首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adaptation of the erythropoetic system to hypoxia was shown to be different in different populations of montaine rodents of the Central Caucasus. One type of adaptation includes the increase in 2,3-diphosphoglycerate content of erythrocytes, the hemoglobin structure remaining apparently unchanged. This pattern was found in two groups of animals -- in one population of the ground squirrel Citellus suslicus whose ancestors were introduced to the mountains some 25 years ago, and in the wood mouse Apodemus sylvaticus which is a usual inhabitant of highland, although it does not form there any isolated populations. The other type of adaptation was found in the ground squirrel Citellus pygmaeus musicus, which is native to high altitude. The content of 2,3-diphosphoglycerate in the erythrocytes in this animal is the same as in the sea-level subspecies C. p. planicola, whereas the electrophoretic picture of hemoglobin in these two subspecies was found to be different.  相似文献   

2.
To determine whether metabolic rate is suppressed in a temperature-independent fashion in the golden-mantled ground squirrel during steady state hibernation, we measured body temperature and metabolic rate in ground squirrels during hibernation at different T(a)'s. In addition, we attempted to determine whether heart rate, ventilation rate, and breathing patterns changed as a function of body temperature or metabolic rate. We found that metabolic rate changed with T(a) as it was raised from 5 degrees to 14 degrees C, which supports the theory that different species sustain falls in metabolic rate during hibernation in different ways. Heart rate and breathing pattern also changed with changing T(a), while breathing frequency did not. That the total breathing frequency did not correlate closely with oxygen consumption or body temperature, while the breathing pattern did, raises important questions regarding the mechanisms controlling ventilation during hibernation.  相似文献   

3.
We examined hematological parameters in four related sciurid species in the late summer-autumn to assess the role of habitat, elevation, body size, and behavior in shaping these parameters. Red squirrels (Tamiasciurus hudsonicus) and Arctic ground squirrels (Spermophilus parryii) were sampled in southwestern Yukon, yellow-pine chipmunks (Tamias amoenus) in southern Alberta, and the eastern grey squirrel (Sciurus carolinensis) in southern Ontario. We obtained whole blood samples from each species and compared glucose levels, red blood cell characteristics (hematocrit, red blood cell count, hemoglobin concentration, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration), and white blood cell counts (neutrophils, lymphocytes, monocytes, eosinophils, basophils) across species. We found species differences in glucose and red blood cell characteristics that may be a function of activity levels, phylogeny, or elevation, but not of body size, body condition, or adaptations to a semi-fossorial habitat. We also found species differences in white blood cell counts that remain unexplained by any single simple explanation and may be more useful for comparison of individuals within a given species than for interspecies comparisons.  相似文献   

4.
Z H Zhao  J S Willis 《Cryobiology》1989,26(2):132-137
Red blood cells of ground squirrel, a hibernator, gain Na at one-third the rate of guinea pig red blood cells when stored in saline medium at 5 degrees C for several days. This result correlates with the known slower loss of K during storage in ground squirrel cells. In ground squirrel cells Na gain is balanced by K loss, so that there is no net gain of solute; in guinea pig cells the total cation content rises progressively. Amiloride, a drug which inhibits Na entry, retards Na uptake in cells of both species. Surprisingly, amiloride also slowed K loss and, in guinea pig red cells, the decline of ATP content. In guinea pig cells amiloride reduced the gain of total cation by half. The results substantiate the difference in cold sensitivity of ion regulation of red blood cells of these two species and demonstrate the possible usefulness of amiloride-type drugs in nonfreezing preservation of red blood cells.  相似文献   

5.
Hibernating mammals rely heavily on lipid metabolism to supply energy during hibernation. We wondered if the fatty acid binding protein from a hibernator responded to temperature differently than that from a nonhibernator. We found that the Kd for oleate of the liver fatty acid binding protein (1.5 microM) isolated from ground squirrel (Spermophilus richardsonii) was temperature insensitive over 5-37 degrees C, while the rat liver fatty acid binding protein was affected with the Kd at 37 degrees C being about half (0.8 microM) that found at lower temperatures. This same trend was observed when comparing the specificity of various fatty acids of differing chain length and degree of unsaturation for the two proteins at 5 and 37 degrees C. At the lower temperature, ground squirrel protein bound long-chain unsaturated fatty acids, particularly linoleate and linolenate, at least as well as at the higher temperature and matched requirements for these fatty acids in the diet. The most common long-chain fatty acid, palmitate, was a more effective ligand for ground squirrel liver fatty acid binding protein at 5 degrees C than at 37 degrees C, with the opposite occurring in the eutherm. Rat protein was clearly not adapted to function optimally at temperatures lower than the animal's body temperature.  相似文献   

6.
Twelve percent of 853 California ground squirrels (Spermophilus beecheyi) from six different geographic locations in Kern County, Calif., were found to be shedding on average 44,482 oocysts g of feces(-1). The mean annual environmental loading rate of Cryptosporidium oocysts was 57,882 oocysts squirrel(-1) day(-1), with seasonal patterns of fecal shedding ranging from <10,000 oocysts squirrel(-1) day(-1) in fall, winter, and spring to levels of 2 x 10(5) oocysts squirrel(-1) day(-1) in summer. Juveniles were about twice as likely as adult squirrels to be infected and shed higher concentrations of oocysts than adults did, with particularly high levels of infection and shedding being found among juvenile male squirrels. Based on DNA sequencing of a portion of the 18S small-subunit rRNA gene, there existed three genotypes of Cryptosporidium species in these populations of squirrels (Sbey03a, Sbey03b, and Sbey03c; accession numbers AY462231 to AY462233, respectively). These unique DNA sequences were most closely related (96 to 97% homology) to porcine C. parvum (AF115377) and C. wrairi (AF115378). Inoculating BALB/c neonatal mice with up to 10,000 Sbey03b or Sbey03c fresh oocysts from different infected hosts did not produce detectable levels of infection, suggesting that this common genotype shed by California ground squirrels is not infectious for mice and may constitute a new species of Cryptosporidium.  相似文献   

7.
The content of myoglobin (Mb) in skeletal muscles of Arctic Yakutian ground squirrel (Citellus undulatus Pallas) was measured in the active euthermic summer and prehibernating autumn animals as well as in hibernating and awake animals in winter. The myoglobin content in winter, irrespective of the state of the animal, was found to be about three times higher than in summer. The content of myoglobin in autumn was also two-fold increased compared to summer, suggesting that high myoglobin level is necessary for hibernation. Analysis of biochemical data available suggests that the increase in myoglobin content in winter is probably related to a high oxygen demand of muscles at the first stage of arousal (non-shivering thermogenesis) when rectal temperature rises from 0 to 10-12 degrees C. At this stage, the oxygen-dependent processes in muscles proceed under the conditions when peripheral blood flow is blocked and anaerobic glycolysis is switched off.  相似文献   

8.
Peripheral vascular resistance in the ground squirrel (Spermophilus tridecemlineatus) increases when the animal enters hibernation. The goals of this study were to determine if a change in vascular reactivity contributes to this hemodynamic response, and to compare the effects of temperature on vascular responsiveness in a hibernator (ground squirrel) and a nonhibernating mammal (rat). Helically cut strips of aortae and femoral arteries were mounted in organ chambers (37 degrees C) and isometric contractions were recorded. The arteries were made to contract in response to exogenous norepinephrine (5.9 X 10(-7) M). Cooling the organ chamber (11 degrees C) potentiated contractions to norepinephrine (5-15% increase) in ground squirrel femoral arteries but depressed those (80-100% decrease) in ground squirrel aortae and rat aortae and femoral arteries. Contractions in response to depolarizing concentrations of potassium in ground squirrel femoral arteries were depressed by cooling (11 degrees C), suggesting that the augmented response to norepinephrine at low temperature is specific. Treatment with indomethacin, propanolol, and ouabain did not alter the potentiating effect of temperature on contractions to norepinephrine in ground squirrel femoral arteries. Apparently, the potentiation is not related to prostaglandins generated in the vascular wall, to blockade of beta-adrenergic receptors, nor to inhibition of the electrogenic sodium pump. The observations are consistent with the hypothesis that a change in vascular responsiveness contributes to the regional control of blood flow in hibernation. This adaptive response is specific in that it does not occur in the aorta of the ground squirrel and the response is not present in the vasculature of the rat, a nonhibernating mammal.  相似文献   

9.
A “trigger” substance was again indicated to be present in sera of hibernating animals. Sera from the hibernating 13-lined ground squirrel, hibernating woodchuck, hibernating Arctic ground squirrel, and hibernating Arctic marmot were all capable of inducing the 13-lined ground squirrel to hibernate in the summer, a season when that species would normally be active. The hibernation trigger is thus not species specific. It is effective whether drawn from these two Arctic species of hibernators or drawn from these two species of hibernators from the midwestern states. The normothermic Arctic marmot appears to have an “anti-trigger” substance in its serum in the summer, which impedes fall hibernation in the transfused 13-lined ground squirrel. This is similar to the anti-trigger observed in the summer serum of active 13-lined ground squirrels and active woodchucks. With respect to hypothermia, it was induced in Artic marmots and in Arctic foxes at Point Barrow, Alaska, in summer. Though in such cases body temperatures fell significantly (as in hibernation), no trigger was recovered from their hypothermic sera that could be shown to be capable of inducing summer hibernation in the ground squirrel. Neither was anti-trigger found in the serum of hypothermic experimentals. These latter experiments thus suggest that the release of trigger into the blood during hibernation is dependent on a mechanism more complex than simply lowering body temperature.  相似文献   

10.
The relationships between the parameters of oxygen content in the body (hemoglobin saturation with oxygen and trancutaneous oxygen tension), central hemodynamics (cardiac output), and cerebral hemodynamics (cerebral blood flow rate) were studied during a hypoxic test (inhalation of an oxygen–nitrogen mixture containing 8% oxygen for 15 min). Special attention was paid to the relationships between the dynamics of cerebral blood flow and cerebral bioelectric activity measured by EEG parameters. It was demonstrated that the trancutaneous oxygen tension decreased to a greater extent than the hemoglobin saturation with oxygen and the cerebral blood flow increased to a greater extent than the cardiac output. The increase in cerebral blood flow and the increase in the indices and power of and EEG waves in the course of hypoxia were strongly positively correlated with each other in most subjects. However, if these parameters were considered in the series of subjects, the degree of the increase in the indices and power of and waves in different subjects was negatively correlated with the increase in the cerebral blood flow. The results are explained in terms of redistribution of blood flow in the body to provide a better oxygen supply to the brain and optimization of the ratios between the cerebral oxygen consumption and the functional load on the system of oxygen supply.  相似文献   

11.
In hibernation season during torpor bouts, the spleen weight and the hemoglobin level, as well as the total and extracted protein contents in the spleen of the ground squirrel Spermophilus undulatus are increased when animals enter torpor and reach maximum values when the body temperature drops below 25°C. All these parameters return to the characteristic values of the euthermic animals during arousal, before the body temperature increases to 20°C. There were no significant differences in the numbers of splenocytes between ground squirrels in interbout euthermia and torpor. The minimum number of splenocytes was observed in animals that entered torpor when the core body temperature was approximately 18°C. The activity of ornithine decarboxylase, a key enzyme in polyamine synthesis, which is correlated with the functional and proliferative status of lymphoid tissue, was the same for the euthermic and summer ground squirrels and decreased monotonically during torpor. Upon arousal of the animals when body temperature was below 29°C, no resumption of the spleen ornithine decarboxylase activity was observed.  相似文献   

12.
The fine structure of the capillaries of the pineal glands of the rat, mouse, chinchilla, and ground squirrel were investigated. The pineal endothelial cells in the rat, mouse and ground squirrel were often composed of attenuated cytoplasmic portions which contained numerous fenestrations, in contrast to pineal capillaries in the chinchilla which were lined by thick non-fenestrated endothelial cells. Marked morphological differences were also apparent in terms of the types of vesicles within the cytoplasm and abutting on the cell surface of pineal endothelial cells from the various species investigated. The interendothelial junctions exhibited remarkable species differences with the chinchilla pineal possessing typical tight endothelial junctions while those in the rat, mouse and ground squirrel lacked such endothelial cell associations. Generally, capillary lining cells in the chinchilla pineal resembled similar cells within the brain, while endothelial cells in pineal glands of rat, mouse and ground squirrel were more typical of those found in other endocrine organs. Species differences in the structure of the pineal capillaries may represent physiological differences as well.  相似文献   

13.
The effects of three physical-chemical factors, temperature, hydrogen ion concentration, and partial pressure of oxygen, on the respiratory functions of blood of the toad (Bufo marinus) have been studied. Measurements of oxygen affinity of hemoglobin in whole blood were measured tonometrically by a method devised for small quantities of blood. At pH 7.40 and 25°C blood was found to be 50% saturated with oxygen at a partial pressure of 44 mm Hg of oxygen. The Bohr effect was measured at various temperatures and found to be about one-half that found for mammalian blood. Carbon dioxide content of toad blood changes only slightly in the oxygenated and reduced states. Thus the “Haldane” effect parallels the small Bohr effect. Toad blood was found to have average hematocrit values of 37% for erythrocytes and average hemoglobin values of 11 gm/100 ml per cubic millimeter of blood. The respiratory functions of the blood of the toad conform to the pattern of respiratory mechanisms available for gas exchange between the environment and tissues of the organism.  相似文献   

14.
The Idaho ground squirrel, which consists of a northern (Spermophilus brunneus brunneus) and a southern subspecies (S. b. endemicus), has suffered from habitat loss and fragmentation, resulting in a reduction in both numbers and geographic range of the species. The northern Idaho ground squirrel (NIDGS) is listed as a threatened subspecies under the Endangered Species Act, and the southern Idaho ground squirrel (SIDGS) is a candidate. Because Idaho ground squirrel populations are small and often isolated, they are susceptible to inbreeding and loss of genetic diversity through drift. This research evaluates levels of genetic diversity and patterns of population divergence in both subspecies of Idaho ground squirrels. We hypothesized that NIDGS would exhibit lower genetic diversity and greater population divergence due to a longer period of population isolation relative to most SIDGS populations. Genetic diversity and divergence were quantified using 8 microsatellite loci. Contrary to expectations, SIDGS populations exhibited consistently lower levels of microsatellite diversity. Additionally, NIDGS exhibited only modest divergence among populations, while divergence levels among SIDGS populations were highly varied. Preliminary evaluations of mitochondrial DNA diversity and structure revealed lower diversity in NIDGS and some differences in gene flow that warrant further study. Based on our results, we suggest different management strategies for the two subspecies. Habitat restoration appears to be the most desirable conservation strategy for NIDGS populations. In contrast, low genetic diversity observed in SIDGS may warrant supplementation of isolated populations through translocations or captive breeding to mitigate further loss of genetic variability.  相似文献   

15.
Effect of hypothermia on the fatty acid composition of rat and ground squirrel blood phospholipids is studied. Different reaction of these animals to cooling is revealed; in rats no changes were observed in the fatty acid composition of blood phospholipids, whereas in the winterhibernating ground squirrels there were significant changes in the content of individual fatty acids (FA). The content of monoenic acids in ground squirrels decreased almost by 50%, while the content of saturated acid (C18) and of polyenic acids C18: 2ω6 and C20: 4ω6 rose significantly. Such changes seem to be the mechanism that promotes maintenance of the organism viability under conditions of a decreased level of metabolism, heart rhythm, and body temperature and is evolutionary acquired. At the same time, the observed changes in the content of individual FA do not lead to sharp changes in such integrative parameters as the total non-saturation of phospholipids, which determines liquid properties of chylomicrons and other lipolipoprotein transport particles of the ground squirrel blood. There are studied absorption spectra of blood lipid extracts of rats and ground squirrels under effect of light as well as effect of light upon the FA composition of lipid extracts of these animals. The FA composition of lipid extracts has been established to remain practically constant, whereas the character of changes of spectra under action of light indicates the presence in the extracts of oxidation-reduction reactions. The obtained data allow suggesting that in the lipid extract there occurs cooperation of both the phospholipids molecules themselves and of them with other organic molecules, which makes it possible for fatty acids to participate in processes of transport both of electrons and of protons. This novel role of FA as a participant of the electron transfer might probably be extrapolated to chemical reactions (processes) occurring inside the membrane.  相似文献   

16.
1. Characterization of fetal, winter-hibernating, winter-active, summer-active and summer-induced hibernating hemoglobins of 13-lined ground squirrels (Citellus tridecemlineatus) by isoelectric focusing (IEF) pH 7.0-9.0 indicated that this molecule is extremely responsive to the various activity states of this hibernator. 2. Major alterations of ground squirrel hemoglobin occur with the varying activity states as evidenced by the distinctive changes in the isoelectric points (pIs) of these protein components. 3. Hemoglobin from winter-hibernating or summer-induced hibernating ground squirrels does not revert to a fetal type of hemoglobin. 4. The presence of an additional hemoglobin peak pI 6.55 in the summer-induced hibernator may serve as a possible assay for hibernation inducing trigger(s) (HIT) molecules under study in our laboratory.  相似文献   

17.
Hibernating mammals have developed many physiological adaptations to extreme environments. During hibernation, 13-lined ground squirrels (Ictidomys tridecemlineatus) must suppress hemostasis to survive prolonged body temperatures of 4-8°C and 3-5 heartbeats per minute without forming lethal clots. Upon arousal in the spring, these ground squirrels must be able to quickly restore normal clotting activity to avoid bleeding. Here we show that ground squirrel platelets stored in vivo at 4-8°C were released back into the blood within 2 h of arousal in the spring with a body temperature of 37°C but were not rapidly cleared from circulation. These released platelets were capable of forming stable clots and remained in circulation for at least 2 days before newly synthesized platelets were detected. Transfusion of autologous platelets stored at 4°C or 37°C showed the same clearance rates in ground squirrels, whereas rat platelets stored in the cold had a 140-fold increase in clearance rate. Our results demonstrate that ground squirrel platelets appear to be resistant to the platelet cold storage lesions observed in other mammals, allowing prolonged storage in cold stasis and preventing rapid clearance upon spring arousal. Elucidating these adaptations could lead to the development of methods to store human platelets in the cold, extending their shelf life.  相似文献   

18.
Summary Laboratory respiration rate experiments using three electrophoretically identified clones of the fresh water, planktonic cladoceran, Daphnia pulex, from an eutrophic farm pond, indicated that clones acclimated to both low and high oxygen levels, regulated oxygen consumption across a wide range of oxygen concentrations (1.0–9.0 mg· liter-1). A threshold oxygen level of 0.5–1.0 mg·liter-1 was reached, where animals succumbed to oxygen stress, regardless of hemoglobin content. No significant clonal differences in respiration rates were found. These data suggest that members of this Daphnia population are able to regulate oxygen metabolism across a wide range of ambient oxygen concentrations, and indicate a well-adapted respiratory system.Low-oxygen tolerance experiments and hemoglobin measurements indicated further that physiological differences indeed exist between clones; one clone produced the lowest amount of hemoglobin and was least tolerant of low oxygen levels. These data imply that spatial and temporal changes in dissolved oxygen concentration may be an important selective force influencing the clonal (genotypic) composition of natural cladoceran populations.  相似文献   

19.
We investigated the temperature dependence of some physiological parameters of common eelpout (Zoarces viviparus) from different locations (North Sea, Baltic Sea and Norwegian Sea) on acclimation temperature (3 degrees C and 12 degrees C) and acute temperature variation. The lethal limit of 12 degrees C-acclimated eelpout was determined as the critical thermal maximum [loss of equilibrium (LE) and onset of muscular spasms (OS)] and it was found to be 26.6 degrees C for LE and 28.8 degrees C for OS for all populations. However, these parameters do not have any relevant ecological interpretation. We therefore investigated the effect of gradually increased water temperature on standard metabolic rate (measured as resting oxygen consumption Mo2) and critical oxygen concentration ([O2]c) of eelpouts. Acclimation to low temperature (3 degrees C) resulted in partial compensation of Mo2, paralleled by a decrease of activation energy for Mo2 (from 82 kJ mol(-1) at 12 degrees C to about 50 kJ mol(-1) at 3 degrees C) in North Sea and Baltic Sea eelpouts. At the same time, Norwegian eelpout showed no acclimation of oxygen demand to warm temperature (12 degrees C) at all. The scope for eelpout aerobic metabolism shrank considerably with increased acclimation temperature, as [O2]c approached water oxygen concentrations. At 22.5+/-1 degrees C the [O2]c reached air saturation, which is equivalent to the upper critical temperature (TcII) and at this temperature the aerobic scope for the metabolism completely disappeared. In line with previous insight, the comparative analysis of the temperature dependence of Mo2 of Z. viviparus from different populations suggests that a pejus (sub-critical) temperature for this species is about 13-15 degrees C. In conclusion, the capacity to adjust aerobic metabolism relates to thermal tolerance and the bio-geographical distribution of the species. Global warming would thus be likely to cause a shift in the distribution of this species to the North.  相似文献   

20.
Global warming is a threat across the world that leads to estimates of the upper thermal limits of ectothermic species. Increased water temperature up-regulates oxygen consumption and metabolic rates, and alters the physiological processes. In this study, we identified the critical thermal maxima (CTmax) and physiological responses under normoxia and hypoxia in Nile tilapia, Oreochromis niloticus. CTmax was 41.25 °C under hypoxia and 44.50 °C under normoxia. Compared to normoxia, lower values of hemoglobin (Hb) and red blood cells (RBCs) were observed at the CTmax under hypoxia. In contrast, higher values of white blood cells (WBCs) and blood glucose (Glu) levels were observed at the CTmax under hypoxia. Consequently, higher frequencies of micronucleus, cellular and nuclear abnormalities of erythrocytes were observed at the CTmax under hypoxia. These results suggest that high temperature tolerance and subsequent physiology are significantly affected by the oxygen supply in Nile tilapia. As climate vulnerability is intensifying day by day, this data will be helpful in successful management practice for the aquatic environment having low oxygen content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号