首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of our study was to assess the associations of HSP90AB1 copy number variations (CNVs) with systemic lupus erythematosus (SLE) risk and glucocorticoids (GCs) efficacy, as well as the relationship between HSP90AB1 single‐nucleotide polymorphisms (SNPs) and GCs efficacy. HSP90AB1 CNVs and SLE risk were analysed in 519 patients and 538 controls. Patients treated with GCs were followed up for 12 weeks and were divided into sensitive and insensitive groups to investigate the effects of CNVs (419 patients) and SNPs (457 patients) on the efficacy of GCs. Health‐related quality of life (HRQoL) was also measured by SF‐36 at baseline and week 12 to explore the relationship between CNVs/SNPs and HRQoL improvements in Chinese SLE patients. Our results indicated a statistically significant association between HSP90AB1 CNVs and SLE (PBH = 0.039), and this association was more pronounced in the female subgroup (PBH = 0.039). However, we did not detect association of HSP90AB1 CNVs/SNPs with efficacy of GCs. But we found a marginal association between SNP rs13296 and improvement in Role‐emotional, while this association was not strong enough to survive in the multiple testing corrections. Collectively, our findings suggest that the copy number of HSP90AB1 is associated with SLE susceptibility. But copy number and polymorphisms of HSP90AB1 may not be associated with efficacy of GCs.  相似文献   

2.
Obesity is one of the most complex human diseases that are widely concerned and studied. More recently, copy number variations (CNVs) emerge as another important genetic marker to influence various human diseases. To elucidate the relationship between obesity and CNVs, this current study selected obesity-related candidate CNVs and analyzed their association with body mass index (BMI). Results showed that a CNV locus, 8q24.3, was significantly different (P = 0.0070) in CNV frequency between the obese and healthy controls in a young eastern Chinese cohort, while no statistical significance was observed in other seven candidate loci including well reported 10q11.22 and 16p11.2 loci. The association of 8q24.3 CNVs with BMI of the subjects only showed marginal significance, while the copy number (CN) of 5p15.33 had a significant correlation with the BMI of the subject. These results suggested that 8q24.3 CN gains was associated with obesity, and 5p15.33 might also contribute to obesity pathogenesis, highlighting the importance of these CNVs for obesity risks, as well as providing new evidence for CNVs in the pathology of common diseases.  相似文献   

3.
A great amount of copy number variations (CNVs) are identified in the human genome. Most of them are neutral; nevertheless, the role of CNVs in the pathogenesis of hereditary diseases is still significant. Especially, this is important for neuropsychiatric disorders, such as intellectual disability and autism. When analyzing the CNV-associated diseases, the controversial question is to distinguish the pathogenic CNVs among common polymorphic variants and to predict the disease risk in other children of the family. Unfortunately, the mechanisms of phenotypic expression and incomplete penetrance of CNVs remain largely unknown. Currently, incomplete penetrance and variable expressivity of CNVs are attributed mainly to allelic interaction of different genetic variations. However, epigenetic mechanisms of gene expression regulation in the context of structural variation of the genome are poorly explored. It is possible that epigenetic modifications of the genome regions with CNVs may underlie the understanding of ways of phenotypic manifestations of structural variations in the human genome.  相似文献   

4.
Obesity is a serious health problem with strong genetic determination. Copy number variation (CNV) is a common type of genomic variant associated with some complex human diseases. However, it is not clear how CNVs contribute to the etiology of obesity. In this study, we examined 1,000 unrelated US whites to search for CNVs that may predispose to obesity. We focused our analyses on the Prader‐Willi syndrome (PWS) critical region (chromosome 15q11–q13), because the PWS region is a hotspot for CNV generation and obesity is one of the major clinical manifestations for chromosome abnormalities at this region. We constructed a map containing 39 CNVs at the PWS critical region with CNV occurrence rates higher than 1%. Among them, three CNVs were significantly associated with body fat mass (P < 0.05), with a higher copy number (CN) associated with an increase of 5.08–9.77 kg in body fat mass. These three CNVs are close to two known PWS genes, NDN (necdin homolog) and C15orf2 (chromosome 15 open reading frame 2), and partially overlap with another obesity gene PWRN1 (Prader‐Willi region nonprotein‐coding RNA 1). Interestingly, our recently published whole genome association scan study using the same sample by examining single‐nucleotide polymorphisms (SNPs) did not find any significant associations at these CNV regions, suggesting the importance of examining both CNVs and SNPs for better understanding of genetic basis of obesity. Further studies are warranted to validate these CNVs and their importance to obesity.  相似文献   

5.
We conducted a comprehensive study of copy number variants (CNVs) well-tagged by SNPs (r(2)≥ 0.8) by analyzing their effect on gene expression and their association with disease susceptibility and other complex human traits. We tested whether these CNVs were more likely to be functional than frequency-matched SNPs as trait-associated loci or as expression quantitative trait loci (eQTLs) influencing phenotype by altering gene regulation. Our study found that CNV-tagging SNPs are significantly enriched for cis eQTLs; furthermore, we observed that trait associations from the NHGRI catalog show an overrepresentation of SNPs tagging CNVs relative to frequency-matched SNPs. We found that these SNPs tagging CNVs are more likely to affect multiple expression traits than frequency-matched variants. Given these findings on the functional relevance of CNVs, we created an online resource of expression-associated CNVs (eCNVs) using the most comprehensive population-based map of CNVs to inform future studies of complex traits. Although previous studies of common CNVs that can be typed on existing platforms and/or interrogated by SNPs in genome-wide association studies concluded that such CNVs appear unlikely to have a major role in the genetic basis of several complex diseases examined, our findings indicate that it would be premature to dismiss the possibility that even common CNVs may contribute to complex phenotypes and at least some common diseases.  相似文献   

6.
Li X  Zhou J  Nahas SA  Wan H  Hu H  Gatti RA 《Genomics》2012,99(2):96-100
Hypersensitivity to radiation exposure is a major challenge to radiotherapy in the treatment of cancer patients. Copy number variations (CNVs) are believed to identify genomic regions of functional significance for radiosensitivity (RS) but have yet to be systematically investigated. We used Affymetrix 6.0 SNP arrays to survey common CNVs in a cohort of 50 radiosensitive lymphoblastoid cell lines (RS-LCLs) derived from patients with undiagnosed diseases. A total of 317 CNVs that were present in at least 10% of the studied cell lines were identified. Three hundred and eight CNVs overlapped with polymorphic CNVs, 13 of which were significantly enriched in the RS-LCLs compared to the reference. The remaining 9 CNVs were novel. The majority of these enriched and novel CNVs were chromosomal gains. The dominance of the chromosomal gains over losses is inconsistent with the traditional concept of molecular basis of RS and suggests more complex genetic mechanisms for RS.  相似文献   

7.
Drug-induced liver toxicity is a main reason for withdrawals of new drugs in late clinical phases and post-launch of the drugs. Thus, hepatotoxicity screening of drug candidates in pre-clinical stage is important for reducing drug attrition rates during the clinical development process. Here, we show commercially available hepatocytes that could be used for early toxicity evaluation of drug candidates. From our hepatic differentiation technology, we obtained highly pure (≥98%) hepatocytes from human embryonic stem cells (hESCs) having mature phenotypes and similar gene expression profiles with those of primary human tissues. Furthermore, we optimized 96-well culture condition of hESC-derived hepatocytes suitable for toxicity tests in vitro. To this end, we demonstrated the efficacy of our optimized hepatocyte model for predicting hepatotoxicity against the Chinese herbal medicines and showed that toxicity patterns from our hepatocyte model was similar to those of human primary cultured hepatocytes. We conclude that toxicity test using our hepatocyte model could be a good alternative cell source for pre-clinical study to predict potential hepatotoxicity in drug discovery industries.  相似文献   

8.
Epilepsy is one of the common diseases seriously threatening life and health of human. More than 50 million people are suffering from this condition and anticonvulsant agents are the main treatment. However, side effects and intolerance, and a lack of efficacy limit the application of the current anticonvulsant agents. The search for new anticonvulsant agents with higher efficacy and lower toxicity continues to be the focus and task in medicinal chemistry. Numbers of triazole derivatives as clinical drugs or candidates have been frequently employed for the treatment of various types of diseases, which have proved the importance of this heterocyclic nucleus in drug design and discovery. Recently many endeavours were made to involve the triazole into the anticonvulsants design, which have brought lots of active compounds. This work is an attempt to systematically review the research of triazole derivatives in the design and development of anticonvulsant agents during the past two decades.  相似文献   

9.
Germline copy number variation (CNV) is considered to be an important form of human genetic polymorphisms. Previous studies have identified amounts of CNVs in human genome by advanced technologies, such as comparative genomic hybridization, single nucleotide genotyping, and high-throughput sequencing. CNV is speculated to be derived from multiple mechanisms, such as nonallelic homologous recombination (NAHR) and nonhomologous end-joining (NHEJ). CNVs cover a much larger genome scale than single nucleotide polymorphisms (SNPs), and may alter gene expression levels by means of gene dosage, gene fusion, gene disruption, and long-range regulation effects, thus affecting individual phenotypes and playing crucial roles in human pathogenesis. The number of studies linking CNVs with common complex diseases has increased dramatically in recent years. Here, we provide a comprehensive review of the current understanding of germline CNVs, and summarize the association of germline CNVs with the susceptibility to a wide variety of human diseases that were identified in recent years. We also propose potential issues that should be addressed in future studies.  相似文献   

10.
In dose-finding clinical study, it is common that multiple endpoints are of interest. For instance, efficacy and toxicity endpoints are both primary in clinical trials. In this article, we propose a joint model for correlated efficacy-toxicity outcome constructed with Archimedean Copula, and extend the continual reassessment method (CRM) to a bivariate trial design in which the optimal dose for phase III is based on both efficacy and toxicity. Specially, considering numerous cases that continuous and discrete outcomes are observed in drug study, we will extend our joint model to mixed correlated outcomes. We demonstrate through simulations that our algorithm based on Archimedean Copula model has excellent operating characteristics.  相似文献   

11.
Copy number variation (CNV) is a major genetic polymorphism contributing to genetic diversity and human evolution. Clinical application of CNVs for diagnostic purposes largely depends on sufficient population CNV data for accurate interpretation. CNVs from general population in currently available databases help classify CNVs of uncertain clinical significance, and benign CNVs. Earlier studies of CNV distribution in several populations worldwide showed that a significant fraction of CNVs are population specific. In this study, we characterized and analyzed CNVs in 3,017 unrelated Thai individuals genotyped with the Illumina Human610, Illumina HumanOmniexpress, or Illumina HapMap550v3 platform. We employed hidden Markov model and circular binary segmentation methods to identify CNVs, extracted 23,458 CNVs consistently identified by both algorithms, and cataloged these high confident CNVs into our publicly available Thai CNV database. Analysis of CNVs in the Thai population identified a median of eight autosomal CNVs per individual. Most CNVs (96.73%) did not overlap with any known chromosomal imbalance syndromes documented in the DECIPHER database. When compared with CNVs in the 11 HapMap3 populations, CNVs found in the Thai population shared several characteristics with CNVs characterized in HapMap3. Common CNVs in Thais had similar frequencies to those in the HapMap3 populations, and all high frequency CNVs (>20%) found in Thai individuals could also be identified in HapMap3. The majorities of CNVs discovered in the Thai population, however, were of low frequency, or uniquely identified in Thais. When performing hierarchical clustering using CNV frequencies, the CNV data were clustered into Africans, Europeans, and Asians, in line with the clustering performed with single nucleotide polymorphism (SNP) data. As CNV data are specific to origin of population, our population-specific reference database will serve as a valuable addition to the existing resources for the investigation of clinical significance of CNVs in Thais and related ethnicities.  相似文献   

12.
Copy number variations (CNVs), a common genomic mutation associated with various diseases, are important in research and clinical applications. Whole genome amplification (WGA) and massively parallel sequencing have been applied to single cell CNVs analysis, which provides new insight for the fields of biology and medicine. However, the WGA-induced bias significantly limits sensitivity and specificity for CNVs detection. Addressing these limitations, we developed a practical bioinformatic methodology for CNVs detection at the single cell level using low coverage massively parallel sequencing. This method consists of GC correction for WGA-induced bias removal, binary segmentation algorithm for locating CNVs breakpoints, and dynamic threshold determination for final signals filtering. Afterwards, we evaluated our method with seven test samples using low coverage sequencing (4∼9.5%). Four single-cell samples from peripheral blood, whose karyotypes were confirmed by whole genome sequencing analysis, were acquired. Three other test samples derived from blastocysts whose karyotypes were confirmed by SNP-array analysis were also recruited. The detection results for CNVs of larger than 1 Mb were highly consistent with confirmed results reaching 99.63% sensitivity and 97.71% specificity at base-pair level. Our study demonstrates the potential to overcome WGA-bias and to detect CNVs (>1 Mb) at the single cell level through low coverage massively parallel sequencing. It highlights the potential for CNVs research on single cells or limited DNA samples and may prove as a promising tool for research and clinical applications, such as pre-implantation genetic diagnosis/screening, fetal nucleated red blood cells research and cancer heterogeneity analysis.  相似文献   

13.
The biological redundancies in molecular networks of complex diseases limit the efficacy of many single drug therapies. Combination therapeutics, as a common therapeutic method, involve pharmacological intervention using several drugs that interact with multiple targets in the molecular networks of diseases and may achieve better efficacy and/or less toxicity than monotherapy in practice. The development of combination therapeutics is complicated by several critical issues, including identifying multiple targets, targeting strategies and the drug combination. This review summarizes the current achievements in combination therapeutics, with a particular emphasis on the efforts to develop combination therapeutics for complex diseases.  相似文献   

14.
Plant genome diversity varies from single nucleotide polymorphisms to large-scale deletions, insertions, duplications, or re-arrangements. These re-arrangements of sequences resulting from duplication, gains or losses of DNA segments are termed copy number variations (CNVs). During the last decade, numerous studies have emphasized the importance of CNVs as a factor affecting human phenotype; in particular, CNVs have been associated with risks for several severe diseases. In plants, the exploration of the extent and role of CNVs in resistance against pathogens and pests is just beginning. Since CNVs are likely to be associated with disease resistance in plants, an understanding of the distribution of CNVs could assist in the identification of novel plant disease-resistance genes. In this paper, we review existing information about CNVs; their importance, role and function, as well as their association with disease resistance in plants.  相似文献   

15.
Almost two decades ago, the sequencing of the human genome and high throughput technologies came to revolutionize the clinical and therapeutic approaches of patients with complex human diseases. In acute lymphoblastic leukemia (ALL), the most frequent childhood malignancy, these technologies have enabled to characterize the genomic landscape of the disease and have significantly improved the survival rates of ALL patients. Despite this, adverse reactions from treatment such as toxicity, drug resistance and secondary tumors formation are still serious consequences of chemotherapy, and the main obstacles to reduce ALL-related mortality. It is well known that germline variants and somatic mutations in genes involved in drug metabolism impact the efficacy of drugs used in oncohematological diseases therapy. So far, a broader spectrum of clinically actionable alterations that seems to be crucial for the progression and treatment response have been identified. Although these results are promising, it is necessary to put this knowledge into the clinics to help physician make medical decisions and generate an impact in patients’ health. This review summarizes the gene variants and clinically actionable mutations that modify the efficacy of antileukemic drugs. Therefore, knowing their genetic status before treatment is critical to reduce severe adverse effects, toxicities and life-threatening consequences in ALL patients.  相似文献   

16.

Background  

Genome-wide association studies (GWAS) based on single nucleotide polymorphisms (SNPs) revolutionized our perception of the genetic regulation of complex traits and diseases. Copy number variations (CNVs) promise to shed additional light on the genetic basis of monogenic as well as complex diseases and phenotypes. Indeed, the number of detected associations between CNVs and certain phenotypes are constantly increasing. However, while several software packages support the determination of CNVs from SNP chip data, the downstream statistical inference of CNV-phenotype associations is still subject to complicated and inefficient in-house solutions, thus strongly limiting the performance of GWAS based on CNVs.  相似文献   

17.
The advent and application of high-resolution array-based comparative genome hybridization (array CGH) has led to the detection of large numbers of copy number variants (CNVs) in patients with developmental delay and/or multiple congenital anomalies as well as in healthy individuals. The notion that CNVs are also abundantly present in the normal population challenges the interpretation of the clinical significance of detected CNVs in patients. In this review we will illustrate a general clinical workflow based on our own experience that can be used in routine diagnostics for the interpretation of CNVs.  相似文献   

18.
Molecular methods, by which copy number variants (CNVs) detection is available, have been gradually introduced into routine diagnostics over the last 15 years. Despite this, some CNVs continue to be a huge challenge when it comes to clinical interpretation. CNVs are an important source of normal and pathogenic variants, but, in many cases, their impact on human health depends on factors that are not yet known. Therefore, perception of their clinical consequences can change over time, as our knowledge grows. This review summarises guidelines that facilitate correct classification of identified changes and discusses difficulties with the interpretation of rare, small CNVs.  相似文献   

19.
拷贝数变异的全基因组关联分析   总被引:3,自引:0,他引:3  
基因组拷贝数变异(copy number variations,CNVs)是指与基因组参考序列相比,基因组中≥1 kb的DNA片段插入、缺失和/或扩增,及其互相组合衍生出的复杂变异.由于其具有分布范围广、可遗传、相对稳定和高度异质性等特点,目前认为,CNVs是一种新的可以作为疾病易感标志的基因组DNA多态性,其变异引起的基因剂量改变可以导致表型改变.最近,一种基于CNVs的新的疾病易感基因鉴定策略——CNV全基因组关联分析开始出现,这一策略和传统的基于单核苷酸多态性的关联分析具有互补性,通过认识基因组结构变异可以认识复杂疾病的分子机制和遗传基础.  相似文献   

20.
Chromosome microarray analysis (CMA) has proven to be a powerful tool in postnatal patients with intellectual disabilities. However, the diagnostic capability of CMA in patients with congenital oral clefts remain mysterious. Here, we present our clinical experience in implementing whole-genome high-resolution SNP arrays to investigate 33 patients with syndromic and nonsyndromic oral clefts in whom standard karyotyping analyses showed normal karyotypes. We aim to identify the genomic aetiology and candidate genes in patients with congenital oral clefts. CMA revealed copy number variants (CNVs) in every patient, which ranged from 2 to 9 per sample. The size of detected CNVs varied from 100 to 3.2 Mb. In 33 patients, we identified six clinically significant CNVs. The incidence of clinically significant CNVs was 18.2% (6/33). Three of these six CNVs were detected in patients with nonsyndromic clefts, including one who presented with isolated cleft lip with cleft palate (CLP) and two with cleft palate only (CPO). The remaining three CNVs were detected in patients with syndromic clefts. However, no CNV was detected in patients with cleft lip only (CLO). The six clinically significant CNVs were as follows: 8p23.1 microduplication (198 kb); 10q22.2-q22.3 microdeletion (1766 kb); 18q12.3 microduplication (638 kb); 20p12.1 microdeletion (184 kb); 6q26 microdeletion (389 kb); and 22q11.21-q11.23 microdeletion (3163 kb). In addition, two novel candidate genes for oral clefts, KAT6B and MACROD2, were putatively identified. We also found a CNV of unknown clinical significance with a detection rate of 3.0% (1/33). Our results further support the notion that CNVs significantly contributed to the genetic aetiology of oral clefts and emphasize the efficacy of whole-genome high-resolution SNP arrays to detect novel candidate genes in patients with syndromic and nonsyndromic clefts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号