首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
利用抗DS-LRH 血清和PAP 免疫标记技术,作卵巢处于Ⅳ期的鲤鱼GRH 分泌核群定位,证叫NPO 系统是合成与释放GRH 的部位。NPO 细胞呈锥形,核周体有明显的棕色分泌颗粒,细胞核大,不着色。其神经纤维,含有棕色分泌颗粒者,排列呈串珠状,分布于(1)NPO 的周围,(2)前脑侧束区,(3)视前隐窝腹侧和尖端,(4)视交叉中部,(5)沿视束和下丘脑外侧区。对NPO 的功能进行了讨论。  相似文献   

2.
大鳍促性腺激素分泌调控的研究   总被引:1,自引:0,他引:1  
用非洲鲶鱼促性腺激素放射免疫测定方法测定了科鱼类样品中的促性腺激素含量。用这种方法和鲤鱼促性腺激素β亚基放射免疫测定法测定大鳍同一批血清样品结果也相当吻合。通过注射促黄体素释放激素类似物和/或多巴胺的D2受体拮抗剂地欧酮后,定时取样测定血清促性腺激素含量,证明大鳍促性腺激素的释放同时受到下丘脑分泌的促性腺激素释放激素和多巴胺的双重调节。但是,多巴胺只能抑制由促性腺激素释放激素诱导的促性腺激素分泌,而不能直接抑制基础的促性腺激素分泌,这与非洲鲶鱼相似而与金鱼和鲤鱼等鲤科鱼类明显不同。  相似文献   

3.
大鳍Hu促性腺激素分泌调控的研究   总被引:9,自引:0,他引:9  
王德寿谷期  H.J 《动物学报》1998,44(3):322-328
用非洲鲶鱼促性腺激素放射免疫测定方法测定了Chang科鱼类样品中的促性腺激素含量。用这种方法和鲤鱼促性腺激素β-亚基放射免疫测定法测定大鳍Hu同一批血清样品结果也相当吻合。通过注射促黄体素释放激素类似物和/或多巴胺的D2受体拮抗剂地欧酮后,定时取样测定血清促性腺激素含量,证明大鳍Hu促性腺激素的释放同时受到下丘脑分泌的促性腺激素释放激素和多巴胺的双重调节。但是,多巴胺只能抑制由促性腺激素释放激素诱  相似文献   

4.
鱼类生殖内分泌学研究的进展及其在渔业生产中的应用   总被引:1,自引:0,他引:1  
鱼类生殖活动的整个调节过程包括:感觉器官把外界环境的刺激(如温度、光照、降雨等)传送到脑,使下丘脑产生促性腺激素释放激素(GnRH)和促性腺激素释放的抑制因素(GRIF),激发或抑制脑垂体合成和释放促性腺激素(GtH);促性腺激素作用于性腺并促使它分泌  相似文献   

5.
过去曾经多次报道,卵泡液和精液能促进脑垂体促性腺激素分泌,但对其中活性物质的化学结构尚未了解。美国李卓浩等报道,从人卵泡液中分离到一个14肽,即人卵泡促性腺激素释放肽(hF-GRP)。在离体条件下,hF-GRP 具有促进垂体促性腺激素分泌的活性。用小鼠垂体培养法测定,其促进卵泡刺激素(FSH)或黄体生成素(LH)释放的 ED_(50)值分别为每管2.0μg/ml(1.2nmol/L)和2.6μg/ml(1.6nmol/L),活性比下丘脑黄体生成素释放激素(LHRH)低。初步资料表明,hF-GRP 在大鼠完整垂体培养系统及垂体  相似文献   

6.
鲤鱼脑垂体促性腺激素含量年周期变化的研究   总被引:2,自引:0,他引:2  
本文报道了用蟾蜍离体卵巢跌卵的方法来研究鲤鱼脑垂体里的促性腺激素含量的年周期变化情况,以解决我国鲩、青、鲢、鳙人工繁殖工作中应用鲤鱼脑垂体作为催产剂的质量问题。实验是在1962—1963年进行的。实验结果表明:鲤鱼脑垂体对蟾蜍离体卵巢有明显的跌卵效果;鲤鱼脑垂体里的促性腺激素是常年存在的,但随季节的不同而含量亦有所不同。全年中以2—3月份的脑垂体里促性腺激素的含量最高,10月份为最低,其他月份则是逐渐递升与递减的关系,因而呈现出一明显的年周期变化规律,这对指导收集鲤鱼脑垂体的最适季节具有一定的实用意义。对鱼类脑垂体的生理探讨方面也提供了一些新的资料。  相似文献   

7.
本文报道了用蟾蜍离体卵巢跌卵的方法来研究鲤鱼脑垂体里的促性腺激素含量的年周期变化情况,以解决我国鲩、青、鲢、鳙人工繁殖工作中应用鲤鱼脑垂体作为催产剂的质量问题。实验是在1962—1963年进行的。实验结果表明:鲤鱼脑垂体对蟾蜍离体卵巢有明显的跌卵效果;鲤鱼脑垂体里的促性腺激素是常年存在的,但随季节的不同而含量亦有所不同。全年中以2—3月份的脑垂体里促性腺激素的含量最高,10月份为最低,其他月份则是逐渐递升与递减的关系,因而呈现出一明显的年周期变化规律,这对指导收集鲤鱼脑垂体的最适季节具有一定的实用意义。对鱼类脑垂体的生理探讨方面也提供了一些新的资料。    相似文献   

8.
用链霉亲和素 -生物素化过氧化物酶复合物 (StreptAvidinBiotin peroxidaseComplex ,SABC)免疫细胞化学方法 ,使用促性腺激素释放激素 (Gonadotropin releasinghormone ,GnRH)以及促性腺激素释放激素受体 (GnRHR) 2种抗血清对性成熟前后的黄颡鱼 (Pelteobagrusfulvidraco)和鲇鱼 (Silurusasotus)的脑、垂体、卵巢中的免疫活性内分泌细胞进行了免疫细胞化学定位。结果表明GnRH和GnRHR免疫活性在两种鱼的各脑区、垂体、卵巢中均有分布 ;两种鱼在性成熟时它们的下丘脑、垂体和卵巢中的GnRH和GnRHR免疫反应细胞数目和免疫反应强度明显高于性成熟前。本文讨论了GnRH、GnRHR直接或间接参与黄颡鱼和鲇鱼性腺发育成熟调节的可能性及形态学证据。可为下丘脑 垂体 性腺轴、神经 内分泌、GnRH功能的多样性等研究领域提供新的形态学依据。  相似文献   

9.
下丘脑-垂体-性腺(HPG)轴是调控生殖系统的发育和功能的重要内分泌系统。下丘脑中促性腺激素释放激素(GnRH)神经元,能够接收各种神经传导物质和神经调节物质的信号输入,引起HPG轴的级联反应。下丘脑弓状核(ARC)和前腹侧脑室周围核团(AVPV)中的kisspeptin-GPR54信号通路,可以调控GnRH的分泌和释放,影响性腺激素的分泌。近年来研究发现,性激素能够对下丘脑kisspeptin-GPR54信号通路产生反馈调节,且具有核团差异性。本文就性激素在下丘脑ARC和AVPV中对kisspeptin-GPR54信号通路反馈调节的差异性进行了综述,探讨下丘脑中不同核团对性激素刺激作用产生的不同反应。  相似文献   

10.
鱼类促性腺激素分泌的调节机理和高效新型鱼类催产剂   总被引:1,自引:0,他引:1  
鱼类和其他脊椎动物一样,由下丘脑—脑垂体—性腺轴调节整个生殖活动,其中由脑垂体合成与分泌的促性腺激素(GtH)起着十分重要的作用。在一定环境条件影响和下丘脑的调控作用支配下,使脑垂体GtH的合成与释放活动增强,它作用于性腺组织而诱导性类固醇激素的产生,进而促使配子发育成熟和排精与排卵。因此,长期以来都是使用外源的GtH,如鲤鱼(或其他鱼类)脑垂体匀浆液或粗提的人体绒毛膜促性腺激素(HCG)作为鱼类人工繁殖的催产剂。这些催产剂虽有较好效果,但来源有限,成本高,亲鱼易产生抗药性,催产后死亡  相似文献   

11.
Carassius RFamide (C-RFa) is a novel peptide found in the brain of the Japanese crucian carp. It has been demonstrated that mRNA of C-RFa is present in the telencephalon, optic tectum, medulla oblongata, and proximal half of the eyeball in abundance. Immunohistochemical methods were employed to elucidate the distribution of the peptide in the brain of the goldfish (Carassius auratus) in detail. C-RFaimmunoreactive perikarya were observed in the olfactory bulb, the area ventralis telencephali pars dorsalis and lateralis, nucleus preopticus, nucleus preopticus periventricularis, nucleus lateralis tuberis pars posterioris, nucleus posterioris periventricularis, nucleus ventromedialis thalami, nucleus posterioris thalami, nucleus anterior tuberis, the oculomotor nucleus, nucleus reticularis superior and inferior, facial lobe, and vagal lobe. C-RFa immunoreactive fibers and nerve endings were present in the olfactory bulb, olfactory tract, area dorsalis telencephali pars centralis and medialis, area ventralis telencephali, midbrain tegmentum, diencephalon, medulla oblongata and pituitary. However, in the optic tectum the immunopositive perikarya and fibers were less abundant. Based on these results, some possible functions of C-RFa in the nervous system were discussed.  相似文献   

12.
N S Krishna  N K Subhedar 《Peptides》1992,13(1):183-191
The anatomical distribution of FMRFamide-like immunoreactivity in the forebrain and pituitary of the catfish, Clarias batrachus, was investigated. Immunoreactive cells were observed in the ganglion cells of the nervus terminalis (NT) and in the medial olfactory tracts. In the preoptic area, FMRFamide-containing perikarya were restricted to the lateral preoptic area, paraventricular subdivision of the nucleus preopticus, nucleus suprachiasmaticus and nucleus preopticus periventricularis posterior. In the postoptic area, some cells of the nucleus postopticus lateralis and nucleus of the horizontal commissure showed moderate immunoreactivity. In the tuberal area, immunoreactivity was observed in few cells of the nucleus hypothalamicus ventralis and nucleus arcuatus hypothalamicus (NAH). Nucleus ventromedialis thalami was the only thalamic nucleus with FMRFamide immunoreactivity. Immunoreactive processes were traceable from the NT through the medial as well as lateral olfactory tracts into the telencephalon and the area ventralis telencephali pars supracommissuralis (Vs). Further caudally, the immunoreactive fibers could be traced into discrete areas, including habenular and posterior commissures, neurohypophysis and pituitary; isolated fibers were also observed in the pineal stalk. A loose network of immunoreactive processes was observed in the olfactory bulbs and the entire telencephalon, with higher densities in some areas, including Vs. A dense plexus of immunoreactive fibers was seen in the pre- and postoptic areas and around the paraventricular organ, while relatively few were observed in the thalamus. A high concentration of fiber terminals was found in the caudal tuberal area.  相似文献   

13.
The distribution of galanin (GAL)-like immunoreactivity was investigated in the brain and pituitary of the "four-eyed" fish, Anableps anableps. GAL-immunoreactive (GAL-ir) perikarya were located in the area ventralis telencephali pars supracommissuralis, nucleus preopticus periventricularis, nucleus preopticus pars parvocellularis, nucleus preopticus pars magnocellularis, nucleus lateralis tuberis ventralis, nucleus lateralis tuberis lateralis, and nucleus lateralis tuberis posterior. A few scattered, GAL-ir neurons were also observed in or adjacent to the nucleus recessus lateralis, nucleus recessus posterioris and lobus facialis (VII). GAL-ir fiber networks were widespread in the brain, with a comparatively higher density in the ventral telencephalic, preoptic and infundibular regions. The neurohypophysis showed GAL-ir innervation and there were GAL-ir cells in the adenohypophysis. The presence of GAL-ir cells in the hypothalamus and in the pituitary is an important asset for the supposed role of GAL-like peptide in neuroendocrine regulation of brain and pituitary functions.  相似文献   

14.
Hypophysiotropic Centers in the Brain of Amphibians and Fish   总被引:2,自引:0,他引:2  
The subject is the localization of three different hypophysiotropiccenters in the brain of amphibians and fish. The thyrotropic hormone-releasing hormone (TRH) in Xenapus mayoriginate from the dorsal magno-cellular neurons of the preopticnucleus. This hypothesis is based on correlative changes betweenthese cells and alterations in thyroid activity during metamorphosis.Experimental data are in support of a functional relationshipbetween certain preoptic neurons and the thyrotropic activityof the pituitary. The MSH inhibiting activity of the hypothalamus is effectedby means of an aminergic innervation of the pars intermediain amphibians, teleosts and elasmobranchs. In amphibians theaminergic fibers originate from the caudal part of the paraventricularorgan (PVO); in elasmobranchs probably from the nucleus mediushypothalamicus(NMI); in teleosts the origin still has to beinvestigated. Two centers producing gonadotropic hormone-releasing hormone(GRH) have been demonstrated. Lesion experiments lead to thehypothesis that GRH is produced in the caudal hypothalamus,i.e., in the nucleus infundibularis ventralis of amphibiansand in the nucleus lateralis tuberis of fishes. ImmunoHuorescencestudies indicate in both groups the presence of neurons, infront of the preoptic area in the telencephalon, and these neuronsare immuno-reactive with anti-mammalian LH-RH.  相似文献   

15.
Summary The colocalization of the peptides neuropeptide Y (NPY) and Phe-Met-Arg-Phe-NH2 (FMRFamide) in the brain of the Atlantic salmon was investigated with double immunofluorescence labeling and peroxidase-antiperoxidase immunocytochemical techniques. Colocalization of NPY-like and FMRE amide-like immunoreactivities was observed in neuronal cell bodies and fibers in four brain regions: in the lateral and commissural nuclei of the area ventralis telencephali, in the nucleus ventromedialis thalami, in the laminar nucleus of the mesencephalic tegmentum, and in a group of small neurons situated among the large catecholaminergic neurons in the isthmal region of the brainstem. All cell bodies in these nuclei were immunoreactive to both NPY and FMRF. We consistently observed larger numbers of FMRF-immunoreactive than NPY-immunoreactive fibers. In the nucleus ventromedialis thalami NPY- and FMRFamide-like immunoreactivities were colocalized in cerebrospinal fluid (CSF)-contacting neurons. NPY-immunoreactive, but not FMRF-immunoreactive, neurons were found in the stratum periventriculare of the optic tectum, and at the ventral border of the nucleus habenularis (adjacent to the nucleus dorsolateralis thalami). Neurons belonging to the nucleus of the nervus terminalis were FMRF-immunoreactive but not NPY-immunoreactive. The differential labeling indicates, as do our cross-absorption experiments, that the NPY and FMRFamide antisera recognize different epitopes. Thus, it is probable that NPY-like and FMRFamide-like substances occur in the same neurons in some brain regions.  相似文献   

16.
Summary Immunoreactivity to gonadotropin-releasing hormone (GnRH) and gonadotropic hormone (GTH) was studied at the light-microscopical level in the brain and pituitary of rainbow trout at different stages of the first reproductive cycle using antisera against synthetic mammalian GnRH and salmon GTH. GnRH perikarya were localized exclusively in the preoptic nucleus, both in the pars parvicellularis and the pars magnocellularis. A few somata contacted the cerebrospinal fluid. Not all neurosecretory cells were GnRH-positive, indicating at least a bifunctionality of the preoptic nucleus. We recorded no differences between sexes or stages of gonadal development in the location of GnRH perikarya, whereas gradual changes were found in staining intensity during the reproductive cycle. GnRH fibres ran from the partes parvicellularis and magnocellularis through the hypothalamus and merged into a common tract at the transverse commissure before entering the pituitary. In the pituitary, GnRH was localized in the neural tissue of the neurointermediate lobe and, to a lesser extent, in the neural protrusions penetrating the proximal pars distalis. The bulk of GTH-positive cells was situated in the proximal pars distalis. Some cells were found more rostrally amidst prolactin cells or in the neurointermediate lobe. Only a limited number of GTH cells appeared to be in close contact with GnRH-positive material.  相似文献   

17.
Summary Gonadotropin releasing hormone (GnRH) and gonadotropic hormone (GTH) were identified by immunohistochemistry in the brains and pituitaries of neonate, juvenile and adult guppies. GTH was present in some cells of the pars intermedia (pi) and proximal pars distalis (ppd) of all animals. GnRH was found in the perikarya of the nucleus olfactoretinalis. In the pituitaries of juvenile 30-day-old guppies, GnRH-immunoreactive cells existed in a juvenile pattern, whereas in adult animals GnRH was recognized in only a few cells. GnRH-immunoreactive fibers were seen in the pituitaries of animals that were 30 days or older. In adult guppies, the ventral and lateral ppd (the gonadotropic region) contained a dense network of GnRH-immunoreactive fibers. Pituitary cells staining for either GnRH or GTH were located in different places. After immunohistochemical double staining of adult pituitaries, none of the GnRH-immunoreactive cells were LH-immunoreactive, although both cell types were often found in close proximity. After 20 days or more of ethinylestradiol treatment, less immunoreactive GnRH was detected in the pituitary cells of juvenile guppies, and fewer animals exhibited the juvenile pattern of GnRH-immunoreactive pituitary cells, when compared with untreated controls. The results indicate that GnRH-immunoreactive pituitary cells in the guppy are distinct from gonadotropes and that these cells are involved in regulatory processes along the juvenile brain-pituitary-gonad axis.  相似文献   

18.
Melanin-concentrating hormone (MCH) was first discovered in the pituitary of chum salmon because of its role in the regulation of skin pallor. Later, it was found that MCH could also play a role as a central neurotransmitter or neuromodulator in the brain. However, knowledge of the function of MCH in fish has been restricted to certain fish species. Therefore, in the present study, the immunocytochemical localization and ontogenic development of MCH in the brain of a pleuronectiform fish, the barfin flounder Verasper moseri, were examined to obtain a better understanding of this hormone. In adult barfin flounder, MCH-immunoreactive (ir) neuronal somata were most prevalent in the magnocellular neurons of the nucleus tuberis lateralis (NLT), which project to the pituitary. In the pituitary, MCH-ir fibers were distributed in the neurohypophysial tissues within the pars intermedia and, to a lesser extent, into the pars distalis. MCH-ir neuronal somata were also present in dorsally projecting parvocellular neurons, located more posteriorly in the area above the lateral ventricular recess (LVR). LVR-MCH neurons did not seem to project to the pituitary. In the brain, MCH-ir fibers were detected not only in the hypothalamus but also in areas such as the optic tectum and thalamus. MCH-ir neuronal somata and fibers were not detected on the day of hatching. MCH-ir neuronal somata and fibers were first detected in the hypothalamus and the pituitary, respectively, 7 days after hatching. Subsequently, MCH-ir neuronal somata were observed in the NLT and in the area above the LVR 14 days after hatching. The distribution of MCH-ir neuronal somata and fibers showed a pattern similar to that in the adult fish 35-42 days after hatching. These results indicate that MCH neurons were located in the NLT and in the area above the LVR and that NLT-MCH neurons project to the pituitary. MCH neurons were first detected 7 days after hatching, suggesting that MCH plays some physiological role in the early development of barfin flounder.  相似文献   

19.
Neuropeptide Y-like immunoreactivity was studied in the thalamus of the cat using an indirect immunoperoxidase method. The densest network of immunoreactive fibers was observed in the nucleus (n.) paraventricularis anterior. In the anterior, intralaminar and midline thalamic nuclei, as well as in the n. geniculatum medialis, n. geniculatum lateralis, n. habenularis lateralis, n. medialis dorsalis, n. lateralis posterior and n. pulvinar a low density of neuropeptide Y-like immunoreactive fibers was observed. Neuropeptide Y-like fibers were totally absent in the n. ventralis lateralis, n. ventralis medialis, n. ventralis postero-medialis and n. ventralis postero-lateralis. In addition, neuropeptide Y-like perikarya were found in the n. parafascicularis, n. suprageniculatus, n. geniculatum lateralis ventralis, n. medialis dorsalis and n. lateralis posterior.  相似文献   

20.
The problem of the direct retinohypothalamic projection in mammals (Moore, 1973) was reinvestigated in the laboratory mouse by electron microscopy and cobalt chloride-iontophoresis. The time-course of the axonal degeneration in the suprachiasmatic nucleus was studied 3, 6 and 12 h, 1, 2, 4, 6, 9 and 12 days after unilateral retinectomy. Specificity of the degenerative changes was controlled by investigation of the superficial layers of the superior colliculus. The ratio of crossed to uncrossed optic fibers could could be determined by counting degenerating structures (axons and terminals) in the optic chiasma and the ipsilateral and contralateral areas of the optic tract, the suprachiasmatic nucleus, and the superior colliculus. The number of degenerating axons in the suprachiasmatic nucleus showed a maximum one day after unilateral retinectomy and was, at all stages studied, two to three times higher in the contralateral than in the ipsilateral nuclear area. In the optic tract and in the superior colliculus the number of degenerating profiles was three times higher in the contralateral than in the ipsilateral area. Retinohypothalamic connections and crossing pattern of retinal fibers were studied light microscopically using impregnation with cobalt sulfide in whole mounts of brains. Most of the optic fibers in the laboratory mouse are crossed crossed (70-80%). A bundle of predominantly crossed optic fibers runs to the suprachiasmatic nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号