首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
myo-Inositol 1-phosphate synthase (EC 5.5.1.4) (IPS) is a key enzyme in myo-inositol biosynthesis pathway. This study describes the molecular cloning of the full length human myo-inositol 1-phosphate synthase (hIPS) cDNA, tissue distribution of its mRNA and characterizes its gene expression in cultured HepG2 cells. Human testis, ovary, heart, placenta, and pancreas express relatively high level of hIPS mRNA, while blood leukocyte, thymus, skeletal muscle, and colon express low or marginal amount of the mRNA. In the presence of glucose, hIPS mRNA level increases 2- to 4-fold in HepG2 cells. hIPS mRNA is also up-regulated 2- to 3-fold by 2.5 microM lovastain. This up-regulation is prevented by mevalonic acid, farnesol, and geranylgeraniol, suggesting a G-protein mediated signal transduction mechanism in the regulation of hIPS gene expression. hIPS mRNA expression is 50% suppressed by 10mM lithium ion in these cells. Neither 5mM myo-inositol nor the three hormones: estrogen, thyroid hormone, and insulin altered hIPS mRNA expression in these cells.  相似文献   

2.
Brabetz W  Wolter FP  Brade H 《Planta》2000,212(1):136-143
Recombinant plasmids encoding 3-deoxy-d-manno-oct-2-ulosonate-8-phosphate (Kdo-8-P) synthase (KdsA; EC 4.1.2.16) were identified from a cDNA library of Pisum sativum L. (pea) by complementing a temperature-sensitive kdsA ts mutant of the Gram-negative bacterium Salmonella enterica. Sequence analysis of several inserts revealed a central open reading frame encoding a protein of 290 amino acids with a high degree of amino acid sequence similarity to bacterial KdsA. The cDNA was confirmed by amplifying a 1,812-bp DNA fragment from the chromosome of pea that encoded four exons around the 5′-end of kdsA. The recombinant enzyme was subcloned, overexpressed and characterized to synthesize Kdo-8-P from d-arabinose-5-phosphate and phosphoenolpyruvate. The pH optimum was 6.1 and the activity of the enzyme was neither stimulated by the addition of divalent cations nor inhibited by EDTA. The cDNA of kdsA could not complement Escherichia coli K-12 strain AB3257, which is defective in all three isoenzymes (AroFGH) of 3-deoxy-d-arabino-hept-2-ulosonate-7-phosphate (Dha-7-P) synthase (EC 4.1.2.15), and neither d-erythrose-4-phosphate nor d-ribose-5-phosphate could substitute for d-arabinose-5-phosphate in vitro. Thus, plant cells possess a specific enzyme for the biosynthesis of Kdo-8-P with remarkable structural and functional similarities to bacterial KdsA proteins. Received: 14 July 2000 / Accepted: 30 August 2000  相似文献   

3.
Lactosylceramide synthase is an enzyme that catalyzes the transfer of galactose from UDP-Gal to glucosylceramide, and thus participates in the biosynthesis of most glycolipids in mammals. We have isolated and sequenced the cDNA clone encoding human lactosylceramide synthase. The deduced amino acid sequence of the human lactosylceramide synthase showed 94.2% identity with rat lactosylceramide synthase. Northern blotting analysis revealed that lactosylceramide synthase mRNA was expressed in various tissues, with the highest level in brain and adrenal gland.  相似文献   

4.
Geranylgeranyl diphosphate (GGPP) synthase (GGPPSase) catalyzes the synthesis of GGPP, which is an important molecule responsible for the C20-prenylated protein biosynthesis and for the regulation of a nuclear hormone receptor (LXR.RXR). The human GGPPSase cDNA encodes a protein of 300 amino acids which shows 16% sequence identity with the known human farnesyl diphosphate (FPP) synthase (FPPSase). The GGPPSase expressed in Escherichia coli catalyzes the GGPP formation (240 nmol/min/mg) from FPP and isopentenyl diphosphate. The human GGPPSase behaves as an oligomeric molecule with 280 kDa on a gel filtration column and cross-reacts with an antibody directed against bovine brain GGPPSase, which differs immunochemically from bovine brain FPPSase. Northern blot analysis indicates the presence of two forms of the mRNA.  相似文献   

5.
Lactosylceramide synthase is an enzyme that catalyzes the transfer of galactose from UDP-Gal to glucosylceramide, and thus participates in the biosynthesis of most glycolipids in mammals. We have isolated and sequenced the cDNA clone encoding human lactosylceramide synthase. The deduced amino acid sequence of the human lactosylceramide synthase showed 94.2% identity with rat lactosylceramide synthase. Northern blotting analysis revealed that lactosylceramide synthase mRNA was expressed in various tissues, with the highest level in brain and adrenal gland.  相似文献   

6.
7.
Entus R  Poling M  Herrmann KM 《Plant physiology》2002,129(4):1866-1871
The cDNA for 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of Arabidopsis encodes a polypeptide with an amino-terminal signal sequence for plastid import. A cDNA fragment encoding the processed form of the enzyme was expressed in Escherichia coli. The resulting protein was purified to electrophoretic homogeneity. The enzyme requires Mn(2+) and reduced thioredoxin (TRX) for activity. Spinach (Spinacia oleracea) TRX f has an apparent dissociation constant for the enzyme of about 0.2 microM. The corresponding constant for TRX m is orders of magnitude higher. In the absence of TRX, dithiothreitol partially activates the enzyme. Upon alkylation of the enzyme with iodoacetamide, the dependence on a reducing agent is lost. These results indicate that the first enzyme in the shikimate pathway of Arabidopsis appears to be regulated by the ferredoxin/TRX redox control of the chloroplast.  相似文献   

8.
Nuclear import usually relies on the presence of nuclear localization sequences (NLSs). NLSs are recognized by NLS receptors (importins), which target their substrates to the nuclear pore. We identified the NLSs of the yeast ribosomal proteins S22 and S25 and studied the former by mutational analysis. Furthermore, in S25 the nucleolar targeting information was found to overlap with its NLS. Comparison with previously published data on yeast ribosomal protein NLSs and computer analysis indicates the existence of a novel type of ribosomal protein-specific NLS that differs from the classical Chelsky and bipartite NLSs. The existence of such a ribosomal protein-specific NLS is in accordance with the recent identification of ribosomal protein-specific importins.  相似文献   

9.
10.
3-deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase catalyzes the condensation of phosphoenolpyruvate (PEP) with arabinose 5-phosphate (A5P) to form KDO8P and inorganic phosphate. KDO8P is the phosphorylated precursor of 3-deoxy-D-manno-octulosonate, an essential sugar of the lipopolysaccharide of Gram-negative bacteria. The crystal structure of the Escherichia coli KDO8P synthase has been determined by multiple wavelength anomalous diffraction and the model has been refined to 2.4 A (R-factor, 19.9%; R-free, 23.9%). KDO8P synthase is a homotetramer in which each monomer has the fold of a (beta/alpha)(8) barrel. On the basis of the features of the active site, PEP and A5P are predicted to bind with their phosphate moieties 13 A apart such that KDO8P synthesis would proceed via a linear intermediate. A reaction similar to KDO8P synthesis, the condensation of phosphoenolpyruvate, and erythrose 4-phosphate to form 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7P), is catalyzed by DAH7P synthase. In the active site of DAH7P synthase the two substrates PEP and erythrose 4-phosphate appear to bind in a configuration similar to that proposed for PEP and A5P in the active site of KDO8P synthase. This observation suggests that KDO8P synthase and DAH7P synthase evolved from a common ancestor and that they adopt the same catalytic strategy.  相似文献   

11.
Howe DL  Sundaram AK  Wu J  Gatti DL  Woodard RW 《Biochemistry》2003,42(17):4843-4854
Escherichia coli 3-deoxy-D-manno-octulosonate 8-phosphate (KDO8-P) synthase is able to utilize the five-carbon phosphorylated monosaccharide, 2-deoxyribose 5-phosphate (2dR5P), as an alternate substrate, but not D-ribose 5-phosphate (R5P) nor the four carbon analogue D-erythrose 4-phosphate (E4P). However, E. coli KDO8-P synthase in the presence of either R5P or E4P catalyzes the rapid consumption of approximately 1 mol of PEP per active site, after which consumption of PEP slows to a negligible but measurable rate. The mechanism of this abortive utilization of PEP was investigated using [2,3-(13)C(2)]-PEP and [3-F]-PEP, and the reaction products were determined by (13)C, (31)P, and (19)F NMR to be pyruvate, phosphate, and 2-phosphoglyceric acid (2-PGA). The formation of pyruvate and 2-PGA suggests that the reaction catalyzed by KDO8-P synthase may be initiated via a nucleophilic attack to PEP by a water molecule. In experiments in which the homologous enzyme, 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7-P) synthase was incubated with D,L-glyceraldehyde 3-phosphate (G3P) and [2,3-(13)C(2)]-PEP, pyruvate and phosphate were the predominant species formed, suggesting that the reaction catalyzed by DAH7-P synthase starts with a nucleophilic attack by water onto PEP as observed in E. coli KDO8-P synthase.  相似文献   

12.
Higher plants express 3-deoxy-D-manno-octulosonate 8-phosphate synthase   总被引:2,自引:1,他引:2  
Abstract. The enzymatic activity of 3-deoxy- D-manno -octulosonate 8-phosphate (KDOP) synthase was detected in eight diverse plant species, thus providing enzymological data consistent with recent reports of the presence of 3-deoxy- D-manno -octulosonate in plant cell walls. KDOP synthase from spinach was partially purified and characterized. It possessed weak activity as 3-deoxy- D-arabino -heptulosonate 7-phosphate (DAHP) synthase. In the presence of phosphoenolpyruvate, which conferred dramatic thermostability, KDOP synthase had a catalytic temperature optimum of about 53°C. The pH optimum was 6.2, and divalent cations were neither stimulatory nor required for activity. The Km values for arabinose 5-P and phosphoenolpyruvate were 0.27 mol m−3 and about 35 mmol m−3, respectively. The kinetics of periodate oxidation of KDOP formed by spinach KDOP synthase indicate that the same stereochemical configuration exists as with bacterial KDOP. The possibility that an unregulated species of DAHP synthase found in some bacteria might in fact be a KDOP synthase exhibiting substrate ambiguity of the type seen in higher plants was examined. However, the DAHP synthase isozyme, DS-O, from Acinetobacter calcoaceticus was found to be specific for erythrose 4-P. The KDOP synthase of Acinetobacter calcoaceticus was also found to be specific for arabinose 5-P.  相似文献   

13.
The transfer of xylose from UDP-xylose to the core beta-linked mannose of N-linked oligosaccharides by beta1,2-xylosyltransferase (XylT) is a widespread feature of plant glycoproteins which renders them immunogenic and allergenic in man. Here, we report the isolation of the Arabidopsis thaliana XylT gene, which contains two introns and encodes a 60.2 kDa protein with a predicted type II transmembrane protein topology typical for Golgi glycosyltransferases. Upon expression of A. thaliana XylT cDNA in the baculovirus/insect cell system, a recombinant protein was produced that exhibited XylT activity in vitro. Furthermore, the recombinant enzyme displayed XylT activity in vivo in the insect cells, as judged by the acquired cross-reaction of cellular glycoproteins with antibodies against the beta1,2-xylose epitope. The cloned XylT cDNA as well as the recombinant enzyme are essential tools to study the role of beta1,2-xylose in the immunogenicity and allergenicity of plant glycoproteins at the molecular level.  相似文献   

14.
15.
The Arabidopsis genome project has recently reported sequences with similarity to members of the terpene synthase (TPS) gene family of higher plants. Surprisingly, several Arabidopsis terpene synthase-like sequences (AtTPS) share the most identity with TPS genes that participate in secondary metabolism in terpenoid-accumulating plant species. Expression of a putative Arabidopsis terpene synthase gene, designated AtTPS03, was demonstrated by amplification of a 392-bp cDNA fragment using primers designed to conserved regions of plant terpene synthases. Using the AtTPS03 fragment as a hybridization probe, a second AtTPS cDNA, designated AtTPS10, was isolated from a jasmonate-induced cDNA library. The partial AtTPS10 cDNA clone contained an open reading frame of 1665 bp encoding a protein of 555 amino acids. Functional expression of AtTPS10 in Escherichia coli yielded an active monoterpene synthase enzyme, which converted geranyl diphosphate (C(10)) into the acyclic monoterpenes beta-myrcene and (E)-beta-ocimene and small amounts of cyclic monoterpenes. Based on sequence relatedness, AtTPS10 was classified as a member of the TPSb subfamily of angiosperm monoterpene synthases. Sequence comparison of AtTPS10 with previously cloned monoterpene synthases suggests independent events of functional specialization of terpene synthases during the evolution of terpenoid secondary metabolism in gymnosperms and angiosperms. Functional characterization of the AtTPS10 gene was prompted by the availability of Arabidopsis genome sequences. Although Arabidoposis has not been reported to form terpenoid secondary metabolites, the unexpected expression of TPS genes belonging to the TPSb subfamily in this species strongly suggests that terpenoid secondary metabolism is active in the model system Arabidopsis.  相似文献   

16.
Axenically grown Arabidopsis thaliana plants were analysed for the occurrence of trehalose. Using gas chromatography-mass spectrometry (GC-MS) analysis, trehalose was unambiguously identified in extracts from Arabidopsis inflorescences. In a variety of organisms, the synthesis of trehalose is catalysed by trehalose-6-phosphate synthase (TPS; EC 2.4.1.15) and trehalose-6-phosphate phosphatase (TPP; EC 3.1.3.12). Based on EST (expressed sequence tag) sequences, three full-length Arabidopsis cDNAs whose predicted protein sequences show extensive homologies to known TPS and TPP proteins were amplified by RACE-PCR. The expression of the corresponding genes, AtTPSA, AtTPSB and AtTPSC, and of the previously described TPS gene, AtTPS1, was analysed by quantitative RT-PCR. All of the genes were expressed in the rosette leaves, stems and flowers of Arabidopsis plants and, to a lower extent, in the roots. To study the role of the Arabidopsis genes, the AtTPSA and AtTPSC cDNAs were expressed in Saccharomyces cerevisiae mutants deficient in trehalose synthesis. In contrast to AtTPS1, expression of AtTPSA and AtTPSC in the tps1 mutant lacking TPS activity did not complement trehalose formation after heat shock or growth on glucose. In addition, no TPP function could be identified for AtTPSA and AtTPSC in complementation studies with the S. cerevisiae tps2 mutant lacking TPP activity. The results indicate that while AtTPS1 is involved in the formation of trehalose in Arabidopsis, some of the Arabidopsis genes with homologies to known TPS/TPP genes encode proteins lacking catalytic activity in trehalose synthesis.  相似文献   

17.
6-Pyruvoyl-tetrahydropterin synthase (PTPS) is involved in the biosynthesis of tetrahydrobiopterin (BH4), an essential cofactor for enzymes such as the hepatic phenylalanine hydroxylase. BH4 deficiency causes malignant hyperphenylalaninemia. We cloned the human liver cDNA encoding PTPS. The coding region for PTPS contains 145 amino acids and predicts a polypeptide of 16'387 Da. The human amino acid sequence showed a 82% identity with the rat liver sequence. Expression of the cDNA in E. coli yielded the active enzyme and showed immunoreactivity with antibodies against the rat liver PTPS. This is the basis for the molecular understanding of BH4 deficiency in patients suffering from a defect in PTPS activity.  相似文献   

18.
19.
20.
A cDNA encoding potato (Solanum tuberosum L.) 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, the first enzyme of the shikimate pathway, was cloned into phage lambda gt11. The clone represents the first cDNA for this enzyme from any eukaryotic source. The nucleotide sequence of the cDNA was determined, and its identity was confirmed through partial amino acid sequence analysis of the encoded enzyme. The cDNA contains a 1527-base pair open reading frame that encodes a polypeptide with a calculated molecular weight of 56,153. The amino terminus of the deduced polypeptide resembles a chloroplast transit sequence. Amino acid sequence identities between the mature potato enzyme and the homologous isoenzymes from Escherichia coli are only about 22%. The potato cDNA hybridized to various plant mRNAs that are all about 2 kilobases in size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号