首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Animal fleshing (ANFL), the major proteinaceous solid waste discharged from leather manufacturing industries was used as the substrate for the production of alkaline protease by Pseudomonas aeruginosa. The strain isolated from the tannery wastewater was selected for its ability to produce protease of activity in the range 1160-1175 U ml(-1). The selective removal of non-fibrillar proteins such as albumin and globulin from ANFL by the protease enzyme during the progress of hydrolysis was confirmed using scanning electron microscopy (SEM). The breakdown of ANFL was also confirmed from the amino acid release into the fermentation medium by P. aeruginosa using high performance liquid chromatography (HPLC).  相似文献   

2.
The untanned proteinaceous tannery solid waste, the animal fleshing (ANFL), was used as substrate in the treatment process (hydrolysis and fermentation) involving Synergistes sp. The nonionic surfactant (Tween 80) was evaluated for its ability to influence on microbial growth and enzyme activity in the hydrolysis and fermentation of ANFL. The addition of Tween 80 in the process significantly increased the activities of hydrolytic and fermentative enzymes like protease (338-360 Um l(-1)) and deaminase (187-206 Um l(-1)) compared to that of control (protease 195-220 Um l(-1) and deaminase 70-83 Um l(-1)). The total viable bacterial count was increased more than twofold, compared to the control in the presence of 0.15% Tween 80. The ANFL fermentation and formation of other metabolites were evidenced by Gas Chromatography and Mass Spectroscopy (GC-MS), Proton Nuclear Magnetic Resonance spectroscopy ((1)H NMR) and Fourier transform infra red spectroscopy (FT-IR). The breakdown of fibrillar proteins in ANFL was confirmed by the scanning electron microscopy (SEM) and the transmission electron microscopy (TEM).  相似文献   

3.
The untanned proteinaceous tannery solid waste, animal fleshing (ANFL), was used as a substrate for acid protease production by Synergistes sp. The strain was isolated from an anaerobic digester used for the treatment of tannery solid waste and was selected for its enhanced protease production at activity 350-420 U/ml. The optimum pH was in the acidic range of 5.5-6.5 and optimum temperature was in mesophilic range of 25-35 degrees C. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and the zymogram analyses of the purified protein indicated an estimated molecular mass of 60 kDa. This protease could be classified as aspartic protease based on its inhibition by aspartate type protease inhibitor pepstatin and on non-inhibition by 1,10-phenanthroline, EDTA, EGTA and phenylmethylsulfonyl fluoride. The degradation of ANFL was confirmed by Gas Chromatography-Mass Spectroscopy (GC-MS), Proton Nuclear Magnetic Resonance Spectroscopy (H1 NMR) and Scanning Electron Microscopy (SEM) analyses. In this study we found that the activity of acid protease depended on factors such as calcium concentration, pH and temperature. Based on these lines of evidence, we postulate that this protease is a highly catalytic novel protease of its type.  相似文献   

4.
The anaerobic digestion of animal fleshing from tannery solid waste was investigated with regard to hydrolytic enzymes, protease and lipase, fermentative enzyme deaminase, soluble protein and amino acids, redox potential (Eh), volatile fatty acids, ammonia and carbon dioxide up to 120 h of retention time. The release of these fermentation metabolites at various retention times greatly influenced the Eh. In the hydrolytic phase, the maximum value of Eh was ?50 mV and it reached the minimum of ?350 mV in 24 h in the fermentative phase. The minimum and maximum values of Eh were ?387 and ?452 mV at 80 h of anaerobic digestion. The release of extracellular metabolites was confirmed by HPLC and GC‐MS. In this study, we have found that the ammonia and pH had a substantial influence on the Eh during the anaerobic digestion of animal fleshing.  相似文献   

5.
Summary The solid resinous product (SRP) containing unsaturated/saturated dicarboxylic acid residues, phthalic acid and maleic acid is discharged as a solid waste during cracking of benzene over vanadium at temperatures above 500°C in the dicarboxylic acid manufacturing industry. In the present study the solid waste was diluted with water to a concentration of 0.5% w/v for microbial degradation. The waste was fermented in a reactor containing mesoporous activated carbon on which was immobilized Saccharomyces cerevisiae at an optimum residence time of 24 h at pH 6.5. The immobilized-yeast-treated samples were further treated in an upflow anaerobic reactor at an hydraulic retention time (HRT) of 0.1038 days at a hydraulic flow rate of 7.34 × 10−3 m3/day and chemical oxygen demand (COD) loading rate of 2.19 kg/m3/day. The pathway followed in the degradation of dicarboxylic acid into end products by anaerobic metabolism in the yeast cell fermentor and in the upflow anaerobic reactor was confirmed through HPLC, Fourier transform infra red spectroscopy and proton and 13C NMR spectroscopy.  相似文献   

6.
Neutral fat hydrolysis and long-chain fatty acid (LCFA) oxidation rates were determined during the digestion of slaughterhouse wastewater in anaerobic sequencing batch reactors operated at 25 degrees C. The experimental substrate consisted of filtered slaughterhouse wastewater supplemented with pork fat particles at various average initial sizes (D(in)) ranging from 60 to 450 microm. At the D(in) tested, there was no significant particle size effect on the first-order hydrolysis rate. The neutral fat hydrolysis rate averaged 0.63 +/- 0.07 d(-1). LCFA oxidation rate was modelled using a Monod-type equation. The maximum substrate utilization rate (kmax) and the half-saturation concentration (Ks) averaged 164 +/- 37 mg LCFA/L/d and 35 +/- 31 mg LCFA/L, respectively. Pork fat particle degradation was mainly controlled by LCFA oxidation rate and, to a lesser extent, by neutral fat hydrolysis rate. Hydrolysis pretreatment of fat-containing wastewaters and sludges should not substantially accelerate their anaerobic treatment. At a D(in) of 450 microm, fat particles were found to inhibit methane production during the initial 20 h of digestion. Inhibition of methane production in the early phase of digestion was the only significant effect of fat particle size on anaerobic digestion of pork slaughterhouse wastewater. Soluble COD could not be used to determine the rate of lipid hydrolysis due to LCFA adsorption on the biomass.  相似文献   

7.
A dual irradiation process involving aerobic thermophilic irradiation pretreatment (ATIP) and intermittent irradiation anaerobic digestion was developed to improve the digestion of waste-activated sludge. First, the effect of ATIP on further anaerobic digestion of activated sludge in batch mode was investigated. When exposed to ATIP for 24 h, the digestion reactor gave the highest methane yield, removed the most dissolved organic carbon (DOC) and showed the most effective reduction of VS compared to other irradiation times. This process was further enhanced by using an anaerobic fluidised-bed reactor packed with carbon felt in semi-continuous mode for digesting the pretreated activated sludge under intermittent irradiation conditions. Dual irradiation for 24 h followed by 60 min of anaerobic irradiation processing per day turned out to be optimal. This resulted in 65.3% of VS reduction, 83.9% of DOC removal ratio and 538 ml/g-VS of methane yield.  相似文献   

8.
This work demonstrates that amino acid analysis based on isotope dilution mass spectrometry (IDMS) can be applied to quantify proteins having different complexities and natures. Five proteins and one decapeptide were selected for the study: C-reactive protein (CRP), beta-2-microglobulin (B2 M), cystatine C (CysC), human serum albumin (HSA), Ara h1, and angiotensin I. The quantification was based on the determination of four amino acids, proline (Pro), isoleucine (Ile), valine (Val), and phenylalanine (Phe) within a working range between 5 and 100 pmol/injection of each amino acid, after 60 min digestion with HCl at 150 °C. The amino acids were selected taking into account their abundance in the protein sequence and to include the more difficult to break peptide bonds. Quantification of the protein amounts calculated from each amino acid is consistent, indicating that the method is working reliably. This consistency points to a complete hydrolysis of the proteins. The trueness of the method was proven when dry mass determination after dialysis was applied to HSA and CRP and the results were compared to those from amino acid analysis. Traceability to SI was assured by extensive characterisation of the amino acid calibrants by nuclear magnetic resonance, neutron activation analysis, and Karl Fischer titration.  相似文献   

9.
从鸡毛中提取复合氨基酸的研究   总被引:3,自引:0,他引:3  
运用正交实验研究了以鸡毛为原料硫酸水解生产复合氨基酸的水解条件。结果表明 :硫酸浓度为 8mol·L- 1 ,鸡毛质量 (g)与硫酸体积 (mL)之比为 1∶2 .5 ,水解时间 10h ,其水解率可达 5 5 .2 3%。得到的固体氨基酸质量分数为 95 .31%。  相似文献   

10.
Volatile fatty acids (VFAs) are the most suitable and biodegradable carbon substrates for many bioprocesses. This study explored a new approach to improve the VFAs production from anaerobic co-digesting waste activated sludge (WAS) with corn straw (CS). The effect of feedstock proportion on the acidification efficiency was investigated. The maximum VFAs yield (corresponding fermentation time) was substantially increased 69% (96 h), 45% (72 h), 13% (120 h) and 12% (120 h) with 50%, 35%, 25% and 20% CS proportion of feedstock, respectively. HAc (acetic acid) was consistently the most abundant, followed by HPr (propionic acid) and n-HBu (butyric acid) in the co-digesting tests. The increase of CS in feedstock led to more production of HAc and HPr. Moreover, the consumption of protein and carbohydrate were also improved remarkably from 2955 and 249 mg COD/L (individual WAS fermentation) to 6575 and 815 mg COD/L (50%WAS:50%CS co-digestion) from 120 onward, respectively. The highest contribution of CS to additional VFAs production was1113 mg VFAs (as COD)/g CS/L in the 65%WAS:35%CS co-digesting test. Our study indicated a valuable method to improve VFAs production from anaerobic co-digesting WAS and CS.  相似文献   

11.
This study investigated the influence of ammonia on the hydrolysis rates of proteins and lipids in fish residues under mesophilic anaerobic incubation at a neutral pH. The hydrolysis kinetics of the fish residues, which contained primarily proteins and lipids, were examined at initial ammonia concentrations of 0–16 g N l−1. Carbon hydrolysis was suppressed more by ammonium in the acidogenesis phase than in the acidogenesis/methanogenesis period of a single-stage anaerobic digestion. Conversely, hydrolysis of compounds containing nitrogen was similarly suppressed by ammonia during acidogenesis and acidogenesis/methanogenesis phases of a single-stage anaerobic digestion. Parameter uncertainty analysis demonstrated that the proteins fraction in the fish residues was entirely biodegradable. Model fitting demonstrated that two fractions of lipid substrates exist, namely, easy and hard to biodegrade with hydrolysis rates that were affected differently by ammonia content.  相似文献   

12.
The in vitro digestibility of rice glutelin and wheat glutenin was investigated with a view to assessing their nutritional qualities, using casein and bovine serum albumin (BSA) as references. The following hydrolytic processes were adopted: pepsin-pancreation digestion (a model system before intestinal absorption) and aminopeptidase-prolidase hydrolysis [a model system for the intestinal mucosa (membrane digestion) and after intestinal absorption (intracellular hydrolysis)]. The pepsin-pancreatin digests were first examined. The degree of amino acid released from the proteins was 30% (glutelin), 23% (glutenin), 24% (casein) and 30% (BSA). A similar release pattern of individual amino acids was observed for all the proteins. The amounts of large peptide fractions increased in the order: glutelin < glutenin < casein < BSA. Glutelin was highly digestible. Apart from containing high amounts of glutamic acid (glutamine), cystine and proline, the large peptide fractions of glutelin were also rich in threonine, glycine and isoleucine while those of glutenin were only rich in glycine. The aminopeptidase-prolidase digests were examined next. Glutelin was almost completely hydrolyzed to amino acid, except for a low release of cystine, suggesting that the amino acid residues constituting glutelin could be easily utilized as nutrients in the living tissues. The degree of amino acid released from the proteins was 97% (glutelin), 93% (glutenin), 90% (casein) and 79% (BSA).

The convenient application of these model systems for the assessment of the in vitro digestibility of food proteins have been discussed.  相似文献   

13.
Dicarboxylic acid solid waste containing phthalic acid, malic acid, quinone, saturated and unsaturated dicarboxylic esters etc., are discharged in huge quantities during the crackdown of benzene over the catalyst vanadium at temperatures greater than 500 °C in a dicarboxylic acid manufacturing industry. Concern over the biological effects of these compounds underlines the necessity to treat this solid waste. The role of yeast Saccharomyces cerevisiae and anaerobic mixed bacterial cultures immobilized in activated carbon, in sequential two stage anoxic reactors, were investigated for the degradation of dicarboxylic acid solid waste (DASW). In the first stage, DASW was dissolved in water to yield a concentration of 0.5% w/v and was treated in yeast Saccharomyces cerevisiae immobilized reactor at an optimum residence time of 24 h. The yeast fermented samples were further treated in an upflow anaerobic reactor containing mixed culture immobilized in activated carbon at an Hydraulic Retention Time (HRT) of 0.2076 days at an hydraulic flow rate of 14.6×10−3 m3/day and Chemical Oxygen Demand (COD) loading rate of 4.3 kg/m3/day. The intermediates that were formed during the yeast fermentation and the anaerobic degradation of DASW were characterized by HPLC, proton NMR, C13 NMR and mass spectrometry.  相似文献   

14.
Complete amino acid sequences of ferredoxin and rubredoxin from Butyribacterium methylotrophicum, a methylotrophic hetero-acetogen, were determined by combination of protease digestion, Edman degradation, carboxypeptidase digestion, and/or partial acid hydrolysis. The ferredoxin was composed of 55 amino acids with a molecular weight of 5,732 excluding iron and sulfur atoms and showed a typical 2[4Fe-4S]-type ferredoxin sequence with an internal repeat at the 14-23 and 42-51 positions. The rubredoxin was composed of 53 amino acids with a molecular weight of 5,672 excluding iron atom and showed a sequence similar to those of other anaerobic rubredoxins. The sequences were compared to those of corresponding proteins from six different bacteria to construct phylogenetic trees, which showed essentially the same topology. The relationships between the ferredoxin sequences from this bacterium and those of Clostridium thermoaceticum and Methanosarcina barkeri, both of which possess a carbonyl-dependent acetyl-CoA metabolic system, are also discussed.  相似文献   

15.
Combining acid cottage cheese whey and the lime–sulfide effluent from tannery unhairing processes spontaneously coprecipitates the whey proteins with the large peptides and proteins of the tannery waste. The floculation of the denatured protein material also carries down the hide pigments, excess lime, and the casein fines from the whey. The clear supernatant contains lactose, sulfur in various states of oxidation, free amino acids, peptides, and ammonium salts, but no detectable macromolecular proteins. The recovered solid products, which contain more than 20% of the original nitrogen, appear to have a good balance of essential amino acids although actual composition varies with the composition of the raw wastes. Feed supplements may possibly by obtained by this method from two presently wasted industrial effluents.  相似文献   

16.
厌氧消化酸抑制研究进展   总被引:4,自引:1,他引:3  
厌氧消化工艺目前已广泛应用于各类废水的处理处置过程中,但在实际运行中,受消化条件和物料性质的影响,消化系统经常遭受由挥发性脂肪酸积累过多导致的酸抑制问题,引发产气量下降、产甲烷率降低等问题。近年来,有研究者发现,挥发性脂肪酸的种类和浓度及pH、温度是影响酸抑制的主要因素。基于此,相关研究者分别尝试了添加碱性化学药剂和微量元素及利用生物强化技术与微生物电化学技术来解除酸抑制的尝试,并都取得了不错的效果。本文综述了厌氧消化过程中酸抑制的产生过程、抑制机理及恢复方法,以期为解决厌氧消化酸抑制问题提供参考。  相似文献   

17.
A sensitive, selective, and quantitative method for the simultaneous determination of free and total eicosapentaeonic acid (EPA) and docosahexenoic acid (DHA) has been developed and validated in human plasma using fatty acid free human serum albumin as a surrogate matrix. Clean-up for free EPA and DHA employs a liquid-liquid extraction with hexane to remove plasma interferences and provide for cleaner chromatography. The method for total EPA and DHA requires a digestion of the triglycerides followed by liquid-liquid extraction with hexane. Ultra high performance liquid chromatography (UHPLC) technology on a BEH C18 stationary phase column with 1.7 μm particle size was used for chromatographic separation, coupled to tandem mass spectrometry (UHPLC-MS/MS). The method for free EPA and DHA was validated over the concentration range of 0.05-25 μg/mL, while total EPA and DHA concentration range was 0.5-250 μg/mL. The results from assay validation show that the method is rugged, precise, accurate, and well suited to support pharmacokinetic studies. To our knowledge, this work represents the first UHPLC-MS/MS based method that combines both free and total EPA and DHA with a relatively small sample volume (25 μL aliquot) and a run time of 1.5 min, facilitating automation and high throughput analysis.  相似文献   

18.
本研究通过观察丁酸对动脉粥样硬化斑块形成以及肠道组织结构和功能的影响,探讨丁酸防治动脉粥样硬化的效应及可能机制.选取8周龄雄性载脂蛋白E基因敲除(apolipoprotein E-knockout,ApoE-/-)小鼠,随机分成对照组(高脂高胆固醇饲料+饮水中给予200 mmol/L氯化钠,n = 10)和丁酸组(高脂...  相似文献   

19.
Simultaneous saccharification and fermentation (SSF) widely used in submerged state could be effective in solid state. Solid state SSF was first compared with solid state separate hydrolysis and fermentation on ethanol production. Ethanol yield using solid state separate hydrolysis and fermentation (SHF) in 5 days was only half of that in solid state SSF in 3 days. In solid state SSF, the ethanol concentration using temperature cycling (10 h at 37 degrees C followed by 15 min at 42 degrees C) was 2 times that using constant 37 degrees C within 72 h, reached 5.2%.  相似文献   

20.
Modeling solid waste decomposition   总被引:5,自引:0,他引:5  
The hydrolysis rate coefficients of sorted municipal waste were evaluated from the biochemical methane potential tests using non-linear regression. A distributed mathematical model of anaerobic digestion of rich (food) and lean (non-food) solid wastes with greatly different rates of polymer hydrolysis/acidogenesis was developed to describe the balance between the rates of hydrolysis/acidogenesis and methanogenesis. The model was calibrated using previously published experimental data [Biores. Technol. 52 (1995) 245] obtained upon various initial food waste loadings. Simulations of one- and two-stage digestion systems were carried out. The results showed that initial spatial separation of food waste and inoculum enhances methane production and waste degradation in a one-stage solid-bed digester at high waste loading. A negative effect of vigorously mixing at high waste loading reported in some papers was discussed. It was hypothesized that the initiation methanogenic centers developing in time and expanding in space under minimal mixing conditions might be a key factor for efficient anaerobic conversion of solid waste into methane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号