA, activity of the covalent OMPLA dimer was independent of type and concentration of detergent in micellar systems. In such systems, the covalent OMPLA dimer invariantly displayed high calcium affinity. In contrast, high calcium concentrations were required to activate a covalent OMPLA dimer when present in intact vesicles. Solubilization of the vesicles increased the affinity for calcium, suggesting that in an intact bilayer the dimer interface is not properly formed. This was supported by the observation that OMPLA variants having an impaired dimeric interface also lacked high affinity calcium binding. A covalent linkage was not able to restore high affinity calcium binding in these variants, demonstrating that a proper dimer interface is essential for optimal catalysis.  相似文献   

8.
A new class of phospholipases A2 that have a lysine at position 49 differ from the more conventional Asp-49 enzymes with respect to the sequential binding of the essential cofactor, calcium, and the substrate, phospholipid, in the formation of the catalytic complex (Maraganore, J.M., Merutka, G., Cho, W., Welches, W., Kézdy, F.J., and Heinrikson, R.L. (1984) J. Biol. Chem. 259, 13839-13843). We report here the complete amino acid sequence of the Lys-49 enzyme from Agkistrodon piscivorus piscivorus. The sequence was determined by automated Edman degradation of the intact, S-carboxymethylcysteinyl protein and of peptides derived therefrom by cleavage with cyanogen bromide, chymotrypsin, trypsin, and endoproteinase Lys-C. Despite several changes at amino acid residues previously considered to be invariant, the Lys-49 enzymes are homologous to the Asp-49 phospholipases. Homology is especially apparent in the following: 1) the pattern of 14 half-cystine residues, 2) conservation of hydrophobic residues which have been shown to encircle the active site, and 3) conservation of Asp-99 and His-48 which have been implicated in the catalytic reaction itself. These observations together with kinetic and binding data imply that the Lys-49 phospholipases have a catalytic mechanism and a three-dimensional architecture similar to those of the Asp-49 enzymes. Modeling of the Lys-49 enzyme based upon the structure of bovine pancreatic phospholipase reveals that the epsilon-amino group of Lys-49 can fit easily in the calcium-binding site and, moreover, that this orientation of a cationic side chain at position 49 could account for the characteristic and novel feature of the Lys-49 phospholipases, i.e. that they are able to form complexes with phospholipid in the absence of calcium.  相似文献   

9.
The structure of the detergent in crystals of outer membrane phospholipase A (OMPLA) has been determined using neutron diffraction contrast variation. Large crystals were soaked in stabilising solutions, each containing a different H(2)O/D(2)O contrast. From the neutron diffraction at five contrasts, the 12 A resolution structure of the detergent micelle around the protein molecule was determined. The hydrophobic beta-barrel surfaces of the protein molecules are covered by rings of detergent. These detergent belts are fused to neighbouring detergent rings forming a continuous three-dimensional network throughout the crystal. The thickness of the detergent layer around the protein varies from 7-20 A. The enzyme's active site is positioned just outside the hydrophobic detergent zone and is thus in a proper location to catalyse the hydrolysis of phospholipids in a natural membrane. Although the dimerisation face of OMPLA is covered with detergent, the detergent density is weak near the exposed polar patch, suggesting that burying this patch in the enzyme's dimer interface may be energetically favourable. Furthermore, these results indicate a crucial role for detergent coalescence during crystal formation and contribute to the understanding of membrane protein crystallisation.  相似文献   

10.
Outer membrane phospholipase A (OMPLA) from Escherichia coli is an integral-membrane enzyme with a unique His-Ser-Asn catalytic triad. In serine proteases and serine esterases usually an Asp occurs in the catalytic triad; its role has been the subject of much debate. Here the role of the uncharged asparagine in the active site of OMPLA is investigated by structural characterization of the Asn156Ala mutant. Asparagine 156 is not involved in maintaining the overall active-site configuration and does not contribute significantly to the thermal stability of OMPLA. The active-site histidine retains an active conformation in the mutant notwithstanding the loss of the hydrogen bond to the asparagine side chain. Instead, stabilization of the correct tautomeric form of the histidine can account for the observed decrease in activity of the Asn156Ala mutant.  相似文献   

11.
Annexins are a family of calcium- and phospholipid-binding proteins involved with numerous cellular processes including membrane fusion, ion channel activity, and heterocomplex formation with other proteins. The annexin XII (ANXB12) crystal structure presented evidence that calcium mediates the formation of a hexamer through a novel intermolecular calcium-binding site [Luecke et al. (1995) Nature 378, 512-515]. In an attempt to disrupt hexamerization, we mutated a conserved key ligand in the intermolecular calcium-binding site, Glu105, to lysine. Despite its occurrence in a new spacegroup, the 1.93 A resolution structure reveals a hexamer with the Lys105 epsilon-amino group nearly superimposable with the original intermolecular calcium position. Our analysis shows that the mutation is directly involved in stabilizing the hexamer. The local residues are reoriented to retain affinity between the two trimers via a pH-dependent switch residue, Glu76, which is now protonated, allowing it to form tandem hydrogen bonds with the backbone carbonyl and nitrogen atoms of Thr103 located across the trimer interface. The loss of the intermolecular calcium-binding site is recuperated by extensive hydrogen bonding favoring hexamer stabilization. The presence of this mutant structure provides further evidence for hexameric annexin XII, and possible in vivo roles are discussed.  相似文献   

12.
Drp35 is a protein induced by cell wall-affecting antibiotics or detergents; it possesses calcium-dependent lactonase activity. To determine the molecular basis of the lactonase activity, we first solved the crystal structures of Drp35 with and without Ca(2+); these showed that the molecule has a six-bladed beta-propeller structure with two calcium ions bound at the center of the beta-propeller and surface region. Mutational analyses of evolutionarily conserved residues revealed that the central calcium-binding site is essential for the enzymatic activity of Drp35. Substitution of some other amino acid residues for the calcium-binding residues demonstrated the critical contributions of Glu(48), Asp(138), and Asp(236) to the enzymatic activity. Differential scanning calorimetric analysis revealed that the loss of activity of E48Q and D236N, but not D138N, was attributed to their inability to hold the calcium ion. Further structural analysis of the D138N mutant indicates that it lacks a water molecule bound to the calcium ion rather than the calcium ion itself. Based on these observations and structural information, a possible catalytic mechanism in which the calcium ion and its binding residues play direct roles was proposed for the lactonase activity of Drp35.  相似文献   

13.
Transposon Tn5 employs a unique means of self-regulation by expressing a truncated version of the transposase enzyme that acts as an inhibitor. The inhibitor protein differs from the full-length transposase only by the absence of the first 55 N-terminal amino acid residues. It contains the catalytic active site of transposase and a C-terminal domain involved in protein-protein interactions. The three-dimensional structure of Tn5 inhibitor determined to 2.9-A resolution is reported here. A portion of the protein fold of the catalytic core domain is similar to the folds of human immunodeficiency virus-1 integrase, avian sarcoma virus integrase, and bacteriophage Mu transposase. The Tn5 inhibitor contains an insertion that extends the beta-sheet of the catalytic core from 5 to 9 strands. All three of the conserved residues that make up the "DDE" motif of the active site are visible in the structure. An arginine residue that is strictly conserved among the IS4 family of bacterial transposases is present at the center of the active site, suggesting a catalytic motif of "DDRE." A novel C-terminal domain forms a dimer interface across a crystallographic 2-fold axis. Although this dimer represents the structure of the inhibited complex, it provides insight into the structure of the synaptic complex.  相似文献   

14.
The crystal structure of the catalytic domain of the site-specific recombination enzyme gamma delta resolvase has been determined at 2.7 A resolution. Its first 120 amino acids form a central five-stranded, beta-pleated sheet surrounded by five alpha helices. In one of the four dyad-related dimers, the two active site Ser-10 residues are 19 A apart, perhaps close enough to contact and become covalently linked to the DNA at the recombination site. This dimer also forms the only closely packed tetramer found in the crystal. The subunit interface at a second dyad-related dimer is more extensive and more highly conserved among the homologous recombinases; however, its active site Ser-10 residues are more than 30 A apart. Side chains, identified by mutations that eliminate catalysis but not DNA binding, are located on the subunit surface near the active site serine and at the interface between a third dyad-related pair of subunits of the tetramer.  相似文献   

15.
Outer membrane phospholipase A (OMPLA) is a widely conserved transmembrane enzyme found in Gram-negative bacteria, and it is implicated in the virulence of a number of pathogenic organisms. The regulation of the protein's phospholipase activity is not well understood despite the existence of a number of high resolution structures. Previous biochemical studies have demonstrated that dimerization of OMPLA is a prerequisite for its phospholipase activity, and it has been shown in vitro that this dimerization is dependent on calcium and substrate binding. Therefore, to fully understand the regulation of OMPLA, it is necessary to understand the stability of the protein dimer and the extent to which it is influenced by its effector molecules. We have used sedimentation equilibrium analytical ultracentrifugation to dissect the energetics of Escherichia coli OMPLA dimerization in detergent micelles. We find that calcium contributes relatively little stability to the dimer, while interactions with the substrate acyl chain are the predominant force in stabilizing the dimeric conformation of the enzyme. The resulting thermodynamic cycle suggests that interactions between effector molecules are additive. These energetic measurements not only provide insight into the activation of OMPLA, but they also represent the first quantitative investigation of the association energetics of a transmembrane beta-barrel. This thermodynamic study allows us to begin to address the differences between protein-protein interfaces in transmembrane proteins with a helical fold to those of a beta-barrel fold and to more fully understand the forces involved in membrane protein interactions.  相似文献   

16.
Outer-membrane phospholipase A (OMPLA) is one of the few enzymes present in the outer membrane of Gram-negative bacteria. The enzymatic activity of OMPLA is strictly regulated to prevent uncontrolled breakdown of the surrounding phospholipids. The activity of OMPLA can be induced by membrane perturbation and concurs with dimerization of the enzyme. The recently elucidated crystal structures of the inactive, monomeric and an inhibited dimeric form of the enzyme provide detailed structural insight into the functional properties of the enzyme. OMPLA is a serine hydrolase with a unique Asn-156-His-142-Ser-144 catalytic triad. Only in the dimeric state, complete substrate binding pockets and functional oxyanion holes are formed. A model is proposed for the activation of OMPLA in which membrane perturbation causes the formation of non-bilayer structures, resulting in the presentation of phospholipids to the active site of OMPLA and leading to the formation of the active dimeric species. Possible roles for OMPLA in maintaining the cell envelope integrity and in pathogenicity are discussed.  相似文献   

17.
The enzyme prephenate dehydratase (PDT) converts prephenate to phenylpyruvate in L-phenylalanine biosynthesis. PDT is allosterically regulated by L-Phe and other amino acids. We report the first crystal structures of PDT from Staphylococcus aureus in a relaxed (R) state and PDT from Chlorobium tepidum in a tense (T) state. The two enzymes show low sequence identity (27.3%) but the same prototypic architecture and domain organization. Both enzymes are tetramers (dimer of dimers) in crystal and solution while a PDT dimer can be regarded as a basic catalytic unit. The N-terminal PDT domain consists of two similar subdomains with a cleft in between, which hosts the highly conserved active site. In one PDT dimer two clefts are aligned to form an extended active site across the dimer interface. Similarly at the interface two ACT regulatory domains create two highly conserved pockets. Upon binding of the L-Phe inside the pockets, PDT transits from an open to a closed conformation.  相似文献   

18.
Phospholipase A of the bacterial outer membrane (OMPLA) is a β-barrel membrane protein which is activated under various stress conditions. The current study examines interaction of inhibitors of eucaryotic phospholipases A2—palmitoyl trifluoromethyl ketone (PACOCF3) and aristolochic acid (AA)—with OMPLA and considers a possible involvement of the enzyme in the Ca2+-dependent permeabilization of the outer membrane of Escherichia coli. Using the method of molecular docking, it has been predicted that PACOCF3 and AA bind to OMPLA at the same site and with the same affinity as the OMPLA inhibitors, hexadecanesulfonylfluoride and bromophenacyl bromide, and the substrate of the enzyme palmitoyl oleoyl phosphatidylethanolamine. It has also been shown that PACOCF3, AA, and bromophenacyl bromide inhibit the Ca2+-induced temperature-dependent changes in the permeability of the bacterial membrane for the fluorescent probe propidium iodide and suppressed the transformation of E. coli cells with plasmid DNA induced by Ca2+ and heat shock. The cell viability was not affected by the eucaryotic phospholipases A2 inhibitors. The study discusses a possible involvement of OMPLA in the mechanisms of bacterial transmembrane transport based on the permeabilization of the bacterial outer membrane.  相似文献   

19.
1. Five increasingly anionic variants (Pa1-Pa5) of Ca2+-dependent phospholipase A2 were purified to homogeneity from the venom of the lizard Heloderma suspectum (Gila monster). The purification procedure was based on semi-preparative reverse-phase HPLC followed by anion-exchange HPLC and analytical reverse-phase HPLC. 2. Their Mr were 17,000-18,000, as deduced by SDS/PAGE. Specific activities tested by the capacity to hydrolyze phosphatidylcholines at pH 8.5 decreased as follows: Pa3 greater than Pa5 greater than Pa4 greater than Pa1 greater than Pa2. These activities showed the same optimum pH (9.0), were mainly of the phospholipase A2 type and were lost upon p-bromophenacyl bromide treatment. 3. All five phospholipases efficiently stimulated amylase release from dispersed rat pancreatic acini at pH 7.4, their potency decreasing as follows: Pa2 greater than Pa1 approximately equal to Pa4 greater than Pa3 approximately equal to Pa5. No deleterious effect was apparent based on the lack of lactate dehydrogenase release. 4. The five variants, Pa1-Pa5, differed significantly in amino acid composition and this, together with distinct antigenic properties of Pa2 and Pa5, establishes the subheterogeneity of this new type of phospholipase A2, despite the fact that the N-terminal amino acid sequence (31 residues) of Pa1-Pa5 was exactly the same. 5. The full sequence of the major variant, Pa5, showed that this 142-amino-acid protein exhibited greater similarity to the bee venom enzyme than to any class I or class II secretory phospholipase A2 from snake venom and mammalian pancreas. While Pa5 displayed the highly conserved region between Asp30 and Cys39 (the essential active site of all phospholipases A2), its salient original points included 10 half-cystine residues only, an incomplete N-terminal sequence, large changes in the putative calcium loop, several alterations after the active site and a C-terminal extension never seen in other phospholipases A2, with the only exception being bee venom.  相似文献   

20.
The solution structure and dynamics of the Bacillus subtilis HPr-like protein, Crh, have been investigated using NMR spectroscopy. Crh exhibits high sequence identity (45 %) to the histidine-containing protein (HPr), a phospho-carrier protein of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system, but contains no catalytic His15, the site of PEP-dependent phosphorylation in HPr. Crh also forms a mixture of monomers and dimers in solution whereas HPr is known to be monomeric. Complete backbone and side-chain assignments were obtained for the monomeric form, and 60 % of the dimer backbone resonances; allowing the identification of the Crh dimer interface from chemical-shift mapping. The conformation of Crh was determined to a precision of 0.46(+/-0.06) A for the backbone atoms, and 1.01(+/-0.08) A for the heavy atoms. The monomer structure is similar to that of known HPr 2.67(+/-0.22) A (C(alpha) rmsd), but has a few notable differences, including a change in the orientation of one of the helices (B), and a two-residue shift in beta-sheet pairing of the N-terminal strand with the beta4 strand. This shift results in a shortening of the surface loop present in HPr and consequently provides a flatter surface in the region of dimerisation contact, which may be related to the different oligomeric nature of these two proteins. A binding site of phospho-serine(P-Ser)-Crh with catabolite control protein A (CcpA) is proposed on the basis of highly conserved surface side-chains between Crh and HPr. This binding site is consistent with the model of a dimer-dimer interaction between P-Ser-Crh and CcpA. (15)N relaxation measured in the monomeric form also identified differential local mobility in the helix B which is located in the vicinity of this site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号