首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The study of cell death in higher plants and animals has revealed the existence of an active ('programmed') process in most types of cell, and similarities in cell death between plants, animals, yeast and bacteria suggest an evolutionarily ancient origin of programmed cell death (PCD). Despite their global importance in primary production, information on algal cell death is limited. Algal cell death could have similarities with metazoan cell death. One morphotype of metazoan PCD, apoptosis, can be induced by light deprivation in the unicellular chlorophyte Dunaliella tertiolecta. The situation in other algal taxa is less clear. We used a model dinoflagellate (Amphidinium carterae) to test whether mortality during darkness and culture senescence showed apoptotic characteristics. Using transmission electron microscopy, fluorescent biomarkers, chlorophyll fluorescence and particulate carbon analysis we analysed the process of cell mortality and found that light deprivation caused mass mortality. By contrast, fewer dead cells (5-20% of the population) were found in late-phase cultures, while a similar degenerate cell morphology (shrunken, chlorotic) was observed. On morphological grounds, our observations suggest that the apoptotic cell death described in D. tertiolecta does not occur in A. carterae. Greater similarity was found with paraptosis, a recently proposed alternative morphotype of PCD. A paraptotic conclusion is supported by inconclusive DNA fragmentation results. We emphasize the care that must be taken in transferring fundamental paradigms between phylogenetically diverse cell types and we argue for a greater consistency in the burden of proof needed to assign causality to cell death processes.  相似文献   

3.
4.
Dinoflagellate genomes present unique challenges including large size, modified DNA bases, lack of nucleosomes, and condensed chromosomes. EST sequencing has shown that many genes are found as many slightly different variants implying that many copies are present in the genome. As a preliminary survey of the genome our goal was to obtain genomic sequences for 47 genes from the dinoflagellate Amphidinium carterae. A PCR approach was used to avoid problems with large insert libraries. One primer set was oriented inward to amplify the genomic complement of the cDNA and a second primer set would amplify outward between tandem repeats of the same gene. Each gene was also tested for a spliced leader using cDNA as template. Almost all (14/15) of the highly expressed genes (i.e. those with high representation in the cDNA pool) were shown to be in tandem arrays with short intergenic spacers, and most were trans-spliced. Only two moderately expressed genes were found in tandem arrays. A polyadenylation signal was found in genomic copies containing the sequence AAAAG/C at the exact polyadenylation site and was conserved between species. Four genes were found to have a high intron density (>5 introns) while most either lacked introns, or had only one to three. Actin was selected for deeper sequencing of both genomic and cDNA copies. Two clusters of actin copies were found, separated from each other by many non-coding features such as intron size and sequence. One intron-rich gene was selected for genomic walking using inverse PCR, and was not shown to be in a tandem repeat. The first glimpse of dinoflagellate genome indicates two general categories of genes in dinoflagellates, a highly expressed tandem repeat class and an intron rich less expressed class. This combination of features appears to be unique among eukaryotes.  相似文献   

5.
BACKGROUND: Copper(II) is a heavy metal whose levels have increased in some marine ecosystems to polluting levels. Dinoflagellates, an important phytoplankton group, are at the base of aquatic food chains and bioaccumulation of copper by these microorganisms can result in complex ecosystem alterations, so we investigated how copper disturbs those cells. METHODS: Cytotoxic effects of sublethal and lethal copper concentrations ranging from 4.2 nM (control condition) to 3.13 microM estimated labile copper were studied in batch cultures of Amphidinium carterae. Cell morphology, motility, autofluorescence, and fluorescein diacetate (FDA)-dependent fluorescence generation were evaluated by flow cytometry (FCM) and microscopy. RESULTS: Exposure of A. carterae to toxic levels of copper impaired cell mobility, delayed cell proliferation, led to increased green autofluorescence, and at 3.13 microM labile copper also induced encystment and death. Chlorophyll fluorescence, however, was not affected. Kinetic FCM assay of FDA-dependent fluorescence generation showed a dose-dependent enhancement of fluorescein fluorescence immediately after copper addition and in cultures with sustained exposure to this toxicant. CONCLUSIONS: Our data suggest that copper toxicity occurs quickly at the membrane level in relation to oxidative stress generation. Based on fluorescence kinetic studies, the Na(+)/H(+) antiporter seemed to be affected by copper, thereby affecting intracellular pH.  相似文献   

6.
Minicircular plastid DNA in the dinoflagellate Amphidinium operculatum   总被引:1,自引:0,他引:1  
Plastid DNA was purified from the dinoflagellate Amphidinium operculatum. The genes atpB, petD, psaA, psbA and psbB have been shown to reside on single-gene minicircles of a uniform size of 2.3–2.4 kb. The psaA and psbB genes lack conventional initiation codons in the expected positions, and may use GTA for translation initiation. There are marked biases in codon preference. The predicted PsbA protein lacks the C-terminal extension which is present in all other photosynthetic organisms except Euglena gracilis, and there are other anomalies elsewhere in the predicted amino acid sequences. The non-coding regions of the minicircles contain a “core” region which includes a number of stretches that are highly conserved across all minicircles and modular regions that are conserved within subsets of the minicircles. Received: 8 September 1999 / Accepted: 10 November 1999  相似文献   

7.
Carbonyl carotenoids are important constituents of the antenna complexes of marine organisms. These carotenoids possess an excited state with a charge-transfer character (intramolecular charge transfer state, ICT), but many details of the carotenoid to chlorophyll energy transfer mechanisms are as yet poorly understood. Here, we employ femtosecond transient absorption spectroscopy to study energy transfer pathways in the intrinsic light-harvesting complex (LHC) of dinoflagellates, which contains the carbonyl carotenoid peridinin. Carotenoid to chlorophyll energy transfer efficiency is about 90% in the 530-550 nm region, where the peridinin S2 state transfers energy with an efficiency of 25-50%. The rest proceeds via the S1/ICT channel, and the major S1/ICT-mediated energy transfer pathway utilizes the relaxed S1/ICT state and occurs with a time constant of 2.6 ps. Below 525 nm, the overall energy transfer efficiency drops because of light absorption by another carotenoid, diadinoxanthin, that contributes only marginally to energy transfer. Instead, its role is likely to be photoprotection. In addition to the peridinin-Chl-a energy transfer, it was shown that energy transfer also occurs between the two chlorophyll species in LHC, Chl-c2, and Chl-a. The time constant characterizing the Chl-c2 to Chl-a energy transfer is 1.4 ps. The results demonstrate that the properties of the S1/ICT state specific for carbonyl carotenoids is the key to ensure the effective harvesting of photons in the 500-600 nm region, which is of vital importance to underwater organisms.  相似文献   

8.
The main-form (MFPCP) and high-salt (HSPCP) peridinin-chlorophyll a proteins from the dinoflagellate Amphidinium carterae were investigated using absorption, fluorescence, fluorescence excitation, two-photon, and fast-transient optical spectroscopy. Pigment analysis has demonstrated previously that MFPCP contains eight peridinins and two chlorophyll (Chl) a molecules, whereas HSPCP has six peridinins and two Chl a molecules [Sharples, F. P., et al. (1996) Biochim. Biophys. Acta 1276, 117-123]. Absorption spectra of the complexes were recorded at 10 K and analyzed in the 400-600 nm region by summing the individual 10 K spectra of Chl a and peridinin recorded in 2-MTHF. The absorption spectral profiles of the complexes in the Q(y) region between 650 and 700 nm were fit using Gaussian functions. The absorption and fluorescence spectra from both complexes exhibit several distinguishing features that become evident only at cryogenic temperatures. In particular, at low temperatures the Q(y) transitions of the Chls bound in the HSPCP complex are split into two well-resolved bands. Fluorescence excitation spectroscopy has revealed that the peridinin-to-Chl a energy transfer efficiency is high (>95%). Transient absorption spectroscopy has been used to measure the rate of energy transfer between the two bound Chls which is a factor of 2.9 slower in HSPCP than in MFPCP. The kinetic data are interpreted in terms of the F?rster mechanism describing energy transfer between weakly coupled, spatially fixed, donor-acceptor Chl a molecules. The study provides insight into the molecular factors that control energy transfer in this class of light-harvesting pigment-protein complexes.  相似文献   

9.
10.
Summary Reproductive cells (androgonidia) ofVolvox carteri f.weismannia divide to form packets of 64 or 128 sperm cells. The androgonidium morphology, stages of mitosis, and cytokinesis were examined by electron microscopy. The biflagellate androgonidium loses its flagella before mitosis but the flagellar bases at the anterior end of the cell are retained. Two additional basal bodies are formed and the nucleus migrates from its central position to the area of the basal bodies before mitosis begins. A five-layered kinetochore is present on the chromosomes and remnant nucleolar material persists during mitosis. A furrow at the chloroplast end of the cell and the formation of phycoplast microtubules and vesicles signal the beginning of cytokinesis at early telophase. The cells maintain cytoplasmic connections until after the packet of sperm cells completes its development.  相似文献   

11.
The major light-harvesting complex of Amphidinium (A.) carterae, chlorophyll-a–chlorophyll-c 2–peridinin–protein complex (acpPC), was studied using ultrafast pump-probe spectroscopy at low temperature (60 K). An efficient peridinin–chlorophyll-a energy transfer was observed. The stimulated emission signal monitored in the near-infrared spectral region was stronger when redder part of peridinin pool was excited, indicating that these peridinins have the S1/ICT (intramolecular charge-transfer) state with significant charge-transfer character. This may lead to enhanced energy transfer efficiency from “red” peridinins to chlorophyll-a. Contrary to the water-soluble antenna of A. carterae, peridinin–chlorophyll-a protein, the energy transfer rates in acpPC were slower under low-temperature conditions. This fact underscores the influence of the protein environment on the excited-state dynamics of pigments and/or the specificity of organization of the two pigment–protein complexes.  相似文献   

12.
A cAMP dependent protein kinase (PKA) was identified in the dinoflagellate Amphidinium operculum. In vitro kinase activity towards kemptide, a PKA-specific substrate, was not detectable in crude lysates. However, fractionation of dinoflagellate extracts by gel filtration chromatography showed PKA-like activity toward kemptide at approximately 66 kDa. These findings suggest that possible low molecular mass inhibitors in crude lysates were removed by the gel filtration chromatography. Pre-incubation of extracts with cAMP prior to chromatography resulted in an apparent molecular mass shift in the in vitro kinase assay to 40 kDa. An in-gel kinase assay reflected activity of the free catalytic subunit at approximately 40 kDa. Furthermore, western blotting with an antibody to the human PKA catalytic subunit confirmed a catalytic subunit with a mass of approximately 40 kDa. Results from this study indicate that the PKA in A. operculatum has a catalytic subunit of similar size to that in higher eukaryotes, but with a holoenzyme of a size suggesting a dimeric, rather than tetrameric structure.  相似文献   

13.
Crystals of a water-soluble (Mr approximately 39,000) peridinin-chlorophyll a protein from Amphidinium carterae are reported. The crystals diffract to 2.2 A and belong to a monoclinic (B2) and a triclinic (P1) space group. Spectra of the protein in the crystal and in solution are almost identical.  相似文献   

14.
The peridinin chlorophyll-a protein (PCP) of dinoflagellates differs from the well-studied light-harvesting complexes of purple bacteria and green plants in its large (4:1) carotenoid to chlorophyll ratio and the unusual properties of its primary pigment, the carotenoid peridinin. We utilized ultrafast polarized transient absorption spectroscopy to examine the flow of energy in PCP after initial excitation into the strongly allowed peridinin S2 state. Global and target analysis of the isotropic and anisotropic decays reveals that significant excitation (25-50%) is transferred to chlorophyll-a directly from the peridinin S2 state. Because of overlapping positive and negative features, this pathway was unseen in earlier single-wavelength experiments. In addition, the anisotropy remains constant and high in the peridinin population, indicating that energy transfer from peridinin to peridinin represents a minor or negligible pathway. The carotenoids are also coupled directly to chlorophyll-a via a low-lying singlet state S1 or the recently identified SCT. We model this energy transfer time scale as 2.3 +/- 0.2 ps, driven by a coupling of approximately 47 cm(-1). This coupling strength allows us to estimate that the peridinin S1/SCT donor state transition moment is approximately 3 D.  相似文献   

15.
Xu  Meiting  Zhang  Chunyun  Liu  Fuguo  Wang  Yuanyuan  Li  Runqi  Chen  Guofu 《Journal of applied phycology》2022,34(1):435-447
Journal of Applied Phycology - In the context of global climate change, the frequency and duration of harmful algal blooms (HABs) due to eutrophic coastal waters have increased. HABs can cause...  相似文献   

16.
Mitosis in Giardia lamblia: multiple modes of cytokinesis   总被引:3,自引:0,他引:3  
Benchimol M 《Protist》2004,155(1):33-44
Mitosis in Giardia is poorly understood. Until today, it is still controversial whether Giardia divides with a mirror-image symmetry (ventral-ventral or dorsal-dorsal) or in a dorsal-ventral mode. Here, we report the different modes by which cytokinesis takes place in Giardia lamblia. To determine how Giardia divides, video microscopy, scanning electron microscopy, semi-thick sections and freeze-fracture replicas were analyzed by transmission electron microscopy. Between 12 and 15% of the cells cultivated for 24-48 h were found in the process of division. Three types of cytokinesis were found: (1) ventral-ventral, where the discs face each other; (2) dorsal-dorsal, where the discs are in opposite directions; and (3) ventral-dorsal. Giardia divides with mirror-image symmetry either in ventral-ventral or dorsal-dorsal modes. During ventral-ventral type of division, Giardia becomes detached and swims freely in the culture medium, whereas, in the other modes of division, the cells can be found either adhered or swimming.  相似文献   

17.
The survival of different vibrios in association with a red-tide-causing organism Amphidinium carterae was studied in the laboratory. Vibrio alginolyticus and V. harveyi could not survive beyond 14 days in an actively growing culture of A. carterae. On the other hand, V. parahaemolyticus could be detected up to 40 days.  相似文献   

18.
19.
Summary The ultrastructure of mitosis and cytokinesis of the uninucleateTribonema regulare has been investigated by employing transmission electron microscopy. Prophase is characterized by settlement of a pair of centrioles at the presumptive poles of the spindle, metaphase by equatorial bulging of the nucleus, anaphase by non-synchronous separation of the chromosomes, and telophase by a persistent, strongly elongated, interzonal spindle. Throughout mitosis, at each pole dictyosomes are associated with the polar gaps of the nuclear envelope that otherwise remains intact. Cytokinesis does not immediately follow mitosis; from the static images it can be concluded that it is necessary for the daughter nuclei to approach each other before cytokinesis is initiated by complete division of the protoplast via plasma membrane cleavage. Afterwards, a ring of cell wall material is deposited close near the lateral wall in the plane of protoplast separation followed by a simultaneous or centripetal development of a single integral partitioning septum. Once the septum is completed, the cylindrical portion of the H-shaped segment is manufactured. The phylogenetic position ofTribonema amongst those algae, which may have evolved from unicells into filaments, is discussed.  相似文献   

20.
Cell cycle phase durations of cultures of Amphidinium carteriin light- or nitrogen-limited balanced growth were determinedusing flow cytometry. For both types of growth rate limitation,the increases in generation time caused by increasing degreesof limitation were due solely to expansion of the G1 phase ofthe cell cycle. The durations of the S and G2 + M phases wereindependent of growth rate. Furthermore, when cells were deprivedcompletely of light and nitrogen, they arrested in the G1 phaseof the cell cycle. The results indicate that light- and nitrogen-dependentprocesses are heavily concentrated in the early part of thecell cycle, while DNA replication and cell division, once initiated,are independent of light or nitrogen supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号