首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four subfractions of plasma VLDL characterized by decreasing Sf value and LDL were isolated by density gradient preparative ultracentrifugation from normotriglyceridemic (NTG) and hypertriglyceridemic (HTG) (type IV) subjects in the fasting state and after a fatty meal. Chemical analysis and computation of numbers of particles in each fraction showed that the hyperlipidemia of type IV subjects was accounted for by an increase in total numbers of VLDL and a shift in the distribution of VLDL towards particles of larger diameter. Postprandial hyperlipidemia was due to the presence of chylomicron remnants rather than intact chylomicrons, and was accounted for by an increase in particle diameter of the largest VLDL subfraction rather than by an increase in particle numbers. Postprandial hyperlipedemia was accompanied by a shift in the distribution of VLDL towards particles of larger diameter in both NTG and HTG subjects, probably because of competition for the triglyceride-depletion process between chylomicrons and hepatic VLDL. Most chylomicron remnants were removed from the circulation without degradation to smaller VLDL or to LDL, but some remnants were sufficienty small to contribute to smaller VLDL subfractions. The LDL of type IV subjects contained more apoprotein B than those from NTG subjects, and this difference was associated with increases in diameter, molecular weight, density, and the ratio of protein: phospholipid in LDL from type IV subjects. Defective degradation of large VLDL to small VLDL, and of VLDL to LDL may be related to this alteration in apoprotein B content of the lipoproteins in type IV subjects.  相似文献   

2.
This study characterizes the interactions of various rat and human lipoproteins with the lipoprotein cell surface receptors of rat and human cells. Iodinated rat very low density lipoproteins (VLDL), rat chylomicron remnants, rat low density lipoproteins (LDL), and rat high density lipoproteins containing predominantly apoprotein E (HDL1) bound to high affinity cell surface receptors of cultured rat fibroblasts and smooth muscle cells. Rat VLDL and chylomicron remnants were most avidly bound; the B-containing LDL and the E-containing HDL1 displayed lesser but similar binding. Rat HDL (d = 1.125 to 1.21) exhibited weak receptor binding; however, after recentrifugation to remove apoprotein E, they were devoid of binding activity. Competitive binding studies at 4 degrees C confirmed these results for normal lipoproteins and indicated that VLDL (B-VLDL), LDL, and HDLc (cholesterol-rich HDL1) isolated from hypercholesterolemic rats had increased affinity for the rat receptors compared with their normal counterparts, the most pronounced change being in the LDL. The cell surface receptor pathway in rat fibroblasts and smooth muscle cells resembled the system described for human fibroblasts as follows: 1) lipoproteins containing either the B or E apoproteins interacted with the receptors; 2) receptor binding activity was abolished by acetoacetylation or reductive methylation of a limited number of lysine residues of the lipoproteins; 3) receptor binding initiated the process of internalization and degradation of the apo-B- and apo-E-containing lipoproteins; 4) the lipoprotein cholesterol was re-esterified as determined by [14C]oleate incorporation into the cellular cholesteryl esters; and 5) receptor-mediated uptake (receptor number) was lipoprotein cholesterol. An important difference between rat and human fibroblasts was the inability of human LDL to interact with the cell surface receptors of rat fibroblasts. Rat lipoproteins did, however, react with human fibroblasts. Furthermore, the rat VLDL were the most avidly bound of the rat lipoproteins to rat fibroblasts. When the direct binding of 125I-VLDL was subjected to Scatchard analysis, the very high affinity of rat VLDL was apparent (Kd = 1 X 10(-11) M). Moreover, compared with data for rat LDL, the data suggested each VLDL particle bound to four to nine lipoprotein receptors. This multiple receptor binding could explain the enhanced binding affinity of the rat VLDL. The Scatchard plot of rat 125I-VLDL revealed a biphasic binding curve in rat and human fibroblast cells and in rat smooth muscle cells, suggesting two populations of rat VLDL. These results indicate that rat cells have a receptor pathway similar to, but not identical with, the LDL pathway of human cells. Since human LDL bind poorly to rat cell receptors on cultured rat fibroblasts and smooth muscle cells, metabolic studies using human lipoproteins in rats must be interpreted cautiously.  相似文献   

3.
Human chylomicrons were isolated from plasma from a subject with familial hypertriglyceridemia and converted to chylomicron remnants by incubation with postheparin plasma. The interaction of these apolipoprotein E-containing, cholesterol-rich human chylomicron remnants with cultured skin fibroblasts was studied. Chylomicron remnants were internalized by skin fibroblasts as a unit, mainly via the low density lipoprotein (LDL)-receptor pathway, resulting in increased cell cholesterol content. After entering the fibroblast, chylomicron remnants stimulated cholesterol esterification, suppressed 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, and down-regulated LDL receptor activity similar to the action of LDL. As a function of increasing lipolysis, remnant particles were progressively more effectively taken up by skin fibroblasts, despite a decrease in the apolipoprotein E content per lipoprotein particle. Remnant particles produced after hydrolysis of 70 to 80% of chylomicron triglyceride increased cell cholesterol content to an amount nearly identical to that observed with LDL when the two lipoproteins were incubated at an equal cholesterol concentration. However, when incubated on the basis of equal particle number, chylomicron remnants were 2 to 3 times more effective than LDL in delivering cholesterol to the cells. These results suggest that chylomicron remnants play a role in the regulation of postabsorptive cholesterol homeostasis in nonhepatic cells, and possibly in the pathogenesis of atherosclerosis.  相似文献   

4.
The regulation of lipoprotein secretion in the cell line HepG2 was studied. HepG2 cells were preincubated with chylomicron remnants (triglyceride- and cholesterol-rich) or with beta very low density lipoproteins (beta-VLDL) (cholesterol-rich). The medium was removed and the cells were incubated for and additional 24 hr in a lipoprotein-free medium that contained either [2-3H]glycerol or DL-[2-3H]mevalonate. Cells and media were harvested, and lipoproteins were separated and fractionated. The mass and radioactivity of the lipids in cells and in the lipoproteins were measured. The activities of cellular acyl-CoA:cholesterol acyltransferase (ACAT) and 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase were also determined. Preincubation with chylomicron remnants induced an increase in cellular triglyceride and stimulated both HMG-CoA reductase and ACAT. Preincubation with beta-VLDL induced an increase in cellular free and esterified cholesterol, inhibited HMG-CoA reductase and stimulated ACAT. Although the absolute amount of VLDL is small, chylomicron remnants induced large relative increases in the amount of triglyceride and phospholipid secreted in VLDL and decreases in the amount of triglyceride secreted in low density (LDL) and high density (HDL) lipoproteins as well as a decrease in the amount of phospholipid secreted in HDL. In contrast, preincubation with beta-VLDL did not affect triglyceride secretion, but markedly stimulated the amount of phospholipid secreted in HDL. Comparison of the mass of glycerolipid actually secreted with that calculated from the cellular specific activity suggested that glycerolipids are secreted from single, rapidly equilibrating pools. Cholesterol and cholesteryl ester secretion were affected differently. Preincubation with chylomicron remnants increased the amount of free cholesterol secreted in both VLDL and LDL, but did not alter cholesteryl ester secretion. Preincubation with beta-VLDL increased free cholesterol secretion in all lipoprotein fractions and increased cholesteryl ester secretion in VLDL and LDL, but not HDL. Comparison of isotope and mass data suggested that the cholesteryl ester secreted came primarily from a preformed, rather than an newly synthesized, pool. In summary, these data provide insight to the mechanism whereby a liver cell regulates the deposition of exogenous lipid.  相似文献   

5.
The receptor-mediated uptake of rat hypercholesterolemic very low density lipoproteins (beta VLDL) and rat chylomicron remnants was studied in monolayer cultures of the J774 and P388D1 macrophage cell lines and in primary cultures of mouse peritoneal macrophages. Uptake of 125I-beta VLDL and 125I-chylomicron remnants was reduced 80-90% in the presence of high concentrations of unlabeled human low density lipoproteins (LDL). Human acetyl-LDL did not significantly compete at any concentration tested. Uptake of 125I-beta VLDL and 125I-chylomicron remnants was also competitively inhibited by specific polyclonal antibodies directed against the estrogen-induced LDL receptor of rat liver. Incubation in the presence of anti-LDL receptor IgG, but not nonimmune IgG, reduced specific uptake greater than 80%. Anti-LDL receptor IgG, 125I-beta VLDL, and 125I-chylomicron remnants bound to two protein components of apparent molecular weights 125,000 and 111,000 on nitrocellulose blots of detergent-solubilized macrophage membranes. Between 70-90% of 125I-lipoprotein binding was confined to the 125,000-Da peptide. Binding of 125I-beta VLDL and 125I-chylomicron remnants to these proteins was competitively inhibited by anti-LDL receptor antibodies. Comparison of anti-LDL receptor IgG immunoblot profiles of detergent-solubilized membranes from mouse macrophages, fibroblasts, and liver, and normal and estrogen-induced rat liver demonstrated that the immunoreactive LDL receptor of mouse cells is of a lower molecular weight than that of rat liver. Incubation of J774 cells with 1.0 micrograms of 25-hydroxycholesterol/ml plus 20 micrograms of cholesterol/ml for 48 h decreased 125I-beta VLDL uptake and immuno- and ligand blotting to the 125,000- and 111,000-Da peptides by only 25%. Taken together, these data demonstrate that uptake of beta VLDL and chylomicron remnants by macrophages is mediated by an LDL receptor that is immunologically related to the LDL receptor of rat liver.  相似文献   

6.
Dietary sphingomyelin (SM) is hydrolyzed by intestinal alkaline sphingomyelinase and neutral ceramidase to sphingosine, which is absorbed and converted to palmitic acid and acylated into chylomicron triglycerides (TGs). SM digestion is slow and is affected by luminal factors such as bile salt, cholesterol, and other lipids. In the gut, SM and its metabolites may influence TG hydrolysis, cholesterol absorption, lipoprotein formation, and mucosal growth. SM accounts for approximately 20% of the phospholipids in human plasma lipoproteins, of which two-thirds are in LDL and VLDL. It is secreted in chylomicrons and VLDL and transferred into HDL via the ABCA1 transporter. Plasma SM increases after periods of large lipid loads, during suckling, and in type II hypercholesterolemia, cholesterol-fed animals, and apolipoprotein E-deficient mice. SM is thus an important amphiphilic component when plasma lipoprotein pools expand in response to large lipid loads or metabolic abnormalities. It inhibits lipoprotein lipase and LCAT as well as the interaction of lipoproteins with receptors and counteracts LDL oxidation. The turnover of plasma SM is greater than can be accounted for by the turnover of LDL and HDL particles. Some SM must be degraded via receptor-mediated catabolism of chylomicron and VLDL remnants and by scavenger receptor class B type I receptor-mediated transfer into cells.  相似文献   

7.
The role of the low density lipoprotein (LDL) receptor in the binding of chylomicron remnants to liver membranes and in their uptake by hepatocytes was assessed using a monospecific polyclonal antibody to the LDL receptor of the rat liver. The anti-LDL receptor antibody inhibited the binding and uptake of chylomicron remnants and LDL by the poorly differentiated rat hepatoma cell HTC 7288C as completely as did unlabeled lipoproteins. The antireceptor antibody, however, decreased binding of chylomicron remnants to liver membranes from normal rats by only about 10%. This was true for intact membranes and for solubilized reconstituted membranes and with both a crude membrane fraction as well as with purified sinusoidal membranes. Further, complete removal of the LDL receptor from solubilized membranes by immunoprecipitation with antireceptor antibody only decreased remnant binding to the reconstituted supernatant by 10% compared to solubilized, nonimmunoprecipitated membranes. Treatment of rats with ethinyl estradiol induced an increase in remnant binding by liver membranes. All of the increased binding could be inhibited by the antireceptor antibody. The LDL receptor-independent remnant binding site was not EDTA sensitive and was not affected by ethinyl estradiol treatment. LDL receptor-independent remnant binding was competed for by beta-VLDL = HDLc greater than rat LDL greater than human LDL (where VLDL is very low density lipoprotein, and HDL is high density lipoprotein). There was weak and incomplete competition by apoE-free HDL, probably due to removal of apoE from the remnant. The LDL receptor-independent remnant-binding site was also present in membranes prepared from isolated hepatocytes and had the same characteristics as the site on membranes prepared from whole liver. In contrast, when chylomicron remnants were incubated with a primary culture of rat hepatocytes, the anti-LDL receptor antibody prevented specific cell association by 84% and degradation of chylomicron remnants completely. Based on these studies, we conclude that although binding of chylomicron remnants to liver cell membranes is not dependent on the LDL receptor, their intact uptake by hepatocytes is.  相似文献   

8.
The contribution of the low density lipoprotein (LDL) receptor to the removal of chylomicron remnants was determined in vitro and in vivo by using interventions that up- or down-regulate the LDL receptor but not the LDL receptor-related protein (LRP). In vitro, chylomicron remnants and beta-very low density lipoprotein (VLDL) bind to the LDL receptor on endosomal membranes; their binding can be competed by LDL and beta-VLDL and the binding capacity is greatly augmented in membranes from estradiol-treated rats. Likewise, estradiol treatment almost doubled the removal of chylomicron remnants during a single pass through perfused rat livers. However, in vivo the removal of chylomicron remnants and beta-VLDL was very rapid even in untreated rats so that the effect of the stimulation by estradiol was barely detectable when trace amounts of lipoproteins were injected. Yet, when saturating doses of either lipoprotein were injected, the effect of estradiol treatment on the removal of chylomicron remnants and beta-VLDL was readily disclosed. In rats fed a diet containing lard, cholesterol, and bile acids, removal of chylomicron remnants or beta-VLDL was significantly retarded. Likewise, perfused livers from diet-fed rats removed only a mean of 16% of chylomicron remnants during a single passage as compared to 29% in livers from control animals. Also, when large doses of beta-VLDL had been infused into rats for 4 h, in subsequent perfusions of the livers the removal of chylomicron remnants was decreased to 11%. From these results it is concluded that the LDL receptor mediates the hepatic removal of a major fraction of chylomicron remnants and beta-VLDL.  相似文献   

9.
The capacity of human plasma triacylglycerol-rich lipoproteins to be metabolized by rat macrophages was studied with plasma triacylglycerol-rich lipoproteins obtained from subjects with fasting chylomicronemia or from normal subjects after a fat meal. Triacylglycerol-rich lipoproteins were separated by chromatography into two fractions designated TRL1 and TRL2; from their composition and changing concentration during alimentary lipemia, TRL1 contained a higher proportion of chylomicron remnants than TRL2. Degradation of 125I-labeled TRL1 was greater than that of 125I-labeled TRL2. In competition studies with 125I-labeled beta-VLDL from cholesterol-fed rabbits, unlabeled TRL1 displaced beta-VLDL as completely as did unlabeled beta-VLDL, being slightly more potent than TRL2, which contained less apolipoprotein E than TRL1. This reflected common interaction at receptors that probably included both beta-VLDL and B/E receptors, since: (1) in fresh macrophages, VLDL from hypertriglyceridemic subjects partially displaced beta-VLDL; (2) in B/E receptor-repressed macrophages, TRL1 maintained capacity to totally displace beta-VLDL. This was confirmed in experiments with J774 murine macrophages in which triacylglycerol-rich lipoproteins and beta-VLDL displaced each other equally, whereas LDL was ineffective in displacing beta-VLDL. Furthermore, monoclonal antibodies raised against apolipoprotein B48 and reacting strongly with LDL, failed to inhibit the binding of triacylglycerol-rich lipoprotein to the macrophages. This indicates an interaction through apolipoprotein E which is present in high concentration in triacylglycerol-rich lipoprotein as well as in beta-VLDL. It applies to triacylglycerol-rich particles derived from either the intestine (chylomicron remnants) or the liver (VLDL remnants from hypertriglyceridemic subjects).  相似文献   

10.
B E Bihain  F T Yen 《Biochemistry》1992,31(19):4628-4636
This paper describes a mechanism for degradation of low-density lipoprotein (LDL) in fibroblasts unable to synthesize the LDL receptor. In this cell line, long-chain free fatty acids (FFA) activated 125I-LDL uptake; unsaturated FFA were the most efficient. The first step of this pathway was the binding of LDL apoB to a single class of sites on the plasma membrane and was reversible in the presence of greater than or equal to 10 mM suramin. Binding equilibrium was achieved after a 60-90-min incubation at 37 degrees C with 1 mM oleate; under these conditions, the apparent Kd for 125I-LDL binding was 12.3 micrograms/mL. Both cholesterol-rich (LDL and beta-VLDL) and triglyceride-rich (VLDL) lipoproteins, but not apoE-free HDL, efficiently competed with 125I-LDL for this FFA-induced binding site. After LDL bound to the cell surface, they were internalized and delivered to lysosomes; chloroquine inhibited subsequent proteolysis of LDL and thereby increased the cellular content of the particles. A physiological oleate to albumin molar ratio, i.e., 1:1 (25 microM oleate and 2 mg/mL albumin), was sufficient to significantly (p less than 0.01) activate all three steps of this alternate pathway: for example, 644 +/- 217 (25 microM oleate) versus 33 +/- 57 (no oleate) ng of LDL/mg of cell protein was degraded after incubation (2 h, 37 degrees C) with 50 micrograms/mL 125I-LDL. We speculate that this pathway could contribute to the clearance of both chylomicron remnants and LDL.  相似文献   

11.
To gain a detailed understanding of those factors that govern the processing of dietary-derived lipoprotein remnants by macrophages we examined the uptake and degradation of rat triacylglycerol-rich chylomicron remnants and rat cholesterol-rich beta-very low density lipoprotein (beta-VLDL) by J774 cells and primary cultures of mouse peritoneal macrophages. The level of cell associated 125I-labeled beta-VLDL and 125I-labeled chylomicron remnants reached a similar equilibrium level within 2 h of incubation at 37 degrees C. However, the degradation of 125I-labeled beta-VLDL was two to three times greater than the degradation of 125I-labeled chylomicron remnants at each time point examined, with rates of degradation of 161.0 +/- 36.0 and 60.1 +/- 6.6 ng degraded/h per mg cell protein, respectively. At similar extracellular concentrations of protein or cholesterol, the relative rate of cholesteryl ester hydrolysis from [3H]cholesteryl oleate/cholesteryl [14C]oleate-labeled chylomicron remnants was one-third to one-half that of similarly labeled beta-VLDL. The reduction in the relative rate of chylomicron remnant degradation by macrophages occurred in the absence of chylomicron remnant-induced alterations in low density lipoprotein (LDL) receptor recycling or in retroendocytosis of either 125I-labeled lipoprotein. The rate of internalization of 125I-labeled beta-VLDL by J774 cells was greater than that of 125I-labeled chylomicron remnants, with initial rates of internalization of 0.21 ng/min per mg cell protein for 125I-labeled chylomicron remnants and 0.39 ng/min per mg cell protein for 125I-labeled beta-VLDL. The degradation of 125I-labeled chylomicron remnants and 125I-labeled beta-VLDL was dependent on lysosomal enzyme activity: preincubation of macrophages with the lysosomotropic agent monensin reduced the degradation of both lipoproteins by greater than 90%. However, the pH-dependent rate of degradation of 125I-labeled chylomicron remnants by lysosomal enzymes isolated from J774 cells was 50% that of 125I-labeled beta-VLDL. The difference in degradation rates was dependent on the ratio of lipoprotein to lysosomal protein used and was greatest at ratios greater than 50. The degradation of 125I-labeled beta-VLDL by isolated lysosomes was reduced 30-40% by preincubation of beta-VLDL with 25-50 micrograms oleic acid/ml, suggesting that released free fatty acids could cause the slower degradation of chylomicron remnants. Thus, differences in the rate of uptake and degradation of remnant lipoproteins of different compositions by macrophages are determined by at least two factors: 1) differences in the rates of lipoprotein internalization and 2) differences in the rate of lysosomal degradation.  相似文献   

12.
The catabolism of human and rat 125I-labelled very low density lipoproteins (VLDL) was compared by perfusing the lipoproteins through beating rat hearts. Triacylglycerol was removed from the VLDL to a greater extent than the protein moiety, leaving remnants containing relatively more apo-B and less apo-C. The change in apo-C content of the remnants correlated with the loss of triacylglycerol. The extent of removal of triacylglycerol from the rat and human VLDL was similar and in most cases appeared to saturate the heart lipoprotein lipase. The remnants were slightly smaller in size than the VLDL, and included particles which appeared to be partially emptied. In addition to remnants of d less than 1.019 g/ml, iodinated lipoproteins derived from rat and human VLDL were recovered at d 1.019-1.063 and 1.063-1.21 g/ml. The former contained largely cholesterol and cholesteryl esters, while phospholipids were the dominant lipid in the latter. An average of 40% of the 125I-labelled apoprotein lost from the VLDL was associated with the perfused hearts. Very little d 1.019-1.063 g/ml lipoprotein was produced from low (physiological) concentrations of rat VLDL, most of the lipoprotein being removed by the heart. However, lipoproteins of density 1.019-1.063 g/ml were formed from human VLDL at all concentrations in the perfusate, as well as from higher concentrations of the rat VLDL. Agarose gel filtration of lipoproteins following heart perfusion with human VLDL revealed large aggregates containing particles which resemble low density lipoproteins (LDL) in electron microscopic appearance and apoprotein composition, since they contain largely apo-B. These data suggest that at normal concentrations rat VLDL are almost completely catabolised and taken up by the heart without the formation of LDL, while LDL is produced from human VLDL at all concentrations.  相似文献   

13.
The regulation of the hepatic uptake of chylomicron remnants and very-low-density lipoprotein (VLDL) remnants was studied in the rat using a nonrecirculating liver perfusion system. The hepatic removal of remnant lipoproteins was shown to be by receptor-mediated processes since the concentration-dependent uptake was saturable and reductive methylation of the particles reduced the uptake of each lipoprotein by two-thirds. Treatment of liver donor rats with 17 alpha-ethinyl estradiol resulted in a 2-fold increase in the hepatic uptake of VLDL remnants, while cholesterol feeding of liver donor rats caused complete suppression of the receptor-mediated uptake of VLDL remnants. Chylomicron remnant removal was unaffected by estradiol administration and only slightly diminished by cholesterol feeding. The results of competition studies also indicated that a specific chylomicron remnant receptor exists in the liver. Apoprotein E was shown to be required for the receptor-mediated uptake of both remnant lipoproteins. Chylomicron remnants which contained no apoprotein E and VLDL remnants which contained reductively methylated apoprotein E were removed by the liver to about one-third of the extent of native particles. Thus the hepatic uptake of remnant lipoproteins occurs by receptor-mediated processes and the specific removal of both particles is mediated by apoprotein E. In addition, the uptake of VLDL remnants is regulated by the same factors that control hepatic low-density lipoprotein removal, while chylomicron remnant removal is unaffected by these factors.  相似文献   

14.
To estimate hepatic uptake of chylomicron remnants in humans, chylomicrons and intestinal very low density lipoproteins (VLDL) were endogenously labeled with retinyl esters, harvested by plasmapheresis, and pulse-injected into the donor 44 hr after plasmapheresis. Plasma decay of retinyl palmitate was measured in eight healthy volunteers. Retinyl palmitate plasma disappearance obeyed an apparent first order function in seven studies and, in one study, a biexponential function with the second, slow exponential accounting for only 13% of the retinyl palmitate plasma decay. The mean fractional removal of rate was 0.037 +/- 0.037 min-1 (mean +/- SD) in a one-compartment model. The apparent volume of distribution, Vd, was 109 +/- 25% of the estimated plasma volume. Plasma clearance of retinyl palmitate was 130 +/- 97 ml/min calculated as Vd x Ke. Mean T 1/2 was 29 +/- 16 min. Both in vitro and in vivo the retinyl palmitate remained largely within chylomicrons and intestinal VLDL. Only 4.3% was transferred from chylomicrons to other lipoprotein classes during in vitro incubation for 5 hr. After plasma was stored for 42 hr, 5% was transferred to higher density lipoproteins. During 12 hr after a test meal containing retinyl palmitate, only 6.4 +/- 1.5% of the retinyl palmitate absorbed was found in the LDL fraction and 3.1 +/- 3.8% in the d 1.063 g/ml lipoproteins. We conclude that retinyl palmitate is a useful marker for chylomicrons and their remnants in humans and that the plasma clearance of retinyl palmitate-labeled chylomicrons is probably an estimate of chylomicron remnant plasma clearance in man.  相似文献   

15.
Receptors for homologous plasma lipoproteins on a rat hepatoma cell line   总被引:2,自引:0,他引:2  
Hepatocytes express on their surfaces more than one class of receptors capable of mediating the internalization of lipoproteins. However, relatively little is known about the binding characteristics of hepatic receptors for various lipoproteins, about the regulation of the receptors, and about the consequences for intracellular lipid metabolism of uptake of lipoproteins via different classes of receptors. The aim of the present studies was to characterize the binding and degradation of various lipoproteins and their mutual competition for cellular processing. Since these kinds of studies may be more easily carried out in continuous established hepatoma cell lines than in nondividing primary hepatocyte cultures, we examined the lipoprotein receptor functions of a well differentiated rat hepatoma (H-35). Cells were grown to confluence in Eagle's minimal essential medium in 15% newborn calf serum. Medium then was changed to 15% lipoprotein-deficient serum for 44 hr before experiments. External binding of 125I-labeled rat plasma and intestinal lymph lipoproteins was assessed at 4 degrees C. Cellular uptake and degradation were assessed at 37 degrees C. Lipoproteins were isolated by fixed angle or zonal ultracentrifugation or by heparin affinity column chromatography and characterized as to their lipid and apoprotein compositions. Labeled low density (LDL), high density (HDL2), non-apoE-HDL, very low density lipoproteins (VLDL), and chylomicron remnants (CM-R) each manifested specific and saturable binding and degradation by the hepatoma cells. Competition experiments indicated that separate receptors were present for LDL, HDL2, and CM-R. Most of HDL2 appeared to be bound to the non-apoE-HDL receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
To characterize lipoprotein uptake by macrophages, we studied J774 murine macrophage-derived cells. Uptake of 125I-labeled beta-VLDL and 125I-labeled chylomicron remnants was saturable, specific, and of high affinity. Maximal specific uptake and the concentration at which half-maximal uptake occurred were similar for both beta-VLDL and chylomicron remnants. Specific uptake of 125I-labeled chylomicrons was only 1/5 that of the other two lipoproteins. Cholesterol loading decreased 125I-labeled chylomicron remnant and 125I-labeled beta-VLDL uptake by 25%. Chylomicron remnants and beta-VLDL were equipotent in cross-competition studies; acetyl-LDL did not compete, and human LDL was a poor competitor. Although the amounts of cell-associated lipoproteins were similar, beta-VLDL and chylomicron remnants had different effects on cellular lipid metabolism. beta-VLDL produced a threefold stimulation while chylomicron remnants caused a decrease in [3H]oleate incorporation into cholesteryl ester. beta-VLDL had no effect while chylomicron remnants caused a threefold increase in [3H]oleate incorporation into triacylglycerol. beta-VLDL produced a 44% suppression and chylomicron remnants produced a 78% increase in HMG-CoA reductase activity. In summary, J774 macrophages express a receptor site that recognizes both beta-VLDL and chylomicron remnants; however, these lipoproteins exhibit strikingly different effects on intracellular lipid metabolism.  相似文献   

17.
The aim of this study was to determine in humans whether oxidized cholesterol in the diet is absorbed and contributes to the pool of oxidized lipids in circulating lipoproteins. When a meal containing 400 mg cholestan-5alpha,6alpha-epoxy-3beta-ol (alpha-epoxy cholesterol) was fed to six controls and three subjects with Type III hyperlipoproteinemia, alpha-epoxy cholesterol in serum was found in chylomicron/chylomicron remnants (CM/RM) and endogenous (VLDL, LDL, and HDL) lipoproteins. In controls, alpha-epoxy cholesterol in CM/RM was decreased by 10 h, whereas in endogenous lipoproteins it remained in the circulation for 72 h. In subjects with Type III hyperlipoproteinemia, alpha-epoxy cholesterol was mainly in CM/RM. In vitro incubation of the CM/RM fraction containing alpha-epoxy cholesterol with human LDL and HDL that did not contain alpha-epoxy cholesterol resulted in a rapid transfer of oxidized cholesterol from CM/RM to both LDL and HDL. In contrast, no transfer was observed when human serum was substituted with rat serum, suggesting that cholesteryl ester transfer protein is mediating the transfer. Thus, alpha-epoxy cholesterol in the diet is incorporated into the CM/RM fraction and then transferred to LDL and HDL, contributing to lipoprotein oxidation. Moreover, LDL containing alpha-epoxy cholesterol displayed increased susceptibility to further copper oxidation in vitro. It is possible that oxidized cholesterol in the diet accelerates atherosclerosis by increasing oxidized cholesterol levels in circulating LDL and chylomicron remnants.  相似文献   

18.
Human chylomicron remnants were taken up by cultured human monocyte-derived macrophages. Competition studies using 125I-labeled and unlabeled lipoproteins demonstrated that the remnant particles were not taken up by the modified LDL (acetyl LDL) receptor in these cells, which also contain a receptor for native LDL. The data thus suggest that the apolipoprotein E- and B-containing remnant particles are mainly taken up through an extra-hepatic E and B receptor (the classical LDL receptor pathway) in macrophages as is the case in cultured human skin fibroblasts.  相似文献   

19.
Foam cell formation occurs in vitro at lipoprotein concentrations above 50 microgram/ml in pigeon macrophages. Hypothetically, intracellular trafficking of lipoproteins at higher concentrations may differ from uptake of lipoproteins associated with low concentrations, revealing a separate atherogenic endocytic pathway. Macrophage intracellular trafficking of pigeon beta-very low density lipoprotein (beta-VLDL) and low density lipoprotein (LDL) at low concentrations (12 microgram/ml) near the saturation of high affinity binding sites and high lipoprotein concentrations (50-150 microgram/ml) used to induce foam cell formation were examined. Pigeon beta-VLDL and LDL, differentially labeled with colloidal gold, were added simultaneously to contrast trafficking of beta-VLDL, which causes in vitro foam cell formation, with LDL, which does not. The binding of lipoproteins to cell surface structures, distribution of lipoproteins in endocytic organelles, and the extent of colabeling in the endocytic organelles were determined by thin-section transmission electron microscopy.At low concentrations, the intracellular trafficking of pigeon LDL and beta-VLDL was identical. At high concentrations, LDL was removed more rapidly from the plasma membrane and reached lysosomes more quickly than beta-VLDL. No separate endocytic route was present at high concentrations of beta-VLDL; rather, an increased residence on the plasma membrane, association with nonmicrovillar portions of the plasma membrane, and slower trafficking in organelles of coated-pit endocytosis reflected a more atherogenic trafficking pattern.  相似文献   

20.
The beta-VLDL receptor pathway of murine P388D1 macrophages   总被引:1,自引:0,他引:1  
Very low density lipoproteins Sf 100-400 (VLDL1) from hypertriglyceridemic (HTG) subjects and chylomicrons cause receptor-mediated lipid engorgement in unstimulated macrophages in vitro via the beta-VLDL receptor pathway. We now report that the murine macrophage P388D1 cell line possesses the characteristics of the beta-VLDL receptor pathway observed previously in freshly isolated resident murine peritoneal macrophages or human monocyte-macrophages. HTG-VLDL1 isolated from the plasma of subjects with hypertriglyceridemia types 3, 4, and 5 interact with P388D1 macrophages in a high-affinity, curvilinear manner. beta-VLDL, HTG-VLDL1, chylomicrons, and thrombin-treated HTG-VLDL1 (which do not bind to the LDL receptor) compete efficiently and similarly for the uptake and degradation of HTG-VLDL1. LDL and acetyl LDL do not compete, indicating that uptake of HTG-VLDL1 is via neither the LDL receptor nor the acetyl LDL receptor. Binding of thrombin-treated HTG-VLDL1 to the beta-VLDL receptor indicates that the thrombin-accessible apoE, which is absolutely required for interaction of HTG-VLDL Sf greater than 60 with the LDL receptor, is not required for binding to the beta-VLDL receptor. The uptake and degradation of 125I-labeled HTG-VLDL1 is suppressed up to 80-90% by preincubation of the cells with sterols, acetyl LDL, or beta-VLDL, indicating that this process is not via the irrepressible chylomicron remnant (apoE) receptor. Chylomicrons, HTG-VLDL1, and thrombin-treated HTG-VLDL1-but not normal VLDL1, beta-VLDL, LDL, or acetyl LDL-produce massive triglyceride accumulation (10-20-fold mass increases in 4 hr) in P388D1 macrophages.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号