首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SCO4677 is one of a large number of similar genes in Streptomyces coelicolor that encode proteins with an HATPase_c domain resembling that of anti-sigma factors such as SpoIIAB of Bacillus subtilis. However, SCO4677 is not located close to genes likely to encode a cognate sigma or anti-anti-sigma factor. SCO4677 was found to regulate antibiotic production and morphological differentiation, both of which were significantly enhanced by the deletion of SCO4677. Through protein-protein interaction screening of candidate sigma factor partners using the yeast two-hybrid system, SCO4677 protein was found to interact with the developmentally specific σF, suggesting that it is an antagonistic regulator of σF. Two other proteins, encoded by SCO0781 and SCO0869, were found to interact with the SCO4677 anti-σF during a subsequent global yeast two-hybrid screen, and the SCO0869-SCO4677 protein-protein interaction was confirmed by coimmunoprecipitation. The SCO0781 and SCO0869 proteins resemble well-known anti-anti-sigma factors such as SpoIIAA of B. subtilis. It appears that streptomycetes may possess an extraordinary abundance of anti-sigma factors, some of which may influence diverse processes through interactions with multiple partners: a novel feature for such regulatory proteins.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
Bacterial hemophores are secreted to the extracellular medium, where they scavenge heme from various hemoproteins due to their higher affinity for this compound, and return it to their specific outer membrane receptor. HasR, the outer membrane receptor of the HasA hemophore, assumes multiple functions which require various energy levels. Binding of heme and, of heme-free or heme-loaded hemophores is energy-independent. Heme transfer from the holo-hemophore to the outer membrane receptor is also energy-independent. In contrast, heme transport and hemophore release require basal or high levels of TonB and proton motive force, respectively. In addition, HasR is a component of a signaling cascade, regulating expression of the has operon via specific sigma and anti-sigma factors encoded by genes clustered at the has operon. The signal is the heme landing on HasR in the presence of the hemophore in its apo form. The has system is the only system thus far characterized in which the anti-sigma factor is submitted to the same signaling cascade as the target operon. Specific autoregulation of the has system, combined with negative regulation by the Fur protein, permits bacterial adaptation to the available iron source. In the presence of a heme-loaded hemophore, inactive anti-sigma factor is accumulated and can be activated as soon as the heme source dries up. Hence, the has system, instead of being submitted to amplification like other systems regulated by sigma anti-sigma factors, functions by pulses triggered by heme availability.  相似文献   

11.
In Alphaproteobacteria, the general stress response (GSR) is controlled by a conserved partner switch composed of the sigma factor σEcfG, its anti-sigma factor NepR and the anti-sigma factor antagonist PhyR. Many species possess paralogues of one or several components of the system, but their roles remain largely elusive. Among Alphaproteobacteria that have been genome-sequenced so far, the genus Methylobacterium possesses the largest number of σEcfG proteins. Here, we analyzed the six σEcfG paralogues of Methylobacterium extorquens AM1. We show that these sigma factors are not truly redundant, but instead exhibit major and minor contributions to stress resistance and GSR target gene expression. We identify distinct levels of regulation for the different sigma factors, as well as two NepR paralogues that interact with PhyR. Our results suggest that in M. extorquens AM1, ecfG and nepR paralogues have diverged in order to assume new roles that might allow integration of positive and negative feedback loops in the regulatory system. Comparison of the core elements of the GSR regulatory network in Methylobacterium species provides evidence for high plasticity and rapid evolution of the GSR core network in this genus.  相似文献   

12.
13.
铁离子是大多数细菌生存所必需的一种营养物质,但摄入过多的铁离子也会对细菌造成损伤。因此,细菌对铁离子的摄取受到严格调控。革兰氏阴性菌对铁离子的摄取主要受Fur (ferric uptake regulator) 蛋白和σ(sigma)因子的调控。σ因子是RNA聚合酶的可解离亚基,能使RNA聚合酶结合到基因的启动子区域,从而引起基因转录。因此,σ因子在原核生物转录起始过程中必不可少。细菌中存在多种σ因子,参与铁离子调控的σ因子即是胞外功能σ因子(extra cytoplasmic function sigma factor, ECF sigma factor)。通常,胞外功能σ因子活性可被抗σ因子(anti sigma factor)抑制。当受到外界环境信号的刺激,σ因子与抗σ因子解离,从而使σ因子活化并结合RNA聚合酶核心酶形成全酶,引起目的基因的转录。本文将就胞外功能σ因子在σ因子家族中的分类地位、结构特点以及对3价铁离子和血红素的转运调控机制作一综述。  相似文献   

14.
15.
16.
Pairs of the ECF sigma factor and its anti-sigma factor, SigW and RsiW, of Bacillus-related species that inhabit extreme environments were heterologously expressed in B. subtilis. All the RsiWs, membrane proteins, failed to fill their function of repressing cognate SigW activity, despite their close structural similarities. Particularly, uncontrolled expression of Oceanobacillus iheyensis OISigW due to abortive OIRsiW was harmful to B. subtilis. Analysis of revertants of this growth defect and site-directed mutagenesis indicated that the insertion of six and a minimum of three hydrophobic amino acid residues occurring in the transmembrane region allowed OIRsiW to function as anti-OISigW. Subcellular localization of OIRsiW was detected by immunoblot analysis, suggesting that both the wild-type and the mutant form of OIRsiW were localized to the membrane. An appropriate length of a transmembrane region required for proper integration into the membrane after translocation might vary among these Bacillus-related species.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号