首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
超极化激活的环核苷酸门控通道(HCN通道)有四个亚型,分别为HCN1-4。HCN通道各亚型之间的基本结构相似,在许多组织中均有表达,其中以大脑和心脏组织中表达最为丰富。HCN通道既参与所在组织的正常生理功能,也与所在组织的病理状态密切相关。如神经损伤引起的神经源性疼痛常检测到HCN1通道表达量的增加,肥厚性心肌病和终末期心力衰竭等病理状态下常检测到心室肌细胞HCN4 mRNA及HCN2 mRNA表达增加。鉴于HCN通道与许多疾病密切相关,因此,以其为靶点来治疗相关疾病成为可能,但是由于HCN通道分布广泛,而目前该通道阻滞剂均为非选择性亚型抑制剂,临床应用时不可避免的引起副反应,因此发展选择性HCN通道亚型抑制剂就显得刻不容缓。本文就HCN通道抑制剂的研究发展做进一步探讨。  相似文献   

2.
HCN通道(hyperpolarization-activated cyclic nucleotide-gated channels)是一种超极化激活的,钠、钾、钙离子混合通透的,直接受cAMP调控的离子通道,在人体内的分布具有一定的组织和细胞特异性,其不仅与神经系统疾病联系紧密,与胃肠道动力障碍疾病也存在一定联系。对HCN通道生理功能、在胃肠起搏电流形成中作用及与疾病的关系的深入了解,必将对今后的研究以及临床治疗有实际意义。  相似文献   

3.
HCN是超极化激活环核苷酸门控阳离子通道,其激活后产生If/Ih电流,能被ZD7288和Cs+特异性阻断.该通道有4个亚型,具有稳定细胞膜电位、参与心脏和神经节律调节、参与树突整合,以及调节神经递质释放等生理功能.近期实验中发现豚鼠膀胱ICC上存在Ih电流,其功能特点值得进一步研究和探讨.  相似文献   

4.
Yue X  Wang JH  Qin LY 《生理科学进展》2008,39(3):247-250
HCN通道(hyperpolarization-activated cyclic nucleotide-gated channels)是一种超极化激活的,选择性通透K 、Na ,直接受cAMP调控的离子通道,其在神经系统中有多方面的功能并与癫痫等神经疾病有关系.对HCN通道正常生理功能以及与疾病的关系的深入认识,必将对今后的研究和临床有深远的意义.  相似文献   

5.
超极化活化环核苷酸门控(hyperpolarization-activated cyclic-nucleotide-gated,HCN)通道参与调制心脏跳动的节律和速率。与HCN1和HCN2有所不同,慢通道HCN4可能不存在电压依赖的滞后现象。本研究采用单细胞膜片钳方法,在稳定转染hHCN4的HEK293细胞上进行电生理记录,观察hHCN4通道是否存在滞后现象,以及cAMP对其的调制作用;同时采用实时定量RT-PCR方法检测窦房结和心房组织中HCNs的表达。电压钳实验结果显示hHCN4电流(Ih)激活随着保持电位超极化的变化而向去极化方向移动。三角电位变化钳(triangular ramp)和动作电位钳的结果也显示了hHCN4的滞后现象。cAMP增加Ih电流幅度,且使电流激活向去极化方向移动,从而改变内源性hHCN4滞后行为。RT-PCR结果显示,人窦房结组织主要表达HCN4,占75%,HCN1占21%,HCN2占3%,HCN3占0.7%。以上结果提示,人窦房结组织主要表达HCN4亚型,hHCN4的Ih存在电压依赖性的滞后现象,且受cAMP调制。由此推断,hHCN4通道的滞后现象可能在窦房结起搏活动中起到了关键作用。  相似文献   

6.
脊椎动物的超极化激活环核苷酸门控通道(hyperpolarization-activated cyclic nucleotide-gated channels,HCN通道)具有反向电压依赖性,其开放依赖细胞表面的超极化。HCN在机体各组织的分布和数量及开放状态存在差异。HCN通道的开放受到cAMP及其它物质或信号传导通路直接或者间接的调控。HCN及其介导的Ih/If电流可以影响细胞膜静息电位,控制神经元兴奋性、突触电位和突触传递并在调节心律等方面起到重要作用,并且参与了疼痛等生理或病理过程的调控。部分药物可以通过对HCN通道的作用治疗疼痛等相关疾病。本文将从HCN通道的结构、分布、调控、在疼痛及其它相关疾病中起到的作用等方面对近年来HCN通道研究的新发现进行回顾和综述。  相似文献   

7.
超极化激活环核苷酸门控(hyperpolarization-activated cyclic nucleotide-gated,HCN)通道具有重要的生理功能,尤其是在静息膜电位、树突整合、神经元起搏和动作电位阈值的建立等方面作用明显。研究发现,HCN通道的失调可能会引起焦虑,该通道介导焦虑作用的机制可能受脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)/哺乳动物雷帕霉素靶点(mammalian target of rapamycin,mTOR)、谷氨酸(glutamate,Glu)、γ-氨基丁酸(γ-aminobutyric acid,GABA)、单胺类神经递质、突触可塑性等的调节。现就HCN通道的结构、分布、调节及介导焦虑作用可能的机制进行综述,以期为焦虑症的预防和治疗提供药物治疗靶点。  相似文献   

8.
目的:建立爪蟾卵母细胞表达的HCN通道的细胞模型,研究其生物学特性,并为药物评价建立细胞模型。方法:将HCN1及HCN2的互补DNA(c DNA)体外转录为互补RNA(c RNA)后,分别注射至去除滤泡膜的非洲爪蟾卵母细胞中,表达1~3 d后采用双电极电压钳技术记录其电流。结果:在爪蟾卵母细胞表达的HCN1及HCN2通道的同聚体细胞模型上,记录到了超极化激活的内向阳离子电流,此电流被称为Ih电流,可被HCN通道特异性阻断剂Cs Cl所阻断;在1 mmol/L的Cs Cl作用下,HCN通道产生的电流幅度显著减小,在-140 m V水平,HCN1电流幅度减少率为83.4%±9.5%(n=5,P0.001),HCN2产生的电流幅度减少率为99.7%±0.6%(n=4,P0.001)。结论:建立了表达HCN1及HCN2通道的爪蟾卵母细胞模型,为研究HCN通道生物学特点以及药物评价奠定了基础。  相似文献   

9.
阿诺碱受体(RyR)是心肌细胞等可兴奋细胞中重要的Ca2+释放受体,在维持细胞的兴奋性和生理功能方面起重要作用.研究发现,RyR存在3个亚型,每个亚型都是由4个单体组成的四聚体,后者构成Ca2+释放通道.RyR的结构中有调控因子的结合位点,一些内源性调控因子可影响RyR的构型和Ca2+释放.结合作者的研究,就RyR的结构功能、RyR2的一些重要内源性调控因子及其调控机制做一简要综述.  相似文献   

10.
本文旨在研究超极化激活环核苷酸门控通道亚型2(hyperpolarization-activated cyclic nucleotide-gated channels subtype2,HCN2)在触液核的分布及其在神经病理性疼痛条件下的表达变化,以期为揭示触液核的生物学功能及神经病理性疼痛的调控机制提供实验依据。以Sprague-Dawley(SD)大鼠为实验动物,用坐骨神经慢性压迫损伤(chronic constriction injury,CCI)法制作神经病理性疼痛模型,用侧脑室注射辣根过氧化物酶标记的霍乱毒素B亚单位复合物(CB-HRP)特异性标记触液核神经元,用热缩足潜伏期及机械缩足阈值作为定量指标研究痛行为,用免疫荧光法及Western blot检测触液核HCN2通道蛋白及c-Fos蛋白的表达量。结果显示,与正常大鼠相比,接受侧脑室CB-HRP注射的大鼠痛阈及触液核HCN2、c-Fos表达均无明显变化;而CCI术后第7、14天,神经病理性疼痛模型大鼠痛阈显著下降,且触液核神经元的HCN2通道蛋白及c-Fos蛋白的表达显著增加。使用HCN2阻断剂ZD7288后,CCI致痛大鼠痛阈显著提高,触液核神经元HCN2通道蛋白及c-Fos蛋白的表达较相应时间点模型组显著降低,以术后第7、14天为明显。以上结果提示,触液核可能参与了神经病理性疼痛的调制,且通过HCN2通道发挥重要作用。  相似文献   

11.
TRP通道是一类在神经系统分布广泛的阳离子通道,参与了生物体内许多重要的生理功能,包括感觉信息传递、调节胞内Ca2+平衡及发育过程等。近年来的研究发现,TRP通道不仅以同源四聚体形式行使功能,还可以组装成异源四聚体。不同亚基所形成的异源通道具有不同的生物物理学功能和药理学特性,因此TRP通道的组装机理和异源组装通道的功能研究成为该领域的热点而日益得到关注。文章对TRP通道家族中选择性异源组装及组装的分子基础研究的最新现状进行了概述。  相似文献   

12.
Jia LY  Ji YH 《生理科学进展》1999,30(2):107-107
依靠现代分子生物学技术及电生理的记录,探讨各种Na^+通道亚型在中枢与周边神经系统以及一些非兴奋性组织细胞中的分布,表达,突变及其对信息调控的功能特征,已成为当今神经生物学等学科发展中的一个研究新热点,本文将侧重对有关哺乳动物Na^+通道亚型的分类,在不同组织细胞中的分布及其表达调控的功能机制等一些研究进展做一简要的回眸。  相似文献   

13.
目的:运用膜片钳全细胞技术和实时定量聚合酶链式反应(PCR),探讨幼鼠和成年大鼠心室肌细胞起搏电流(If)及超极化激活的环核苷酸门控通道(HCN)亚型的改变。方法:分离3d的幼鼠和成年大鼠的心室肌细胞;测定HCN1、HCN2、HCN3和HCN4 mRNA的表达;记录If并研究其特性。结果:在新生大鼠心室肌细胞记录到If并得到电流密度-电压曲线,其激活电压约为-75mV;实时定量PCR检测HCN1、HCN2、HCN3和HCN4 mRNA在总HCN mRNA的表达中所占比例分别为0.23%±0.01%、83.58%±0.04%、0.79%±0.01%和15.44%±0.01%。在成年大鼠心室肌细胞也记录到超极化激活、并可以被4mmol/LCsCl阻断的If,其激活电压约为-115mV;HCN1、HCN2、HCN3和HCN4 mRNA在总HCN mRNA中所占比例分别为0.72%±0.02%、91.58%±0.08%、0.27%±0.02%和7.12%±0.02%。HCN2∶HCN4为(13.06±0.21)∶1。结论:随着年龄的增长,大鼠心室肌细胞HCN2所占比例增加;If值减小,激活电压变负。  相似文献   

14.
电压-门控Na+通道由1个可单独发挥作用的α亚单位和2~4个起辅助作用的β亚单位构成,在可兴奋细胞动作电位的产生及传导等过程中起重要作用.采用RT-PCR法对5个不同发育阶段(P1、P9、P40、P80、P120)Wistar大鼠16种不同组织的9种Na+通道α亚单位及1种β亚单位的mRNA进行检测发现:同种类型Na+通道mRNA在大鼠不同组织中的表达不同,不同类型Na+通道mRNA在大鼠同一组织中的表达不同.其中,神经系统和心肌组织中Na+通道mRNA的表达最高,随着日龄的增加,Na+通道mRNA在不同组织中表达的变化趋势不同.Na+通道在全身组织中的广泛分布及随发育周期的不同变化趋势,为离子通道病的研究及治疗提供了理论基础.  相似文献   

15.
疼痛长期困扰人类健康,其发病机制纷繁复杂,究竟谁在其中扮演了重要的作用是目前亟待解决的重大问题。随着对疼痛研究的不断深入,超极化激活的环核苷酸门控通道逐渐引起广泛关注。在炎性痛和神经病理性痛过程中,它都扮演了至关重要的作用,其数目改变和开放频率增加都参与介导了疼痛部位的异常放电,成为诱发疼痛的开关。在给与阻断剂或敲除通道2亚型后,能明显缓解炎性痛和神经病理性痛的不良反应,成为可以缓解疼痛发生的新靶点。超极化激活的环核苷酸门控通道在机体分布广泛,参与多种重要生理功能的调节,但目前还没有针对该门控通道某种亚型的特异性阻断剂。在今后,也许超极化激活的环核苷酸门控通道会成为临床治疗疼痛的新靶点,该通道的特异性药物也将为广大患者带来新的福音。  相似文献   

16.
前列腺素E2(prostaglandin E2,PGE2)是由花生四烯酸经环氧合酶途径代谢生成的前列腺素之一,PGE2通过其4种受体亚型(EP1、EP2、EP3和EP4)介导产生多种生理功能,同时是缺血性脑损伤中的重要炎症介质.而在缺血性脑卒中发病机制中,PGE2激活不同受体亚型而发挥不同的作用.本文将从受体作用特点的...  相似文献   

17.
微管是真核细胞构成细胞骨架的主要成分,由α/β微管蛋白组装而成。微管在细胞多种活动中发挥着重要的作用,其功能主要受微管结合蛋白、微管蛋白的翻译后修饰以及微管蛋白亚型的调控。已有研究发现,α/β微管蛋白存在多种亚型,微管蛋白亚型在不同组织以及发育过程中的表达模式差异较大。多种微管蛋白亚型基因的突变可以引起神经系统疾病。该文综述了微管蛋白亚型的研究进展,尤其在微管功能调控、神经系统发育及其相关疾病中的作用。  相似文献   

18.
Wu ZY  Zou N  Shen Y 《生理科学进展》2011,42(4):256-260
谷氨酸和γ-氨基丁酸受体主要分布在中枢神经系统,在神经信号转导中发挥着重要作用.近年来在胰岛中也发现了这类受体,且胰岛中几乎含有这些受体的所有亚型.本文详细描述了胰岛中这些受体的各亚型,并着重讨论了它们的生理功能和相互作用关系,以及研究它们在胰岛中的生理功能的新技术方法.这些问题的探讨不但为研究胰岛功能机制提供了新思路,也将有助于从新的视角理解神经科学问题.  相似文献   

19.
钾离子通道是数量最大最复杂的离子通道家族,迄今为止在人类基因组中共克隆出了70余种钾离子通道亚型,其中双孔钾离子通道是近年来新发现的一类钾离子通道亚家族,它们具有4个跨膜片段,形成独特的2个孔道结构域,主要介导背景钾电流。研究发现双孔钾通道TREK-1与人体神经系统、心血管系统、肺部、妇科等多系统疾病密切相关,且在不同组织器官功能不尽相同,本文就TREK-1与人体多系统疾病相关性及其作用机制做一综述。  相似文献   

20.
脑缺血是由于动脉阻塞或灌注不足导致大脑局部血流减少无法满足代谢需求产生的功能障碍。脑水肿是脑组织间或细胞内液体过度积聚的病理现象,是脑缺血后较为严重的并发症,将会导致颅内压升高,脑组织受压而神经功能受损,甚至死亡。水通道蛋白(aquaporin)是一类分布在细胞膜上的蛋白质家族,目前已发现有13种亚型,主要调节细胞内外水平衡且参与细胞迁移和信号传导等多个生理病理过程。水通道蛋白4(aquaporin-4,AQP4)主要分布在中枢神经系统中星形胶质细胞的终足上,在细胞毒性水肿和血管源性水肿的形成和消除中起双重作用,与脑缺血后脑水肿有密切关系。机体通过转录过程及翻译后修饰等多个水平调节AQP4的表达协调其功能。本文回顾了目前AQP4在脑缺血后作用的最新进展,力图为治疗脑卒中后脑水肿提供新的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号