首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Copper is an essential trace element in the maintenance of the cardiovascular system. Copper-deficient diets can elicit, in animals, structural and functional changes that are comparable to those observed in coronary heart disease. In this study, the effect of dietary-induced copper deficiency on aortic lesion development was measured by quantitative image analysis in C57BL/6 mice that are susceptible to diet-induced aortic lesions. The diets administered were severely copper deficient (0.2 mg/kg diet), marginally deficient (0.6 mg/kg diet), or copper adequate (6.0 mg/kg diet). Similarly, increased aortic lesion areas and elevated serum cholesterol were demonstrated in both deficient groups, compared with the copper-adequate group. Evidence for graded differences in copper status among the dietary groups was shown by the dose-response increase in liver copper concentration, copper-zinc superoxide dismutase and cytochrome-c oxidase activities, together with serum caeruloplasmin oxidase with increasing intakes of dietary copper. Despite the difference in copper status between the copper marginal and severely deficient groups, similar lesions found in both groups of mice suggest a threshold effect of copper deficiency on lesion formation.  相似文献   

2.
Abstract: Copper deficiency was induced in post-weaning rats by feeding the dams a low copper diet during gestation and lactation. In confirmation of an earlier study, both dopamine and norepinephrine concentrations in the total brain were approximately 30% lower in deficient than in control rats. Doparnine in the corpus striaturm was depressed nearly 60%, but the concentration of norepinephrine in the hypothalamus was unchanged. Tyrosine concentrations in the striatum, hypothalamus, and total brain were not affected by copper deficiency, suggesting a catalytic defect rather than lack of substrate. Copper repletion restored norepinephrine level in total brain but did not affect the low level of dopamine. The results suggest that copper deficiency depresses a catalytic function of the adrenergic pathways and, further, adversely affects a structural component of the dopaminergic system during development.  相似文献   

3.
The toxic milk (tx) mouse is a rodent model for Wilson disease, an inherited disorder of copper overload. Here we assessed the effect of copper accumulation in the tx mouse on zinc and iron metabolism. Copper, zinc and iron concentrations were determined in the liver, kidney, spleen and brain of control and copper-loaded animals by atomic absorption spectroscopy. Copper concentration increased dramatically in the liver, and was also significantly higher in the spleen, kidney and brain of control tx mice in the first few months of life compared with normal DL mice. Hepatic zinc was increased with age in the tx mouse, but zinc concentrations in the other organs were normal. Liver and kidney iron concentrations were significantly lower at birth in tx mice, but increased quickly to be comparable with control mice by 2 months of age. Iron concentration in the spleen was significantly higher in tx mice, but was lower in 5 day old tx pups. Copper-loading studies showed that normal DL mice ingesting 300 mg/l copper in their diet for 3 months maintained normal liver, kidney and brain copper, zinc and iron levels. Copper-loading of tx mice did not increase the already high liver copper concentrations, but spleen and brain copper concentrations were increased. Despite a significant elevation of copper in the brain of the copper-loaded tx mice no behavioural changes were observed. The livers of copper-loaded tx mice had a lower zinc concentration than control tx mice, whilst the kidney had double the concentration of iron suggesting that there was increased erythrocyte hemolysis in the copper-loaded mutants.  相似文献   

4.
Huntington's disease (HD) is caused by a dominant polyglutamine expansion within the N-terminus of huntingtin protein and results in oxidative stress, energetic insufficiency and striatal degeneration. Copper and iron are increased in the striata of HD patients, but the role of these metals in HD pathogenesis is unknown. We found, using inductively-coupled-plasma mass spectroscopy, that elevations of copper and iron found in human HD brain are reiterated in the brains of affected HD transgenic mice. Increased brain copper correlated with decreased levels of the copper export protein, amyloid precursor protein. We hypothesized that increased amounts of copper bound to low affinity sites could contribute to pro-oxidant activities and neurodegeneration. We focused on two proteins: huntingtin, because of its centrality to HD, and lactate dehydrogenase (LDH), because of its documented sensitivity to copper, necessity for normoxic brain energy metabolism and evidence for altered lactate metabolism in HD brain. The first 171 amino acids of wild-type huntingtin, and its glutamine expanded mutant form, interacted with copper, but not iron. N171 reduced Cu(2+)in vitro in a 1:1 copper:protein stoichiometry indicating that this fragment is very redox active. Further, copper promoted and metal chelation inhibited aggregation of cell-free huntingtin. We found decreased LDH activity, but not protein, and increased lactate levels in HD transgenic mouse brain. The LDH inhibitor oxamate resulted in neurodegeneration when delivered intra-striatially to healthy mice, indicating that LDH inhibition is relevant to neurodegeneration in HD. Our findings support a role of pro-oxidant copper-protein interactions in HD progression and offer a novel target for pharmacotherapeutics.  相似文献   

5.
The relationship between metallothionein mRNA levels and the amounts of copper and zinc in liver, kidney and small intestine by feeding dietary cyclodextrin was examined in growing Wistar rats. alpha-, beta- or gamma-cyclodextrin was fed at 50 g/kg of diet for a 7-days period (ad libitum). After feeding, the liver zinc of rats fed beta-cyclodextrin was greater than those of rats fed the other three diets. Copper accumulated in kidney of rats fed alpha- or beta-cyclodextrin. Copper content in the small intestine did not show any alterations among rats fed all kinds of diets. The cyclodextrin-supplemented diets were ineffective in zinc content in every organ. There was the greatest level of copper in serum of rats fed beta-cyclodextrin, whereas the highest level of serum zinc was observed in rats fed gamma-cyclodextrin diet. Northern blot analysis demonstrated that dietary beta- and gamma-cyclodextrins, but not alpha-cyclodextrin markedly increased the metallothionein mRNA in the liver, whereas small intestinal metallothionein mRNA levels were markedly decreased. Kidney metallothionien mRNA levels were raised appreciably by all dietary cyclodextrin intakes. Metallothionein gene expressions in liver, kidney and small intestine were not proportional to liver and serum copper or zinc levels in those tissues. These results suggest that regulation of the metallothionein mRNA levels may at least partly involved with the accumulation of metals as copper in liver and kidney of rats fed cyclodextrins.  相似文献   

6.
The effect of aging on the status of macrominerals and trace elements in tissues was studied using two strains (SAMP1 and SAMR1) of senescence accelerated mouse. Two-month-old, 6-mo-old, and 10-mo-old female SAMP1 and SAMR1 mice were fed a commercial diet. Iron, zinc, copper, calcium, magnesium, phosphorus, sulfur, sodium, and potassium concentrations in blood, liver, kidney, brain, and tibia of the mice were determined. The copper concentration in the brain was significantly increased with age in SAMP1 and SAMR1. In addition, the brain copper levels in SAMP1 were significantly higher than that in SAMR1 at respective ages. The calcium concentration in the kidney was significantly increased with age, but the copper and phosphorus concentrations significantly decreased with age in SAMP1 and SAMR1. In the liver of SAMR1, all minerals measured in this study except for sodium and potassium were significantly decreased with age. In addition, all mineral concentrations in the liver of 2-mo-old mice in SAMR1 except for copper and sodium were markedly higher than those in SAMP1 of the same age. These results suggest that the genetic factor is related to the age-associated mineral changes in tissues.  相似文献   

7.
BackgroundCopper has an important role in nervous system function, as a cofactor of many enzymes and in the synthesis of neurotransmitters. Both the dose and the chemical form of copper can determine the impact of this element on metabolism, the neurological system and the immune system.AimsThe aim of the study was to determine whether and in what form the addition of copper changes the level of amyloid beta and acetylcholinesterase level in selected rat tissues.MethodsThirty, healthy, male, albino Wistar rats aged 7 weeks were randomly divided into 3 groups. Three experimental treatments were used to evaluate the effects of different levels and sources of Cu (6.5 mg kg of diet) in the diet: Cu0 – rats fed a diet without Cu supplementation; Cusalt – rats fed a diet with CuCO3 (6.5 mg kg of diet) during two months of feeding; CuNPs - rats fed a diet with Cu nanoparticles (6.5 mg kg of diet) during two months of feeding. In blood serum and tissue homogenates there rated the indicators proving the potential neurodegenerative effect and epigenetic DNA damage induced by chemical form of copper or lack of additional copper supplementation in diet were determined. There were analysed: level of acetylcholinesterase, β-amyloid, low-density lipoprotein receptor-related protein 1, apyrimidinic endonuclease, thymidine glycosidase, alkylpurine-DNA-N-glycosylase and glycosylated acetylcholinesterase.ResultsIrrespective of the form of copper added, it was found to increase acetylcholinesterase level in the brain, spleen and liver, as well as in the blood plasma of the rats. Copper in the form of CuCO3 was found to increase acetylcholinesterase level in the kidneys. The addition of both forms of copper caused a marked increase in the plasma concentration of β-amyloid in comparison with the diet with no added Cu. The addition of both forms of copper caused a marked increase in the plasma concentration of β-amyloid in comparison with the diet with no added Cu.ConclusionsA lack of added Cu in the diet of rats reduces the concentration of amyloid-β in the blood, whereas administration of copper, in the form of either CuNPs or CuCO3, increases the level of this peptide in the blood. The use of copper in the form of CuNPs in the diet of rats does not increase the level of β-amyloid more than the use of the carbonate form of this element. The use of CuNPs or CuCO3 in the diet of rats increases acetylcholinesterase level in the brain, spleen, liver, and blood. CuNPs in the diet of rats were not found to increase acetylcholinesterase level to a greater extent than Cu+2 carbonate.  相似文献   

8.
Copper deficiency was studied in mice to investigate an interaction between copper and ascorbic acid. Twelve-day-old mutant brindled mice that exhibited signs of copper deficiency were compared to their normal brothers as well as to age-matched suckling mice that were copper deficient (-Cu) because their dams were consuming a copper-deficient diet throughout gestation and lactation, and a fourth group of copper-supplemented ( + Cu) suckling mice that served as dietary controls. Dietary copper deficiency was also produced in older mice by beginning the treatment at birth and continuing for 7 wk. Organ ascorbate levels were determined by high performance liquid chromatography with electrochemical detection. Differences caused by diet and genetics were evident but age-dependent. Compared to controls, liver and kidney ascorbate levels did not change remarkably in young or old copper-deficient mice. Cardiac ascorbate levels were higher in 7-wk-old - Cu mice and lower in 12-d-old - Cu mice, despite hypertrophy in both cases. Spleen ascorbate levels were lower in older -Cu mice and higher in 12-d-old mice, but total spleen ascorbate reflected the hypertrophic and atrophic size in the older and younger -Cu mice, respectively. Brindled mutants had an extremely low level of ascorbate in spleen. Plasma ascorbate was lower in 7-wk-old - Cu mice. Reasons for the alterations in ascorbate levels are not known. Synthesis in liver from D-glucuronate was not altered by dietary copper deficiency in 7-wk-old mice. Synthesis was lower in livers from 12-d-old - Cu and brindled mice compared to control values. However, the difference correlated better with body weight of the mice rather than with degree of copper deficiency. Consequences of the altered organ levels of ascorbate in copper-deficient mice are not completely known.  相似文献   

9.
G Freund 《Life sciences》1979,24(2):145-151
Chronic ethanol consumption further accelerates age-related impairment of shuttle box avoidance learning in mice. The hypothesis was tested that the behavioral impairment is a result of brain lipofuscin pigment deposition, which may be accelerated by ethanol consumption and prevented by the antioxidant effects of pharmacological doses of vitamin E. Feeding an ethanol-containing liquid diet for 5 months did not increase the lipofuscin content when compared with mice pair-fed a liquid diet containing isocaloric amounts of sucrose or standard solid laboratory food containing nutritionally adequate amounts of vitamin E. Supplementation of diets with vitamin E decreased brain lipofuscin content in all groups but failed to prevent the age- or ethanol-induced learning deficit. There was no effect of chronic ethanol consumption on brain weights, DNA, RNA, or protein content.It is concluded that the age-related impairment of avoidance learning is accelerated by chronic alcohol consumption. At the molecular level this acceleration is not caused by an increased brain lipofuscin deposition nor is it prevented by the antioxidant effects of vitamin E.  相似文献   

10.
Wilson's disease (WD) is caused by mutations in the copper transporting ATPase 7B (Atp7b). Patients present with liver pathology or behavioural disturbances. Studies on rodent models for WD so far mainly focussed on liver, not brain. The effect of knockout of atp7b on sensori-motor and cognitive behaviour, as well as neuronal number, inflammatory markers, copper and synaptic proteins in brain were studied in so-called toxic milk mice. Copper accumulated in striatum and hippocampus of toxic milk mice, but not in cerebral cortex. Inflammatory markers were increased in striatum and corpus callosum, but not in cerebral cortex and hippocampus, whereas neuronal numbers were unchanged. Toxic milk mice were mildly impaired in the rotarod and cylinder test and unable to acquire spatial memory in the Morris water maze. Despite the latter observation only synaptophysin of a number of synaptic proteins, was altered in the hippocampus of toxic milk mice. In addition to disturbances in neuronal signalling by increased brain copper, inflammation and inflammatory signalling from the periphery to the brain might add to the behavioural disturbances in the toxic milk mice. These mice can be used to evaluate therapeutic strategies to alleviate behavioural disturbances and cerebral pathology observed in WD.  相似文献   

11.
Copper accumulation and induction of DNA strand breaks were investigated in the brain of Long-Evans Cinnamon (LEC) rats, an animal model for human Wilson disease that is a heritable disease of copper accumulation and copper toxicity in the liver, kidney and brain. Copper contents in the brain of LEC rats increased from 20 weeks of age and were approximately 3.5 to 6 folds higher than those in the brain of WKAH rats at 24 weeks of age. Hepatic copper contents in LEC rats increased from 4 to 12 weeks of age in an age-dependent manner, and then decreased from 16 to 20 weeks of age. Thus, we consider that copper accumulated in the liver was released from severely damaged hepatocytes and deposited in the brain, although copper contents in the brain were 1/20-fold lower than those in the liver. We also evaluated the amounts of DNA single-strand breaks (SSBs) in the brain by comet analysis. The proportions of nuclei in the cerebrum and cerebellum without DNA damage decreased, and nuclei with severe DNA damage appeared in LEC rats at 24 weeks of age. The comet scores of cerebrum and cerebellum cells significantly increased in LEC rats and were significantly higher than those in WKAH rats at 24 weeks of age. The results show that SSBs in LEC rat brain cells are induced at a lower concentration of copper than are SSBs in hepatic cells.  相似文献   

12.
PROJECT: Wilson's disease (WD) is an inherited disorder of copper metabolism characterised by juvenile liver cirrhosis and by neurological symptoms. Copper levels in brain in WD have been reported to be 10 to 15 fold normal values, depending on the different brain regions. Being very few data on copper distribution in central nervous system in WD available, it seemed of interest to study the concentration of copper and of other trace elements (Zn, P, Mg, Ca, Fe and S) in the brain of a patient died for WD. PROCEDURE: a 56 year old woman affected by WD was admitted to our hospital with signs of hepatic failure and died few days later. At autopsy, a brain slice extending from the left to the right hemisphere was divided in 28 samples. On each sample Copper, Iron, Magnesium, Phosphorus, Sulphur, Zinc and Calcium were determined by Induced Coupled Plasma Atomic Emission Spectroscopy. RESULTS: the mean concentration of copper, ranging from 88 to 158 microg/g of dry tissue in all the brain specimens was higher than literature reference values, while that of the other tested elements was considerably lower. CONCLUSIONS: 1) In the brain of WD patient examined the status of trace elements was extensively altered. Further studies are necessary to correlate the concentration of trace elements with pathological lesions and with clinical pictures. 2) The elements considered in our study showed an uneven distribution in different brain areas.  相似文献   

13.
In Alzheimer's disease there is abnormal brain copper distribution, with accumulation of copper in amyloid plaques and a deficiency of copper in neighbouring cells. Excess copper inhibits Abeta (amyloid beta-peptide) production, but the effects of deficiency have not yet been determined. We therefore studied the effects of modulating intracellular copper levels on the processing of APP (amyloid precursor protein) and the production of Abeta. Human fibroblasts genetically disposed to copper accumulation secreted higher levels of sAPP (soluble APP ectodomain)alpha into their medium, whereas fibroblasts genetically manipulated to be profoundly copper deficient secreted predominantly sAPPbeta and produced more amyloidogenic beta-cleaved APP C-termini (C99). The level of Abeta secreted from copper-deficient fibroblasts was however regulated and limited by alpha-secretase cleavage. APP can be processed by both alpha- and beta-secretase, as copper-deficient fibroblasts secreted sAPPbeta exclusively, but produced primarily alpha-cleaved APP C-terminal fragments (C83). Copper deficiency also markedly reduced the steady-state level of APP mRNA whereas the APP protein level remained constant, indicating that copper deficiency may accelerate APP translation. Copper deficiency in human neuroblastoma cells significantly increased the level of Abeta secretion, but did not affect the cleavage of APP. Therefore copper deficiency markedly alters APP metabolism and can elevate Abeta secretion by either influencing APP cleavage or by inhibiting its degradation, with the mechanism dependent on cell type. Overall our results suggest that correcting brain copper imbalance represents a relevant therapeutic target for Alzheimer's disease.  相似文献   

14.
The molecular basis of copper homeostasis copper-related disorders   总被引:5,自引:0,他引:5  
Copper is an essential trace element that can be extremely toxic in excess due to the pro-oxidant activity of copper ions. Inherited disorders of copper transport, Menkes disease (copper deficiency), and Wilson disease (copper toxicosis) are caused by mutations of two closely related Cu transporting-ATPases, and demonstrate the essentiality and potential toxicity of copper. Other copper toxicosis conditions in humans and animals have been described, but are not well understood at a molecular level. Copper homeostatic mechanisms are being discovered. One such mechanism is copper-induced trafficking of the Cu-ATPases, which allows cells to provide copper to secreted cupro-proteins but also to efflux excess copper. Oxidative damage induced by copper may be involved in the pathogenesis of neurodegenerative conditions such as Alzheimer's disease, familial amyotrophic lateral sclerosis, and prion diseases.  相似文献   

15.
BACKGROUND: Cell death induced by intracellular glutathione depletion has been reported to be dependent on the presence of trace amounts of extracellular copper ions. Since little is known about the relationship between glutathione depletion and copper homeostasis, we have in the present study further investigated the role of low amounts of copper ions in glutathione depletion. METHODS: Glutathione turnover was investigated in HeLa and hepatoma cell cultures with normal and low cysteine content in the presence of copper ions (1 and 10micromol/L) and two other glutathione-stimulating agents (lipoic acid and mercury ions). RESULTS: Copper ions (10micromol/L) caused relatively small increases in total amount of glutathione (the sum of the intracellular and the extracellular amount of glutathione) in HeLa and hepatoma cell cultures with normal cysteine levels (420nmol/mL) compared to control cell cultures, whereas lipoic acid and mercury ions strongly increased total glutathione in both types of cell cultures. Lower amount of total glutathione was observed in cell cultures with a lower cysteine levels (84nmol/mL), which is similar to that in human plasma. A strongly decreased total amount of glutathione in the presence of copper ions was observed in hepatoma cell cultures with lower cysteine levels, whereas the other agents showed effects similar to those described for cell cultures with normal cysteine levels. CONCLUSION: Glutathione synthesis in hepatoma cell cultures is probably more sensitive to a low cysteine level than HeLa cell cultures, and the presence of copper ions further decreases the availability of cysteine probably by increasing the disulfide binding to cysteine residues in extracellular proteins, which causes a further decrease of total glutathione.  相似文献   

16.
This study investigated the potentially detrimental effects of copper and elevated aquatic CO(2) (hypercarbia), alone or in combination, on pacu, Piaractus mesopotamicus. Fish were exposed for 48h to control (no copper addition in normocarbia), to 400μg Cu(2+)L(-1), to hypercarbic (1% CO(2); PCO(2)=6.9mm Hg) water and to 400μg Cu(2+)L(-1)+hypercarbia. In liver the single factors caused an increase in lipid hydroperoxide concentration that was not observed when the factors were combined. Copper exposure elicited increased hepatic superoxide dismutase activity, irrespective of aquatic CO(2) level. On the other hand, the effects of copper on hepatic glutathione peroxidase activity were dependent on water CO(2) levels. The two stressors combined did not affect hepatic catalase activity. Hypercarbic water caused a decline in plasma glucose concentration, but this was not observed when hypercarbia was combined with copper exposure. Copper caused a decrease in branchial Na(+)/K(+)-ATPase activity that was independent of water CO(2) level. Copper caused an increase in branchial metallothionein concentration that was independent of water CO(2) level. Thus, branchial metallothionein and Na(+)/K(+)-ATPase were effective biomarkers of copper exposure that were not affected by water CO(2) level.  相似文献   

17.
Copper is an essential trace metal that is required as a catalytic co-factor or a structural component of several important enzymes. However, since excess of copper can also harm cells due to its potential to catalyse the generation of toxic reactive oxygen species, transport of copper and the cellular copper content are tightly regulated. Astrocytes are known to efficiently take up copper ions, but it was not known whether these cells are also able to export copper. Treatment of astrocyte-rich primary cultures for 24 h with copper chloride caused a concentration-dependent increase in the specific cellular copper content. During further 24 h incubation in the absence of copper chloride, the copper-loaded astrocytes remained viable and released up to 45% of the accumulated copper. The rate of copper export was proportional to the amount of cellular copper, was almost completely prevented by lowering the incubation temperature to 4 °C and was partly prevented by the endocytosis inhibitor amiloride. Copper export is most likely mediated by the copper ATPase ATP7A, since this transporter is expressed in astrocyte cultures and its cellular location is strongly affected by the absence or the presence of extracellular copper. The potential of cultured astrocytes to export copper suggests that astrocytes provide neighbouring cells in brain with this essential trace element.  相似文献   

18.
The interaction between dietary copper and zinc as determined by tissue concentrations of trace elements was investigated in male Sprague-Dawley rats. Animals were fed diets in a factorial design with two levels of copper (0.5, 5 μg/g) and five levels of zinc (1, 4.5, 10, 100, 1000 μg/g) for 42 d. In rats fed the low copper diet, as dietary zinc concentration increased, the level of copper decreased in brain, testis, spleen, heart, liver, and intestine. There was no significant effect of dietary copper on tissue zinc levels. In the zinc-deficient groups, the level of iron was higher in most tissues than in tissues from controls (5 μg Cu, 100 μg Zn/g diet). In the copper-deficient groups, iron concentration was higher than control values only in the liver. These data show that dietary zinc affected tissue copper levels primarily when dietary copper was deficient, that dietary copper had no effect on tissue zinc, and that both zinc deficiency and copper deficiency affected tissue iron levels.  相似文献   

19.
Copper is an essential trace element which forms an integral component of many enzymes. While trace amounts of copper are needed to sustain life, excess copper is extremely toxic. An attempt is made here to present the current understanding of the normal transport of copper in relation to the absorption, intracellular transport and toxicity. Wilson disease is a genetic disorder of copper transport resulting in the accumulation of copper in organs such as liver and brain which leads to progressive hepatic and neurological damage. The gene responsible for Wilson disease (ATP7B) is predicted to encode a putative copper-transporting P-type ATPase. An important feature of this ATPase is the presence of a large N-terminal domain that contains six repeats of a copper-binding motif which is thought to be responsible for binding this metal prior to its transport across the membrane. We have cloned, expressed and purified the N-terminal domain (approximately 70 kD) of Wilson disease ATPase. Metal-binding properties of the domain showed the protein to bind several metals besides copper; however, copper has a higher affinity for the domain. The copper is bound to the domain in Cu(I) form with a copper: protein ratio of 6.5:1. X-ray absorption studies strongly suggest Cu(I) atoms are ligated to cysteine residues. Circular dichroism spectral analyses suggest both secondary and tertiary structural changes upon copper binding to the domain. Copper-binding studies suggest some degree of cooperativity in binding of copper. These studies as well as detailed structural information of the copper-binding domain will be crucial in determining the specific role played by the copper-transporting ATPase in the homeostatic control of copper in the body and how the transport of copper is interrupted by mutations in the ATPase gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号