首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agrobacterium rhizogenes transfers a segment of its plasmid to the plant genome. The transferred DNA contains genes which are involved in the synthesis of plant hormones. These genes express in the plant cell and give rise to rooty-tumors at the infection site. Transgenic plants can be readily regenerated from the rooty-tumors and the transferred DNA is transmitted to progeny plants. High regeneration potential and sustained maintenance of transferred DNA makes the bacterium a suitable vector for plant genetic engineering. DNA sequences homologous to the transferred DNA ofAgrobacterium rhizogenes were detected in some untransformed plant species suggesting a past infection byAgrobacterium rhizogenes during evolution of some genera, notably Nicotiana.  相似文献   

2.
Hairy root type plant in vitro systems as sources of bioactive substances   总被引:6,自引:0,他引:6  
“Hairy root” systems, obtained by transforming plant tissues with the “natural genetic engineer” Agrobacterium rhizogenes, have been known for more than three decades. To date, hairy root cultures have been obtained from more than 100 plant species, including several endangered medicinal plants, affording opportunities to produce important phytochemicals and proteins in eco-friendly conditions. Diverse strategies can be applied to improve the yields of desired metabolites and to produce recombinant proteins. Furthermore, recent advances in bioreactor design and construction allow hairy root-based technologies to be scaled up while maintaining their biosynthetic potential. This review highlights recent progress in the field and outlines future prospects for exploiting the potential utility of hairy root cultures as “chemical factories” for producing bioactive substances.  相似文献   

3.
Summary Binary Ti plasmid vector systems consist of two plasmids in Agrobacterium, where one plasmid contains the DNA that can be transferred to plant cells and the other contains the virulence (vir) genes which are necessary for the DNA transfer but are not themselves stably transferred. We have constructed two nononcogenic vectors (pARC4 and pARC8) based on the binary Ti plasmid system of Agrobacterium tumefaciens for plant transformation. Each vector contains the left and right termini sequences from pTiT37. These sequences, which determine the extent of DNA transferred to plant cells, flank unique restriction enzyme sites and a marker gene that functions in the plant (nopaline synthase in pARC4 or neomycin phosphotransferase in pARC8). After construction in vitro, the vectors can be conjugatively transferred from E. coli to any of several Agrobacterium strains containing vir genes. Using A. rhizogenes strain A4 containing the resident Ri plasmid plus a vector with the nopaline synthase marker, we found that up to 50% of the hairy roots resulting from the infection of alfalfa or tomato synthesized nopaline. Thus, vector DNA encoding an unselected marker was frequently co-transferred with Ri plasmid DNA to an alfalfa or a tomato cell. In contrast, the frequency of co-transfer to soybean cells was difficult to estimate because we encountered a high background of non-transformed roots using this species. Up to five copies of the vector DNA between the termini sequences were faithfully transferred and maintained in most cases suggesting that the termini sequences and the vir genes from the Ri and Ti plasmids are functionally equivalent.  相似文献   

4.
Sequence-characterized amplified regions markers (SCARs) were developed from six randomly amplified polymorphic DNA (RAPD) markers linked to the major QTL region for powdery mildew (Uncinula necator) resistance in a test population derived from the cross of grapevine cultivars “Regent” (resistant) × “Lemberger”(susceptible). RAPD products were cloned and sequenced. Primer pairs with at least 21 nucleotides primer length were designed. All pairs were tested in the F1 progeny of “Regent” × “Lemberger”. The SCAR primers resulted in the amplification of specific bands of expected sizes and were tested in additional genetic resources of resistant and susceptible germplasm. All SCAR primer pairs resulted in the amplification of specific fragments. Two of the SCAR markers named ScORA7-760 and ScORN3-R produced amplification products predominantly in resistant individuals and were found to correlate to disease resistance. ScORA7-760, in particular, is suitable for marker-assisted selection for powdery mildew resistance and to facilitate pyramiding powdery mildew resistance genes from various sources.  相似文献   

5.
Torres FP  Fonte LF  Valente VL  Loreto EL 《Genetica》2006,126(1-2):101-110
The hobo transposable element can occur under three forms in the Drosophila genome: as a complete element (also called canonical), as internally deleted copies, or as hobo-related sequences (relics). Some evidence indicated that canonical elements and internally deleted copies are recent acquisitions of Drosophila genomes, while the “relics” are old components, normally degenerated and immobile. Here we present the characterization of a hobo-related sequence, found in the genome of a hypermutable strain of D. simulans, which insertion into the white locus raised a de novo white mutation. It is a shorter hobo related element presenting, overall, roughly 18% of divergence at the DNA level from the canonical hobo, with many indels that make clear this element is defective. However, its ITRs and flanking regions are extremely conserved. This is the first hobo “relic” showed to be mobilizable. We suggest, and point up some evidences, toward the idea that this sequence could have been mobilized by the canonical element. The presence of a similar “relic” element in D. sechellia allows us to suggest that these elements have been maintained mobilizable since the time of divergence between these species.  相似文献   

6.
Tao N  Hu Z  Liu Q  Xu J  Cheng Y  Guo L  Guo W  Deng X 《Plant cell reports》2007,26(6):837-843
Citrus is an important fruit crop as regards accumulation of carotenoids. In plant carotenoid biosynthesis, phytoene synthase gene (Psy) plays a key role in catalyzing the head-to-head condensation of geranylgeranyl diphosphate molecules to produce colorless phytoene. In the present paper, we reported the phytoene contents determination and characterization of Psy during fruit ripening of “Washington” navel orange and its red-fleshed mutant “Cara Cara”. Results showed that phytoene was exclusively accumulated in peel and pulp of “Cara Cara”. Although phytoene was observed accumulating with fruit ripening of “Cara Cara”, the contents in pulp were 10 times higher than those in peel. The isolated two Psy cDNAs were both 1520 bp in full length, containing 436 deduced amino acid residues, with a different amino acid at 412th. Genomic hybridization results showed that one or two copies might be present in “Cara Cara” and “Washington” genomes. During “Cara Cara” and “Washington” fruit coloration, expression of Psy was observed to be up-regulated, as revealed by tissue specific profiles in the flavedo, albedo, segment membrane and juice sacs. However, Psy expression in albedo of “Cara Cara” was higher than that in “Washington”, as evidenced by phytoene accumulation in the peel.  相似文献   

7.
Studies in several plants have shown that Agrobacterium tumefaciens T-DNA can integrate into plant chromosomal DNA by different mechanisms involving single-stranded (ss) or double-stranded (ds) forms. One mechanism requires sequence homology between plant target and ssT-DNA border sequences and another double-strand-break repair in which preexisting chromosomal DSBs “capture” dsT-DNAs. To learn more about T-DNA integration in Solanum lycopersicum we characterised 98 T-DNA/plant DNA junction sequences and show that T-DNA left border (LB) and right border transfer is much more variable than previously reported in Arabidopsis thaliana and Populus tremula. The analysis of seven plant target sequences showed that regions of homology between the T-DNA LB and plant chromosomal DNA plays an important role in T-DNA integration. One T-DNA insertion generated a target sequence duplication that resulted from nucleolytic processing of a LB/plant DNA heteroduplex that generated a DSB in plant chromosomal DNA. One broken end contained a captured T-DNA that served as a template for DNA repair synthesis. We propose that most T-DNA integrations in tomato require sequence homology between the ssT-DNA LB and plant target DNA which results in the generation of DSBs in plant chromosomal DNA.  相似文献   

8.
Summary The detailed structural organization of DNA sequences transferred to the plant genome via Agrobacterium tumefaciens has been determined in 11 transgenic tomato plants that carry the transferred DNA (T-DNA) at a single genetic locus. The majority (seven) of these plants were found to carry multiple copies of T-DNA arranged in inverted repeat structures. Such a high frequency of inverted repeats among transgenotes has not been previously reported and appears to be characteristic of transformation events caused by C58/pGV3850 strains of Agrobacterium. The inverted repeats were found to be centered on either the left or the right T-DNA boundary and both types were observed at similar frequency. In several plants both types of inverted repeat were found to coexist in the same linear array of elements. Direct repeats were observed in two plants, each time at the end of an array of inverted repeat elements, and at a lower frequency than inverted repeats. The junctions between T-DNA elements and plant DNA sequences and the junctions between adjacent T-DNA elements were mapped in the same 11 plants, allowing the determination of the distribution of junction points at each end for both types of junction. Based on a total of 17 distinct junctions at the right end of T-DNA and 19 at the left end, the distribution of junction points was found to be much more homogeneous at the right end than at the left end. Left end junctions were found to be distributed over a 3 kb region of T-DNA with two thirds of the junctions within 217 bp of the left repeat. Two thirds of the right end junctions were found to lie within 11 bp of the right repeat with the rest more than 39 bp from the right repeat. T-DNA::plant DNA junctions and T-DNA::T-DNA inverted repeat junctions showed similar distributions of junction points at both right and left ends. The possibilities that T-DNA inverted repeats are unstable in plants and refractory to cloning in wild type Escherichia coli is discussed. Two distinct types of mechanisms for inverted repeat formation are contrasted, replication and ligation mechanisms.  相似文献   

9.
New target for rice lodging resistance and its effect in a typhoon   总被引:5,自引:0,他引:5  
We demonstrated the new target for lodging resistance in rice (Oryza sativa L.) by the analysis of physiological function of a locus for lodging resistance in a typhoon (lrt5) with the near isogenic line under rice “Koshihikari” genetic background (tentatively named S1). The higher lodging resistance of S1 was observed during a typhoon in September 2004 (28 days after heading), when most other plants in “Koshihikari” became lodged. Visual observations showed that bending of the upper stems triggered lodging during the typhoon; the upper stem of “Koshihikari” buckled completely, whereas that of S1 remained straight. In addition to the strong rain and winds during the typhoon, the weight of the buckled upper plant parts increased the pressure on adjacent plants and caused a domino effect in “Koshihikari”. Young’s modulus, an indicator of the rigidity of the culm, was significantly higher in S1 than in “Koshihikari”. In the upper culm, the starch content in S1 was 4.8 times the value in “Koshihikari”, and senescence was delayed in the upper leaves of S1. These results suggest that the rigidity of the upper culm by the higher starch content (as a result of delayed senescence in the upper leaves) may be responsible for the higher lodging resistance during a typhoon in rice. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Three cassava clones (SOM-1, “05”, and “50”) were cultured in vitro on MS medium plus sucrose (30 g L−1) and myo-inositol (100 mg L−1) without plant growth regulators and with additions of 0 (control), 0.5, 1, 1.5, 2, 2.5, and 3 g L−1 NaCl to test their salt tolerance. The same cassava clones were cultivated in greenhouse conditions on a sandy soil substratum and irrigated with 20% strength Hoagland solution, and additions of 0, 4, and 8 g L−1 of NaCl. Salinity negatively affected the survival, development, leaf water content, and mineral composition (mainly by accumulation of Cl and Na) of both in vitro and ex vitro plants, but with different intensity in each clone. In both conditions of culture (in vitro and ex vitro) clone SOM-1, from a desert arid saline zone of Somalia, was the most tolerant and clone “05”, from a rainy region of Ivory Coast, the most sensitive. Clone “50” tolerance to in vitro salt treatments, although lower, was not significantly different from that of SOM-1 but the ex vitro response was similar to “05”. In general, there was a correlation between in vitro and ex vitro behavior of the cassava plant regarding salt tolerance, which would allow the in vitro culture method to be used for selection of salt-tolerant plants of this crop.  相似文献   

11.
Agrobacterium rhizogenes is the etiological agent for hairy-root disease (also known as root-mat disease). This bacterium induces the neoplastic growth of plant cells that differentiate to form “hairy roots.” Morphologically, A. rhizogenes-induced hairy roots are very similar in structure to wild-type roots with a few notable exceptions: Root hairs are longer, more numerous, and root systems are more branched and exhibit an agravitropic phenotype. Hairy roots are induced by the incorporation of a bacterial-derived segment of DNA transferred (T-DNA) into the chromosome of the plant cell. The expression of genes encoded within the T-DNA promotes the development and production of roots at the site of infection on most dicotyledonous plants. A key characteristic of hairy roots is their ability to grow quickly in the absence of exogenous plant growth regulators. As a result, hairy roots are widely used as a transgenic tool for the production of metabolites and for the study of gene function in plants. Researchers have utilized this tool to study root development and root–biotic interactions, to overexpress proteins and secondary metabolites, to detoxify environmental pollutants, and to increase drought tolerance. In this review, we provide an up-to-date overview of the current knowledge of how A. rhizogenes induces root formation, on the new uses for A. rhizogenes in tissue culture and composite plant production (wild-type shoots with transgenic roots), and the recent development of a disarmed version of A. rhizogenes for stable transgenic plant production.  相似文献   

12.
The proportion of the outer, “hairy” achenes in capitula of hybrid D 14 (Microseris pygmaea × M. bigelovii) is determined by the same major gene as in its sister hybrid, B 87, as shown by marker segregation. Crossover between major gene and markers shows their genetic independence. Two modifiers segregating 9:7 influence the proportion of hairies in plants homozygous for the major gene. These same modifiers (or two genes linked with them) also determine the segregation of the number of achenes per head. Most likely, the modifiers act indirectly via a residual dependence of heterocarpy on capitulum size within strict quantitative limits set by the major gene. The identification of modifiers in a polygenic system as major genes for another character acting pleiotropically supports our contention that relatively few genes interact in plant development to determine key morphological characteristics at the organismic level.  相似文献   

13.
Activation tagging is a powerful technique for generating gain-of-function mutants in plants. We developed a new vector system for activation tagging of genes in “transformed hairy roots”. The binary vector pHR-AT (Hairy Root-Activation Tagging) and its derivative pHR-AT-GFP contain a cluster of rol (rooting locus) genes together with the right border facing four tandem repeats of the cauliflower mosaic virus (CaMV) 35S enhancer element on the same T-DNA. Transformation experiments using Arabidopsis, potato, and tobacco as model plants revealed that upon inoculating plants with Agrobacterium tumefaciens harboring these vectors, a large number of independently transformed roots could be induced from explants within a short period of time, and root culture lines were subsequently established. Molecular analyses of the pHR-AT-GFP-transformed Arabidopsis lines showed that expression of the genes adjacent to the T-DNA insertion site was significantly increased. This system may facilitate application of the activation-tagging approach to plant species that are recalcitrant to the regeneration of transgenic plants. High-throughput metabolic profiling of activation-tagged root culture lines will offer opportunities for identifying regulatory or biosynthetic genes for the production of valuable secondary metabolites of interest.  相似文献   

14.
We analyzed 29 T-DNA inserts in transgenicArabidopsis thaliana plants for the junction of the right border sequences and the flanking plant DNA. DNA sequencing showed that in most lines the right border sequences transferred had been preserved during integration, corroborating literature data. Surprisingly, in four independent transgenic lines a complete right border repeat was present followed by binary vector sequences. Cloning of two of these T-DNA inserts by plasmid rescue showed that in these lines the transferred DNA consisted of the complete binary vector sequences in addition to the T-region. On the basis of the structure of the transferred DNA we propose that in these lines T-DNA transfer started at the left-border repeat, continued through the vector part, passed the right border repeat, and ended only after reaching again this left-border repeat.  相似文献   

15.
Troyanos  Y.E.  Hipps  N.A.  Moorby  J.  Kingswell  G. 《Plant and Soil》2000,225(1-2):73-82
The effects (and interaction) of two solution concentrations of Mg (50, 500, μM) and two of K (250, 4250 μM) on the growth of micropropagated plants of “F. 12/1” and “Colt” were investigated using a flowing solution culture system. Magnesium inflow and growth of “Colt” and “F. 12/1” were inhibited to a similar extent by an increased concentration of K in the nutrient solution. However, the consequences of this inhibition were different. Reduced inflow of Mg in “F. 12/1” caused Mg deficiency symptoms at high and low concentrations of K, whereas this only occurred with a combination of high K concentration and low Mg concentration in “Colt”. The distribution of dry matter within the plant was significant in determining susceptibility to Mg deficiency. Since “F. 12/1” has a smaller root:shoot ratio than Colt it is unable to sustain the same concentration of Mg in leaves as “Colt” irrespective of external K concentration. The molar ratio of K:Mg in soil solutions should remain <8.5:1 in order to ensure maximum growth of “F. 12/1” and “Colt”. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
17.
Summary Transgenic cucumber plants (Cucumis sativus L., cv. Straight Eight) were regenerated from roots induced by inoculation of inverted hypocotyl sections with Agrobacterium rhizogenes containing the vector pARC8 in addition to the resident Ri-plasmid. The DNA transferred to the plant from the vector (T-DNA) included a gene which encoded the enzyme neomycin phosphotransferase II, and thus conferred on the plant cells resistance to kanamycin. The transgenic plants looked normal and were positive for the neomycin phosphotransferase II. Southern blot analysis of the transgenic plants revealed that all plants contained vector DNA, but only some of them contained DNA from the Ri plasmid.  相似文献   

18.
The systematics and taxonomy of Kappaphycus and Eucheuma (Solieriaceae) is confused and difficult due to morphological plasticity, lack of adequate characters to identify species and commercial names of convenience. These taxa are geographically widely dispersed through cultivation. Commercial, wild and herbarium sources were analysed; molecular markers provided insights into taxonomy and genetic variation, and where sources of genetic variation may be located. The mitochondrial cox2-3 and plastidal RuBisCo spacers were sequenced. There is a clear genetic distinction between K. alvarezii (“cottonii”) and K. striatum (“sacol”) samples. Kappaphycus alvarezii from Hawaii and some samples from Africa are also genetically distinct. Our data also show that all currently cultivated K. alvarezii from all over the world have a similar mitochondrial haplotype. Within Eucheuma denticulatum (“spinosum”) most African samples are again genetically distinct. Our data also suggest that currently cultivated E. denticulatum may have been “domesticated” several times, whereas this is not evident for the cultivated K. alvarezii. The present markers used do not distinguish all the morpho-types known in cultivation (e.g. var. tambalang, “giant” type) but do suggest that these markers may be useful to assess introductions and species identification in samples.  相似文献   

19.
The possibility was examined whether the pool of sequence variants of HLVd which accumulated as progeny of “thermomutants” induced upon heat-treatment of hop could initiate infection of non-host solanaceous plants. It was found that HLVd microevolution led to the appearance of HLVd population in tomato. This viroid population was maintained at levels detectable by molecular hybridisation, showing the highest concentration in apical leaves. HLVd was further transferred from tomato to Nicotiana benthamiana, where distinct HLVd sequence variants appeared and were stably maintained at low levels. Our results show that replication of HLVd under heat stress resulted in the production of viroid quasispecies, potentially important for viroid evolution in so-called non host plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Three genera of lagomorphs, Prolagus, Lagopsis, and “Amphilagus,” were identified during a revision of the lagomorph material from Sandelzhausen (MN5, Early/Middle Miocene boundary, southern Germany). Evidence of two morphological and dimensional classes were observed at some tooth positions in Prolagus (some p3 show an unmistakable P. oeningensis morphology, others closely resemble P. crusafonti), but not at other tooth positions (e.g., M1–2). Insufficient data from Sandelzhausen precludes identification of two different species of Prolagus from this locality, and to define the characteristics of the possible P. crusafonti-like species. Thus, all Prolagus specimens have been classified as P. aff. oeningensis. The genus Lagopsis is represented by L. cf. penai, whose presence is compatible with a MN5 age. The relative abundance of Lagopsis to Prolagus may indicate relatively cool and wet palaeoclimatic conditions. The largest primitive lagomorph species from continental Europe is present at Sandelzhausen. Morphological and dimensional comparisons with other European primitive lagomorphs exclude any affinity with the genera Eurolagus and Titanomys and with the species included in “Amphilagus ulmensis”. Some common features with “Amphilagus antiquus” were observed, although they are not sufficient for the attribution to this taxon. Until there is a general revision of European primitive lagomorphs, the Sandelzhausen giant lagomorph is classified as “Amphilagus” sp. Its origins, whether from evolution within Europe or migration from Asia, remain unknown.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号