首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Exp. I infusions of prolactin (0.5 mg in 2 ml sterile saline) were repeated every 2 h for 36 h on Days 12-13 of the cycle. In Exp. II infusions of prolactin were administered from Days 17 to 19 (60 h) at 2-h intervals. Control gilts were given 2 ml sterile saline at similar intervals during the same period. Basal prolactin concentrations before initiation of infusions ranged from 1.3 +/- 0.1 to 5.6 +/- 2.2 ng/ml in both experiments. By 5 min after a prolactin infusion, mean plasma prolactin concentration ranged from 74.9 +/- 5.8 to 113.0 +/- 9.5 ng/ml, but then declined to approximately equal to 10 ng/ml just before the next infusion of prolactin. Administration of prolactin during the luteal phase of the oestrous cycle of the gilts had no effect on basal levels of progesterone, oestradiol or LH. During the follicular phase there were no differences (P greater than 0.05) between control and prolactin-treated gilt progesterone and LH concentrations, but oestradiol plasma values were decreased (P less than 0.05) on the 2nd and 3rd day of prolactin treatment. Our results would indicate that prolactin does not play a major role in the regulation of the oestrous cycle of the pig.  相似文献   

2.
Neuropharmacological studies suggest a common inhibitory role for the hypothalamic dopaminergic pathway on gonadotropin and prolactin pituitary release, in humans. As a consequence, it has been hypothesized that the inhibition of hypothalamic tyrosine-hydroxylase and the subsequent fall in dopamine synthesis is involved in the positive feedback of progesterone on LH and PRL pituitary release in estrogen-primed hypogonadal women. The aim of our study was to verify whether an inhibition of tyrosine-hydroxylase may really account for the progesterone action on gonadotropin and prolactin secretion. For this purpose, we compared the effect of a specific tyrosine-hydroxylase inhibitor (alpha-methyl-p-tyrosine, AMPT) with the effect of progesterone on gonadotropin and prolactin release in estrogen-primed postmenopausal women. Progesterone induced a marked release of LH (delta: 129.7 +/- 16.5 mlU/ml, mean +/- SE) and a slight increase in FSH (delta: 39.4 +/- 11.6 mlU/ml) and PRL (delta: 15.3 +/- 2.8 ng/ml) serum levels. Acute or two-day administration of AMPT was followed by a marked rise in PRL serum levels (delta: 82.9 +/- 13.8 and 88.3 +/- 8.2 ng/ml, respectively) while there were no significant increases in serum LH (delta: 5.4 +/- 2.6 and 3.3 +/- 4.6 mlU/ml) and FSH (delta: 3.4 +/- 0.9 and -0.4 +/- 2.9) concentrations. The ineffectiveness of a specific tyrosine-hydroxylase inhibitor in simulating the progesterone effect on gonadotropin secretion seems to negate the hypothesis that a reduction in hypothalamic dopaminergic activity mediates the positive feedback of progesterone on gonadotropin release.  相似文献   

3.
Pituitary and ovarian responses to subcutaneous infusion of GnRH were investigated in acyclic, lactating Mule ewes during the breeding season. Thirty postpartum ewes were split into 3 equal groups; Group G received GnRH (250 ng/h) for 96 h; Group P + G was primed with progestagen for 10 d then received GnRH (250 ng/h) for 96 h; and Group P received progestagen priming and saline vehicle only. The infusions were delivered via osmotic minipumps inserted 26.6 +/- 0.45 d post partum (Day 0 of the study). Blood samples were collected for LH analysis every 15 min from 12 h before until 8 h after minipump insertion, then every 2 h for a further 112 h. Daily blood samples were collected for progesterone analysis on Days 1 to 10 following minipump insertion, then every third day for a further 25 d. In addition, the reproductive tract was examined by laparoscopy on Day -5 and Day +7 and estrous behavior was monitored between Day -4 and Day +7. Progestagen priming suppressed (P < 0.05) plasma LH levels (0.27 +/- 0.03 vs 0.46 +/- 0.06 ng/ml) during the preinfusion period, but the GnRH-induced LH release was similar for Group G and Group P + G. The LH surge began significantly (P < 0.05) earlier (32.0 +/- 3.0 vs 56.3 +/- 4.1 h) and was of greater magnitude (32.15 +/- 3.56 vs 18.84 +/- 4.13 ng/ml) in the unprimed than the primed ewes. None of the ewes infused with saline produced a preovulatory LH surge. The GnRH infusion induced ovulation in 10/10 unprimed and 7/9 progestagen-primed ewes, with no significant difference in ovulation rate (1.78 +/- 0.15 and 1.33 +/- 0.21, respectively). Ovulation was followed by normal luteal function in 4/10 Group-G ewes, while the remaining 6 ewes had short luteal phases. In contrast, each of the 7 Group-P + G ewes that ovulated secreted progesterone for at least 10 d, although elevated plasma progesterone levels were maintained in 3/7 unmated ewes for >35 d. Throughout the study only 2 ewes (both from Group P + G) displayed estrus. These data demonstrate that although a low dose, continuous infusion of GnRH can increase tonic LH concentrations sufficient to promote a preovulatory LH surge and induce ovulation, behavioral estrus and normal luteal function do not consistently follow ovulation in the progestagen-primed, postpartum ewe.  相似文献   

4.
In the present study, the pulsatile serum profiles of prolactin, LH and testosterone were investigated in eight clinically healthy fertile male beagles of one to six years of age. Serum hormone concentrations were determined in blood samples collected at 15 min intervals over a period of 6 h before (control) and six days before the end of a four weeks treatment with the dopamine agonist cabergoline (5 microg kg(-1) bodyweight/day). In addition, the effect of cabergoline administration was investigated on thyrotropin-releasing hormone (TRH)-induced changes in the serum concentrations of these hormones. In all eight dogs, the serum prolactin concentrations (mean 3.0 +/- 0.3 ng ml(-1)) were on a relatively constant level not showing any pulsatility, while the secretion patterns of LH and testosterone were characterised by several hormone pulses. Cabergoline administration caused a minor but significant reduction of the mean prolactin concentration (2.9 +/- 0.2 ng ml(-1), p < 0.05) and did not affect the secretion of LH (mean 4.6 +/- 1.3 ng ml(-1) versus 4.4 +/- 1.7 ng ml(-1)) or testosterone (2.5 +/- 0.9 ng ml(-1) versus 2.4 +/- 1.2 ng ml(-1)). Under control conditions, a significant prolactin release was induced by intravenous TRH administration (before TRH: 3.8 +/- 0.9 ng ml(-1), 20 min after TRH: 9.1 +/- 5.9 ng ml(-1)) demonstrating the role of TRH as potent prolactin releasing factor. This prolactin increase was almost completely suppressed under cabergoline medication (before TRH: 3.0 +/- 0.2 ng ml(-1), 20 min after TRH: 3.3 +/- 0.5 ng ml(-1)). The concentrations of LH and testosterone were not affected by TRH administration. The results of these studies suggest that dopamine agonists mainly affect suprabasal secretion of prolactin in the dog.  相似文献   

5.
To determine whether luteinizing hormone (LH) secretion during the first estrous cycle postpartum is characterized by pulsatile release, circulating LH concentrations were measured in 8 postpartum mares, 4 of which had been treated with 150 mg progesterone and 10 mg estradiol daily for 20 days after foaling to delay ovulation. Blood samples were collected every 15 min for 8 h on 4 occasions: 3 times during the follicular phase (Days 2-4, 5-7, and 8-11 after either foaling or end of steroid treatment), and once during the luteal phase (Days 5-8 after ovulation). Ovulation occurred in 4 mares 13.2 +/- 0.6 days postpartum and in 3 of 4 mares 12.0 +/- 1.1 days post-treatment. Before ovulation, low-amplitude LH pulses (approximately 1 ng/ml) were observed in 3 mares; such LH pulses occurred irregularly (1-2/8 h) and were unrelated to mean circulating LH levels, which gradually increased from less than 1 ng/ml at foaling or end of steroid treatment to maximum levels (12.3 ng/ml) within 48 h after ovulation. In contrast, 1-3 high-amplitude LH pulses (3.7 +/- 0.7 ng/ml) were observed in 6 of 7 mares during an 8-h period of the luteal phase. The results suggest that in postpartum mares LH release is pulsatile during the luteal phase of the estrous cycle, whereas before ovulation LH pulses cannot be readily identified.  相似文献   

6.
The objective of this study was to investigate whether monitoring progesterone concentrations in milk and blood plasma can be used to predict time of ovulation in dairy cattle. Whole milk was sampled twice daily and blood samples were collected once a day before the morning milking. Ovulation was assessed by trans-rectal ultrasonography at 4h intervals beginning from the end of estrus. For a parameter to be useful as predictor for time of ovulation, it should be precise (i.e. variation between animals should not exceed 12h). In milk, progesterone concentration dropped <15 ng/ml at 97.7+/-17.8h (range: 54-126 h) before ovulation, to <5 ng/ml at 79.7+/-11.2h (range: 54-98) before ovulation to decline further to <2n g/ml at 70.7+/-16.8h (range: 38-90 h) before ovulation (n=20). In plasma, progesterone concentration dropped to <4ng/ml 90.5+/-19.6h (range: 66-138 h) before ovulation and to <2 ng/ml at 75.0+/-12.2 h (range: 50-98) before ovulation. These intervals were not influenced by parity, milk production or days in milk. In conclusion, monitoring of progesterone alone is not sufficient to predict ovulation because of the large variation in timing of decrease of progesterone concentrations relative to ovulation between animals. At best the range is about 2 days.  相似文献   

7.
Platelet-activating factor in human luteal phase endometrium   总被引:2,自引:0,他引:2  
Platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) is one of the most potent mediators of vascular permeability. PAF levels change in the rabbit endometrium just prior to implantation, which suggests that PAF may be a key substance transducing preimplantation embryonic signals. To study whether PAF was present in the human endometrium, and if so, to determine the cellular origin and hormonal regulation of endometrial PAF, specimens were obtained from 14 women (aged 23-42 yr) undergoing elective hysterectomy during the luteal phase of the cycle (plasma progesterone levels greater than 2 ng/ml). No specimens were taken from women with malignant uterine pathology. Stromal cells and epithelial glandular cells were separated by collagenase and DNAse digestion, and then cultured to confluence in vitro in medium 199. Radioimmunoassays of prostaglandin F (PGF) and prolactin in the culture media were used to confirm cell type and viability. PGF release into the culture medium from stromal cells was low (control 1.52 +/- 0.20 ng/ml), and unchanged by hormone treatment. In contrast, release of PGF from unstimulated glandular cells was 6.05 +/- 0.52 ng/ml, and was significantly increased (p less than 0.05) by estradiol or progesterone plus estradiol, to 12.17 +/- 1.67, and 8.60 +/- 0.81, respectively. Progesterone alone was without effect. Prolactin was secreted by stromal cell cultures, increasing steadily from 24 to 120 h. The levels in the medium were increased by progesterone. PAF activity was assessed by rabbit platelet aggregation and serotonin-release bioassays after lipid extraction and separation by thin-layer chromatography.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Changes in the secretion of LH during the oestrous cycle were studied in 5 tame Père David's deer in which ovulation was synchronized with progesterone implants and prostaglandin injections. Plasma LH concentrations were measured in samples collected at 15-min intervals for a 36-h period, starting 16 h after the removal of the progesterone implants (follicular phase), and for a further 10-h period 10 days after the removal of the progesterone implants (luteal phase). In all animals, there was a preovulatory surge of LH and behavioural oestrus which occurred at a mean time of 59.6 h (+/- 3.25) and 69 h respectively following implant removal. LH pulse frequency was significantly higher during the follicular phase (0.59 +/- 0.03 pulses/h) than the luteal phase (0.24 +/- 0.2 pulses/h), thus confirming in deer findings from research on domesticated ruminants. There were no significant differences between the follicular and luteal phases in mean plasma LH concentrations (0.57 +/- 0.09 and 0.74 +/- 0.13 ng/ml) or mean pulse amplitude (0.99 +/- 0.14 and 1.05 +/- 0.21 ng/ml) for the follicular and luteal phase respectively. The long interval from the removal of progesterone to the onset of the LH surge and the absence of a significant difference in mean LH concentration or pulse amplitude in the follicular and luteal phases resemble published data for cattle but differ from sheep in which there is a short interval from luteal regression to the onset of the surge and a marked increase in LH pulse amplitude during the luteal phase.  相似文献   

9.
Plasma progesterone concentrations in mares were determined in two experiments during the time that the luteal glands were detectable by transrectal ultrasonography. In both experiments, corpora lutea were classified into two tupes of morphologies based on their ultrasonic appearance: centrally nonechogenic luteal glands (fluid-filled) and uniformly echogenic luteal glands (non-fluid-filled). In Experiment 1, daily blood samples were taken from horse mares during August through October and May through July. There were no significant effects of season or luteal morphology on progesterone concentration. There was a significant main effect of day, but no day-by-season or day-by-morphology interactions. Progesterone increased significantly between Days 1 and 3 (mean progesterone concentration, 2.5 vs 5.2 ng/ml, respectively), between Days 3 and 4 (5.2 vs 7.8 ng/ml), and between Days 4 and 5 (7.8 vs 11.0 ng/ml). Progesterone did not decrease significantly until between Days 11 and 15 (11.6 and 6.1 ng/ml). Subsequent decreases occurred between Days 15 and 16 (6.1 vs 3.9 ng/ml), and Days 16 and 17 (3.9 vs 2.5 ng/ml). In Experiment 2, blood samples were obtained from pony mares at 1 2 - h intervals for 3 h before and 2 h after the defined onset of luteal development (end of evacuation of the ovulatory follicle). Additional blood samples were taken at 5, 8 and 12 h after the onset of luteal development, and thereafter at 12-h intervals for 5d. There were no significant differences between centrally nonechogenic luteal glands (n = 7) and uniformly echogenic luteal glands (n = 5) during the first 5 d of luteal development. There was no time-by-morphology interaction, but there was a significant time effect. The first significant increase in progesterone concentration occurred between Hours 12 and 24 (0.5 vs 1.1 ng/ml). Additional increases were detected between Hours 24 and 36 (1.1 vs 2.6 ng/ml), Hours 36 and 48 (2.6 vs 4.3 ng/ml), Hours 48 and 60 (4.3 vs 6.1 ng/ml), Hours 60 and 72 (6.1 vs 9.4 ng/ml), and Hours 72 and 96 (9.4 vs 13.8 ng/ml). The hypothesis was supported that fluid-filled corpora lutea do not differ from non-fluid-filled corpora lutea with regard to progesterone production.  相似文献   

10.
Anoestrous Romney Marsh ewes with and without progesterone treatment (+P, -P) were treated with small-dose (250 ng) multiple injections of GnRH at 2-h intervals for 48 h. Animals were slaughtered on Days 4, 5, 7 and 11 after the end of GnRH treatment and luteal function was assessed by the measurement of daily plasma progesterone concentrations. In all animals which ovulated (29/32, 91%) peripheral progesterone concentrations rose to 0.5-1.0 ng/ml within 3 days of the end of GnRH treatment. In 7/7 (100%) +P animals and 5/22 (23%) -P animals, progesterone concentrations continued to rise and were maintained at levels greater than 1.5 ng/ml until slaughter. In the remaining -P animals, plasma progesterone concentrations declined to reach basal levels by Day 5. Corpora lutea recovered from these animals showed signs of premature regression on Day 5 and were fully regressed by Day 7. Progesterone priming delayed the occurrence of the LH surge which occurred 39.1 +/- 3.6 h after the end of GnRH treatment in the +P animals compared to 20.2 +/- 1.74 h (P less than 0.001) in the -P animals in which luteal function was abnormal and 22.4 +/- 4.35 h in the -P animals in which luteal function was normal. These results show that abnormal luteal function occurs in the majority of GnRH-treated ewes in the absence of progesterone pretreatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
During late pregnancy in rats, ovarian secretion of progesterone decreases and that of its reduced metabolite, 20 alpha-hydroxypregn-4-en-3-one (20 alpha-OHP), increases. The present study was undertaken to determine whether changes in ovarian blood flow are consistent with changes in progestin secretion. Rats (n = 5 per group) were examined on Day 16, the time of maximal progesterone secretion, and in the morning (AM) and afternoon (PM) of Day 22, the day prior to parturition. Ovarian blood flow was monitored continuously for 60 to 80 min, and serial samples of arterial and ovarian venous blood were obtained at 20-min intervals for determination of ovarian secretion rates of progesterone and 20 alpha-OHP. Ovarian blood flow increased from 0.38 +/- 0.04 ml/min (mean +/- SEM) on Day 16, to 0.77 +/- 0.05 and 0.78 +/- 0.04 ml/min on Day 22 AM and PM, respectively, whereas the secretion of progesterone decreased from 26.9 +/- 4.0 to 4.5 +/- 1.0 and 3.2 +/- 0.3 micrograms/h per ovary. The secretion of 20 alpha-OHP was similar on Day 16 and Day 22 AM (5.6 +/- 1.7 and 5.4 +/- 1.3 micrograms/h per ovary) but then increased to 18.9 +/- 1.2 micrograms/h per ovary by Day 22 PM. Thus the amount of total progestins secreted per unit rate of blood flow relative to that on Day 16 (100%) fell to 15% and 34% on the morning and afternoon of Day 22, respectively. Clearly, the relative changes in ovarian progestin secretion and blood flow in the rat near term to not conform to patterns observed at luteal regression in some other species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In Exp. 1, 7 Finn-Merino ewes which had one ovary autotransplanted to a site in the neck had jugular and timed ovarian venous blood samples collected at 10-min intervals for 2 h before and 3 h after injection of 5 micrograms NIAMDD-oFSH-S16. In Exp. 2, 8 Finn-Merino ewes with ovarian autotransplants had jugular and timed ovarian venous blood samples collected at 15-min intervals for 2 h before and 12 h after bolus injection of 40 micrograms NIAMDD-oFSH-S16 and infusion of oFSH-S16 at 6 micrograms/min for 4 h. In Exp. 2 the follicular population of the ovary was assessed by real-time ultrasound at the beginning and end of the experimental period. In both experiments the secretion rates of inhibin (1-3 ng/min) and oestradiol (0.5-8 ng/min) were similar to those observed during the luteal phase of the cycle in the breeding season, indicating significant follicular development in these animals. In Exp. 1 there was no change in the secretion of oestradiol or inhibin after the injection of FSH which resulted in a 25% increase (P less than 0.05) in the concentration of FSH in plasma. Inhibin secretion was pulsatile but there was no difference in inhibin pulse frequency before (1.6 +/- 0.2 pulses/h) or after (1.2 +/- 0.5 pulses/h) injection of FSH. In Exp. 2 injection of FSH resulted in an increase (P less than 0.001) in plasma concentrations of FSH in the sample taken 10 min after injection from a baseline of 1.2 +/- 0.2 ng/ml to a peak of 10.6 +/- 1.0 ng/ml (mean +/- s.e.m.).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The objective of this study was to investigate whether bull exposure affects LH profiles in postpartum, anoestrous dairy cows. Eight cows between 10 and 17 days after parturition were used. On Day 1, blood samples were taken at 10 min intervals for 8 h. On Day 2, blood sampling continued at 10 min intervals and after 2 h a bull was introduced behind a fence, and blood sampling continued for another 8 h. Time of resumption of luteal activity was between 25 and more than 80 days after parturition for these animals and was not related (P>0.1) with frequency of LH pulses, amplitude of pulses and basal LH concentration on either Day 1 or Day 2. In 6 of the 8 cows, average and basal LH concentration were greater (P<0.001) during the 8 h of bull presence (0.56 +/- 0.33 and 0.39 +/- 0.26 ng/ml, respectively) compared to the 8 h without a bull (0.50 +/- 0.30 and 0.35 +/- 0.24 ng/ml, respectively). Pulse amplitude did not differ (P=0.85) between Day 2 (0.45 +/- 0.24 ng/ml) or Day 1 (0.45 +/- 0.14 ng/ml). LH pulse frequency was greater (P<0.1) on Day 2 (5.3 pulses/8h) compared to the Day 1 (4.6 pulses/8h). In conclusion, fenceline bull exposure early postpartum seems to have an acute effect on LH-release in anoestrous dairy cows. Whether sustained bull exposure can hasten first ovulation after calving through an effect on LH release in dairy cows is an interesting area of research.  相似文献   

14.
In the brown hare, fertile mating takes place from the beginning of December to September. Pituitary and ovarian response to a monthly i.v. injection of 5 micrograms LHRH was studied from September 1983 to October 1984 in 2 groups of 6 hares. The basal concentrations of LH remained undetectable until the end of January, rose from 0.23 +/- 0.14 ng/ml from February to a maximum of 1.44 +/- 0.57 ng/ml in July. LHRH injection was always followed by a release of LH. Between September and December, the LH value peaked 15 min after injection and returned to basal concentrations 2 h later. From January, this pattern altered and a second peak of LH appeared 2 h after injection. Peak levels 15 min after LHRH were around 10 ng/ml between September and December, increased from 47.0 +/- 8.0 ng/ml in January to 106 +/- 33 ng/ml in July and decreased in August (69.4 +/- 10.6 ng/ml). The values of the second peak rose from 11.0 +/- 2.2 ng/ml in January to 90.6 +/- 12.4 ng/ml between March and July and decreased in August (24.5 +/- 5.1 ng/ml). The LH surge induced by LHRH was always followed by a transient rise in progesterone. During the breeding season, this progesterone secretion increased considerably. Ovulation was possible between January and August and the number of ovulating females was maximum between March and July. The amount and duration of progesterone secretion during the resulting pseudopregnancies increased during the breeding season.  相似文献   

15.
Two experiments were conducted to (1) investigate developmental endocrinology of ovarian follicular cysts (cysts) in cattle and (2) evaluate effects of cysts on hypothalamic and hypophysial characteristics. Cysts were induced with oestradiol-17 beta (15 mg) and progesterone (37.5 mg) dissolved in alcohol and injected s.c. twice daily for 7 days. Cysts were defined as the presence of follicular structures (which may or may not have been the same structure) of 2.0 cm in diameter or greater that were present for 10 days without ovulation and corpus luteum development. In Exp. 1,22 non-lactating, non-pregnant Holstein cows were allocated to 3 groups. Beginning on Day 5 (oestrus = Day 0) of the oestrous cycle, 7 cows (Controls) were treated with twice daily s.c. injections of ethanol (2 ml/injection) for 7 days. Luteolysis was then induced with PGF-2 alpha and blood samples were collected daily every 15 min for 6 h from the morning after the PGF-2 alpha injection (Day 13) until oestrus. Steroids to induce cysts were injected as previously described into the remaining cows (N = 15). Three blood samples were collected at 15-min intervals every 12 h throughout the experimental period. Additional blood samples were collected every 15 min for 6 h on a twice weekly basis. After steroid injections, follicular and luteal structures on ovaries were not detected via rectal palpation for a period of 36 +/- 4 days (static phase). Then follicles developed which ovulated within 3-7 days (non-cystic; N = 7) or increased in size with follicular structures present for 10 days (cystic; N = 8). Mean (+/- s.e.m.) concentrations of LH, FSH, oestradiol-17 beta and progesterone in serum remained low and were not different during the static phase between cows that subsequently developed cysts or ovulated. During the follicular phase, mean serum concentration of LH (ng/ml) was higher (P less than 0.1) in cows with cysts (2.9 +/- 0.2) than in cows without cysts (1.1 +/- 0.1) or control cows (1.4 +/- 0.2). In addition, LH pulse frequency (pulses/6 h) and amplitude (ng/ml) were higher (P less than 0.1) in cows with cysts (3.6 +/- 0.3 and 2.2 +/- 0.3, respectively) than in non-cystic (2.3 +/- 0.2 and 1.0 +/- 0.2, respectively) and control (1.8 +/- 0.1 and 1.1 +/- 0.2, respectively) groups during the follicular phase. There were no differences in the FSH, oestradiol-17 beta or progesterone characteristics in cows of any of the 3 groups during the follicular phase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The objective of this study was to investigate whether PGF2 alpha, administered to pregnant and pseudopregnant gilts in vivo, would cause an acute increase in serum progesterone concentrations prior to luteolysis. Pregnant (n = 9) and pseudopregnant (n = 4) gilts were fitted with a jugular vein cannula on day 40, were treated with 3 ml vehicle (control) i.m. on day 42 and with 15 mg PGF2 alpha on day 45. Blood samples were collected at frequent (5 and 15 min) intervals from 1 h before until 1 h after control and PGF2 alpha injections, at 15 min intervals for 4 h, and then at 5, 6, 9, 21, 33, 45 and 57 h post injection. Progesterone was measured by radioimmunoassay (RIA) in all samples. Porcine LH was measured by RIA in samples collected frequently in the 1 h pre- and 1 h post-injection periods. Serum progesterone concentrations were unchanged in both pregnant and pseudopregnant animals in response to control injection on day 42. However, in both pregnant and pseudopregnant gilts, PGF2 alpha injection on day 45 resulted in an acute increase (approximately 75-80% above pre-treatment levels; p less than 0.05) in serum progesterone lasting approximately 1 h, followed by a return to pre-treatment levels by 2 h, and then a decline to 1 ng/ml or less by 45-57 h (pregnant) or 21-57 h (pseudopregnant), associated with luteolysis. Serum LH concentrations were unchanged between 1 h pre- and post-treatment periods in response to either control or PGF2 alpha-treatment, in both pregnant and pseuodpregnant gilts. These results indicate that PGF2 alpha-injection produces a rapid and transient increase in serum progesterone concentrations which may result from a rapid and direct stimulatory action of PGF2 alpha on porcine luteal cell progesterone synthesis/secretion in vivo.  相似文献   

17.
Porcine luteal cells were obtained from corpora lutea on the 5th, 13th and 17th days of the estrous cycle. The cells were suspended at a concentration of 5 × 104 cells/ml in Eagle's medium with 2% human serum albumin. These cells were incubated with or without 0.01, 0.1, 1 or 10 μg/ml porcine prolactin. The amount of progesterone in cultures was estimated by a radio-immunological method after 30 min, 3 h and 6 h of culturing.Luteal cells obtained on the 5th day of the estrous cycle and incubated without prolactin secreted 71.24 ± 21.91 ng progesterone/ml of medium, whereas under the influence of prolactin at 0.01, 0.1, 1 and 10 μg/ml, 39.06 ± 13.33, 44.31 ± 12.69, 44.88 ± 16.85 and 51.62 ± 15.01 ng progesterone/ml (P<0.01) were secreted. Luteal cells from the 13th day of the estrous cycle incubated without prolactin secreted on average 70.72 ± 9.21 ng progesterone/ml of medium, whereas under the influence of different prolactin doses 50.75 ± 8.52, 46.54 ± 7.13, 43.30 ± 6.78 and 41.68 ± 7.21 ng progesterone/ml (P<0.01) were secreted.Prolactin did not change progesterone secretion by luteal cells obtained on the 17th day of the estrous cycle. An influence of the incubation time on progesterone secretion by these cells was observed: after 30 min of incubation the cells secreted 8.83 ± 2.95 ng/ml, after 3 h 8.12 ± 2.57 ng/ml and after 6 h 6.86 ± 1.91 ng/ml, irrespective of the amount of PRL added.The results suggest that prolactin plays a role in the luteolysis of the corpus luteum.  相似文献   

18.
Suckling, a common practice in smallholder dairy-farming systems in the developing world, delays the onset of post-partum ovarian activity in dairy buffalo. The present study was designed to assess the effect of suckling on pituitary function in lactating buffaloes 25-35 days post-partum. Six suckled and nine non-suckled buffaloes were challenged intravenously with a bolus injection of GnRH (20microg buserelin acetate; Receptal). Heparinized venous blood samples were collected at 15min intervals for 2h before and up to 4h after GnRH for luteinizing hormone (LH) estimation. Pretreatment basal LH concentrations were similar in the suckled (0.6+/-0.2ng/ml) and the non-suckled (0.5+/-0.1ng/ml) buffaloes. All but one suckled buffaloes released a LH surge, starting 15-60min post-GnRH treatment, which lasted for 180-225min. While one suckled buffalo did not respond to GnRH, the LH response in the remaining suckled buffaloes was significantly less than in the non-suckled buffaloes in terms of peak LH concentrations (14.3+/-2.7ng/ml versus 26.2+/-4.3ng/ml) and area under the LH curve (1575.6+/-197.4mm(2) versus 2108.9+/-323.9mm(2)). The LH response was least in suckled buffaloes challenged with GnRH while in the luteal phase of an oestrus cycle and with plasma progesterone concentration >1ng/ml. In conclusion, suckling suppressed pituitary responsiveness to exogenous GnRH challenge in post-partum buffaloes.  相似文献   

19.
The effects of porcine relaxin (3000 units/mg) on oxytocin (OT) and progesterone secretion were studied in beef heifers on Day 274 (10 days before expected parturition). Heifers (n = 11) were randomly assigned to three treatments: relaxin iv infusions combined with im injection (RLX-INF, 9000 units), relaxin im injection (RLX-im, 6000 units), and phosphate-buffered saline-treated controls (PBS). RLX-INF heifers received infusions of PBS and 1000 units of relaxin for 165 min, followed by 2000 units of relaxin im and finally 2000 units of relaxin infusion followed by 4000 units of relaxin im. Endogenous relaxin (immunoreactive) in the PBS-treated group was 0.2-0.9 ng/ml peripheral plasma. For the RLX-im group, peak relaxin was 81 +/- 12 ng/ml (+/- SE) at 45 min after treatment. There were two peaks of relaxin, 18 +/- 5.3 ng/ml and 74 +/- 7.5 ng/ml, 3.5-4.5 hr apart in the RLX-INF group. Significant peak releases of OT were evident in the relaxin-treated heifers. For the RLX-im group, an OT peak (42 +/- 16 pg/ml) occurred within 30 min after relaxin treatment. For the RLX-INF heifers, 2000 and 4000 units of relaxin were associated with major peaks of 14 +/- 0.5 and 43 +/- 1.7 pg/ml OT, respectively. Basal OT plasma levels in the PBS group were 2.5-3.1 pg/ml. Mean plasma progesterone for all heifers was 6.2 +/- 2.11 ng/ml before treatment. There was a significant decrease in progesterone (-2.5 ng/ml) in the RLX-im group within 60 min after relaxin treatment and 45 min after peak OT secretion. The maximum decrease in progesterone (-3.2 +/- 0.68 ng/ml) occurred 135 min after treatment in the RLX-im group. In the RLX-INF group, 2000 units of relaxin infusion combined with 4000 units of relaxin im significantly decreased progesterone (-3.2 +/- 1.59 ng/ml) in peripheral plasma. These results clearly indicate that relaxin causes an acute peak release of oxytocin within 30 min, followed by a marked decrease in plasma progesterone concentration in late-pregnancy cattle.  相似文献   

20.
An experiment was conducted to determine whether natural royal jelly (RJ) paste administered orally or intramuscularly (i.m.) in conjunction with exogenous progesterone is associated with improved reproductive responses in ewes. Thirty 3-6-year-old Awassi ewes were randomly allocated into three (RJ-capsule, RJC; RJ-injection, RJI and control, CON) groups of 10 ewes each. All ewes were treated with intravaginal progesterone sponges for 12 days. Ewes in the RJC and RJI were administered orally or i.m. with a total of 3g of RJ given in 12 equal doses of 250 mg per ewe per day starting at the time of sponge insertion. At the time of sponge withdrawal (day 0, 0 h), ewes were exposed to three rams and checked for breeding marks at 6-h intervals for 3 days. Blood samples were collected from all ewes for analysis of progesterone concentrations. Pretreatment progesterone levels were <0.5 ng x ml(-1) in 16/30 and >1.3 ng x ml(-1) in the remaining ewes indicating luteal function and cyclicity. Similar reproductive responses and progesterone levels occurred in ewes of the RJC and RJI; therefore, data of the two groups were pooled. Following sponge insertion, progesterone levels increased rapidly and reached maximum values of 5.8+/-0.2 ng x ml(-1) within 2 days among ewes of the three groups, and then declined gradually to day 0 values of 1.6+/-0.1 and 1.9+/-0.1 ng x ml(-1) for the RJ-treated and CON ewes, respectively. The rate of progesterone decline was greater (P<0.001) in RJ-treated than in CON. Mean progesterone levels during the 12-day period were lower (P<0.001) in RJ-treated than in CON (2.8+/-0.2 ng x ml(-1) versus 3.3+/-0.2 ng x ml(-1)). Treatment with RJ resulted in greater (P<0.05) incidence of oestrus and shorter (P<0.05) intervals to onset of oestrus than CON. Based upon progesterone levels, ovulation occurred following day 0 in all ewes. Progesterone increased on day 3 in RJ-treated and on day 4 in CON ewes. Progesterone remained elevated through day 18 in 8/20 RJ-treated and 1/10 CON ewes (P=0.09). All pregnant ewes exhibited oestrus 14 h earlier (P<0.02), ovulated approximately 1 day earlier and had higher (P<0.001) luteal phase progesterone levels than non-pregnant ewes. Non-pregnant had higher (P<0.04) body weights than pregnant ewes. In conclusion, results demonstrate that both RJ treatments in conjunction with exogenous progesterone were equally capable of improving oestrus response and pregnancy rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号