首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rotary shadowing electron microscopy was used to examine complexes formed by incubating combinations of the basement membrane components: type IV collagen, laminin, large heparan sulfate proteoglycan and fibronectin. Complexes were analyzed by length measurement from the globular (COOH) domain of type IV collagen, and by examination of the four arms of laminin and the two arms of fibronectin. Type IV collagen was found to contain binding sites for laminin, heparan sulfate proteoglycan and fibronectin. With laminin the most frequent site was centered approximately 81 nm from the carboxy end of type IV collagen. Less frequent sites appeared to be present at approximately 216 nm and approximately 291 nm, although this was not apparent when the sites were expressed as a fraction of the length of type IV collagen to which they were bound. For heparan sulfate proteoglycan the most frequent site occurred at approximately 206 nm with a less frequent site at approximately 82 nm. For fibronectin, a single site was present at approximately 205 nm. Laminin bound to type IV collagen through its short arms, particularly through the end of the lateral short arms and to heparan sulfate proteoglycan mainly through the end of its long arm. Fibronectin bound to type IV collagen through the free end region of its arms. Using a computer graphics program, the primary laminin binding sites of two adjacent type IV collagen molecules were found to align in the "polygonal" model of type IV collagen, whereas with the "open network" model, a wide meshed matrix is predicted. It is proposed that basement membrane may consist of a lattice of type IV collagen coated with laminin, heparan sulfate proteoglycan and fibronectin.  相似文献   

2.
Basement membranes were divided into two types: 1) thin basement membranes, such as those of the epidermis, trachea, jejunum, seminiferous tubule, and vas deferens of the rat, the ciliary process of the mouse, and the seminiferous tubule of the monkey, and 2) thick basement membranes, such as the lens capsule of the mouse and Reichert's membrane of the rat. High-magnification electron microscopy was used to examine both types after fixation either in glutaraldehyde followed by postosmication or in potassium permanganate. The basic structure of thin and thick basement membranes was found to be a three-dimensional network of irregular, fuzzy strands referred to as "cords"; the diameter of these cords was variable, but averaged 4 nm in all cases examined. The spaces separating the cords differed, however. In the lamina densa of thin basement membranes, the diameter of these spaces averaged about 14 nm in every case, whereas in the lamina lucida it ranged up to more than 40 nm. Intermediate values were recorded in thick basement membranes. Finally, the third, inconstant layer of thin basement membranes, pars fibroreticularis, was composed of discontinuous elements bound to the lamina densa: i.e., anchoring fibrils, microfibrils, or collagen fibrils. In particular, collagen fibrils were often surrounded by processes continuous with the lamina densa and likewise composed of a typical cord network. Finally, two features were encountered in every basement membrane: 1) a few cords were in continuity with a 1.4- to 3.2-nm thick filament or showed such a filament within them; the filaments became numerous after treatment of the seminiferous tubule basement membrane with the proteolytic enzyme, plasmin, since cords decreased in thickness and could be reduced to a filament, and 2) at the cord surface, it was occasionally possible to see 4.5-nm-wide sets of two parallel lines, referred to as "double tracks." On the basis of evidence that the filaments are type IV collagen molecules and the double tracks are polymerized heparan sulfate proteoglycan, it is proposed that cords are composed of an axial filament of type IV collagen to which are associated glycoprotein components (laminin, entactin, fibronectin) and the double tracks of the proteoglycan.  相似文献   

3.
We localized collagen types III, IV, and VI in normal rat lung by light and electron immunohistochemistry. Type IV collagen was present in every basement membrane examined and was absent from all other structures. Although types III and VI had a similar distribution, being present in the interstitium of major airways, blood vessels, and alveolar septa, as in other organs, they had different morphologies. Type III collagen formed beaded fibers, 15-20 nm in diameter, whereas type VI collagen formed fine filaments, 5-10 nm in diameter. Both collagen types were found exclusively in the interstitium, often associated with thick (30-35 nm) cross-banded type I collagen fibers. Occasionally, type III fibers and type VI filaments could be found bridging from the interstitium to the adventitial aspect of some basement membranes. Furthermore, the association of collagen type VI with types I and III and basement membranes suggests that type VI may contribute to integration of the various components of the pulmonary extracellular matrix into a functional unit.  相似文献   

4.
Shape and assembly of type IV procollagen obtained from cell culture.   总被引:13,自引:3,他引:10       下载免费PDF全文
Type IV procollagen was isolated from the culture medium of the teratocarcinoma cell line PYS-2 by affinity chromatography on heparin-Sepharose. Immunological studies showed that type IV procollagen is composed of pro-alpha 1(IV) and pro-alpha 2(IV) chains and contains two potential cross-linking sites which are located in the short triple-helical 7S domain and the globular domain NC1 . The 7S domain was also identified as the heparin binding site. Rotary shadowing visualized type IV procollagen as a single triple-helical rod (length 388 nm) with a globule at one end. Some of the procollagen in the medium, however, had formed aggregates by alignment of 2-4 molecules along their 7S domains. After deposition in the cell matrix, non-reducible cross-links between the 7S domains are formed while the globules of two procollagen molecules connect to each other. The latter may require a slight proteolytic processing of the globular domains NC1 . The shape of type IV procollagen and the initial steps in its assembly are compatible with a recently proposed network of type IV collagen molecules in basement membranes. Since both type IV collagen and laminin bind to heparin, the formation of higher ordered structures by interaction of both proteins with heparan-sulfate proteoglycan may occur in situ.  相似文献   

5.
Self-assembly of basement membrane collagen   总被引:32,自引:0,他引:32  
The in vitro self-assembly of murine type IV collagen was examined by using biochemical and morphological techniques. Dimeric collagen undergoes a rapid and reversible thermal gelation at neutral pH without an appreciable lag period. The process is seen to be concentration dependent and inhibited by 2 M urea. The formed complex can be visualized by electron microscopy rotary shadowing as an irregular polygonal lattice network with extensive side by side associations within the collagenous triple-helical part of the molecules, two and three strands thick. Measurements on the matrix suggest a median stagger dimension of 170 nm, one-fifth the length of a dimer. The conversion of pepsin-generated monomers into N-terminally bound tetramers can also be demonstrated in vitro. This process is also concentration dependent and inhibited and reversed by 2 M urea but is thermally irreversible and occurs at a slow rate relative to the lateral associations. These tetramers can be seen by rotary shadowing as four-armed "spider" structures. It is proposed that lateral associations, by virtue of their faster rate of formation, precede 7S bond formation, and several models for the assembly of basement membrane collagen are discussed.  相似文献   

6.
Three basement membrane components, laminin, collagen IV, and heparan sulfate proteoglycan, were mixed and incubated at 35 degrees C for 1 h, during which a precipitate formed. Centrifugation yielded a pellet which was fixed in either potassium permanganate for ultrastructural studies, or in formaldehyde for Lowicryl embedding and immunolabeling with protein A-gold or anti-rabbit immunoglobulin-gold. Three types of structures were observed and called types A, B, and C. Type B consisted of 30-50-nm-wide strips that were dispersed or associated into a honeycomb-like pattern, but showed no similarity with basement membranes. Immunolabeling revealed that type B strips only contained heparan sulfate proteoglycan. The structure was attributed to self-assembly of this proteoglycan. Type A consisted of irregular strands of material that usually accumulated into semisolid groups. Like basement membrane, the strands contained laminin, collagen IV, and heparan sulfate proteoglycan, and, at high magnification, they appeared as a three-dimensional network of cord-like elements whose thickness averaged approximately 3 nm. But, unlike the neatly layered basement membranes, the type A strands were arranged in a random, disorderly manner. Type C structures were convoluted sheets composed of a uniform, dense, central layer which exhibited a few extensions on both surfaces and was similar in appearance and thickness to the lamina densa of basement membranes. Immunolabeling showed that laminin, collagen IV, and proteoglycan were colocalized in the type C sheets. At high magnification, the sheets appeared as a three-dimensional network of cords averaging approximately 3 nm. Hence, the organization, composition, and ultrastructure of type C sheets made them similar to the lamina densa of authentic basement membranes.  相似文献   

7.
Cultured rat myotubes develop high concentrations of acetylcholine receptors (AChR) in specialized areas of attachment to their substrate. We examined the ultrastructure of identified AChR clusters by quick-freeze, deep-etch, rotary replication or by thin sectioning of whole myotubes fixed in the presence of saponin and tannic acid to preserve the cytoskeleton. Our findings show that AChR clusters are composed of at least three distinct domains, differing in their cytoskeletal, intramembrane, and external components. At contact domains, the myotube's ventral membrane lacked AChR and lay within 10-15 nm of the substrate; electron-dense strands connected the two. The overlying cytoplasm contained bundles of parallel microfilaments passing above and through an irregular network of globular material, resembling the relationship of microfilament bundles to focal contacts already described in fibroblasts. Coated-membrane domains lay between the microfilament bundles and were overlain by cytoplasmic plaques of a regular network of polygons having associated coated pits. These plaques closely resembled the network of polymerized clathrin described in fibroblasts and macrophages. Coated membrane also lacked AChR and adhered to the substrate by electron-dense strands, but did not anchor microfilament bundles. The cytoplasm overlying AChR domains contained a complex network composed of at least two layers. The layer closest to the membrane consisted of protrusions from the cytoplasmic surface, some connected by fine filaments less than 5 nm in diameter. An overlying layer contained larger diameter filaments, some forming an anastomotic network reminiscent of the cortical cytoskeleton of erythrocytes. Longer filaments inserting into this network appeared identical to members of nearby microfilament bundles. The morphology of AChR domains supports the idea that AChR are immobilized by a network containing actin and spectrin.  相似文献   

8.
Basement membranes are defining features of the cellular microenvironment; however, little is known regarding their assembly outside cells. We report that extracellular Cl ions signal the assembly of collagen IV networks outside cells by triggering a conformational switch within collagen IV noncollagenous 1 (NC1) domains. Depletion of Cl in cell culture perturbed collagen IV networks, disrupted matrix architecture, and repositioned basement membrane proteins. Phylogenetic evidence indicates this conformational switch is a fundamental mechanism of collagen IV network assembly throughout Metazoa. Using recombinant triple helical protomers, we prove that NC1 domains direct both protomer and network assembly and show in Drosophila that NC1 architecture is critical for incorporation into basement membranes. These discoveries provide an atomic-level understanding of the dynamic interactions between extracellular Cl and collagen IV assembly outside cells, a critical step in the assembly and organization of basement membranes that enable tissue architecture and function. Moreover, this provides a mechanistic framework for understanding the molecular pathobiology of NC1 domains.  相似文献   

9.
The anterior lens capsule provides a thick, easily handled model system for the study of the organization of type IV collagen, the main component of basement membranes. We have used the technique of rapid freezing, deep-etch, and rotary replication to study the three-dimensional organization of the collagen skeleton in mammalian lens capsule after a variety of extraction procedures. In all cases the collagen appeared as a densely packed three-dimensional branching network of fine microfibrils. The organization of the microfibrils appears to show some regularity, with branch points approximately 40 nm apart. Most junctions are three-way and the network forms predominantly five-sided figures. This closely resembles the collagenous network described by Yurchenco and Ruben (1987, 1988) in human amniotic basement membrane and EHS tumor matrix, but extends their findings to another system for which X-ray diffraction data are available. The three-dimensional network is discussed in terms of molecular packing of type IV collagen in light of the information available from the diffraction data.  相似文献   

10.
Type IV collagen was solubilized from a tumor basement membrane either by acid extraction or by limited digestion with pepsin. The two forms were similar in composition and the size of the constituent chains but differed when examined by electron microscopy and in the fragment pattern produced by bacterial collagenase. The acid-soluble form showed after rotary shadowing strands mainly of a length of 320 nm which terminated in a globule, or two strands connected by a similar globule. The globule was identified as a non-collagenous domain (NC1) which under dissociating conditions could be separated into two peptides showing a monomer-dimer relationship. Higher aggregates of NC1 were visualized under non-dissociating conditions. Some of the acid-extracted molecules have retained the previously 7-S collagen domain. The pepsin-solubilized form lacked domain NC1 and consisted mainly of four triple-helical strands (length 356 nm) joined together at the 7-S domain (length 30 nm). Common to both forms of type IV collagen was a small collagenase-resistant domain NC2 which was composed of collagenous and non-collagenous elements and located between the 7-S domain and the major triple helix. These data indicate that the collagenous matrix of basement membranes consists of a regular network of type IV collagen molecules which is generated by two different interacting sites located at opposite ends of each molecule. The 7-S collagen domain connects four molecules while the NC1 domain connects two molecules. The maximal distance between identical cross-linking sites (7-S or NC1) was estimated to be about 800 nm comprising the length of two molecules.  相似文献   

11.
Molecular architecture of basement membranes   总被引:49,自引:0,他引:49  
Basement membranes are specialized extracellular matrices with support, sieving, and cell regulatory functions. The molecular architectures of these matrices are created through specific binding interactions between unique glycoprotein and proteoglycan protomers. Type IV collagen chains, using NH2-terminal, COOH-terminal, and lateral association, form a covalently stabilized polygonal framework. Laminin, a four-armed glycoprotein, self-assembles through terminal-domain interactions to form a second polymer network, Entactin/nidogen, a dumbbell-shaped sulfated glycoprotein, binds laminin near its center and interacts with type IV collagen, bridging the two. A large heparan sulfate proteoglycan, important for charge-dependent molecular sieving, is firmly anchored in the basement membrane and can bind itself through a core-protein interaction to form dimers and oligomers and bind laminin and type IV collagen through its glycosaminoglycan chains. Heterogeneity of structure and function occur in different tissues, in development, and in response to different physiological needs. The molecular architecture of these matrices may be regulated during or after primary assembly through variations in compositions, isoform substitutions, and the modifying influence of exogenous macromolecules such as heparin and heparan sulfate.  相似文献   

12.
《The Journal of cell biology》1986,103(6):2467-2473
Type IV collagen incubated at elevated temperatures in physiologic buffers self-associates (a) via its carboxy-terminal (NC1) domain, (b) via its amino-terminal (7S) domain, and (c) laterally; and it forms a network. When examined with the technique of rotary shadowing, isolated domain NC1 was found to bind along the length of type IV collagen to four distinct sites located at intervals of approximately 100 nm each. The same 100-nm distance was observed in domain NC1 of intact type IV collagen bound along the length of the collagen molecules during initial steps of network formation and in complete networks. The presence of anti-NC1 Fab fragments in type IV collagen solutions inhibited lateral association and network formation in rotary shadow images. During the process of self-association type IV collagen develops turbidity; addition of isolated domain NC1 inhibited the development of turbidity in a concentration-dependent manner. These findings indicate that domain NC1 of type IV collagen plays an important role in the process of self-association and suggest that alterations in the structure of NC1 may be partially responsible for impaired functions of basement membranes in certain pathological conditions.  相似文献   

13.
Interactions between type IV collagen and heparin were examined under equilibrium conditions with rotary shadowing, solid-phase binding assays, and affinity chromatography. With the technique of rotary shadowing and electron microscopy, heparin appeared as thin, short strands and bound to the following three sites: the NC1 domain, and in the helix, at 100 and 300 nm from the NC1 domain. By solid-phase binding assays the binding of [3H]heparin in solution to type IV collagen immobilized on a solid surface was found to be specific, since it was saturable and could be displaced by an excess of unlabeled heparin. Scatchard analysis indicated three classes of binding sites for heparin-type IV collagen interactions with dissociation constants of 3, 30, and 100 nM, respectively. Furthermore, by the solid-phase binding assays, the binding of tritiated heparin could be competed almost to the same extent by unlabeled heparin and chondroitin sulfate side chains. This finding indicates that chondroitin sulfate should also bind to type IV collagen. By affinity chromatography, [3H]heparin bound to a type IV collagen affinity column and was eluted with a linear salt gradient, with a profile exhibiting three distinct peaks at 0.18, 0.22, and 0.24 M KCl, respectively. This suggested that heparin-type IV collagen binding was of an electrostatic nature. Finally, the effect of the binding of heparin to type IV collagen on the process of self-assembly of this basement membrane glycoprotein was studied by turbidimetry and rotary shadowing. In turbidity experiments, the presence of heparin, even in small concentrations, drastically reduced maximal aggregation of type IV collagen which was prewarmed to 37 degrees C. By using the morphological approach of rotary shadowing, lateral associations and network formation by prewarmed type IV collagen were inhibited in the presence of heparin. Thus, the binding of heparin resulted in hindrance of assembly of type IV collagen, a process previously described for interactions between various glycosaminoglycans and interstitial collagens. Such regulation may influence the assembly of basement membranes and possibly modify functions. Furthermore, qualitative and quantitative changes of proteoglycans which occur in certain pathological conditions, such as diabetes mellitus, may alter molecular assembly and possibly permeability functions of several basement membranes.  相似文献   

14.
Role of laminin terminal globular domains in basement membrane assembly   总被引:2,自引:0,他引:2  
Laminins contribute to basement membrane assembly through interactions of their N- and C-terminal globular domains. To further analyze this process, recombinant laminin-111 heterotrimers with deletions and point mutations were generated by recombinant expression and evaluated for their ability to self-assemble, interact with nidogen-1 and type IV collagen, and form extracellular matrices on cultured Schwann cells by immunofluorescence and electron microscopy. Wild-type laminin and laminin without LG domains polymerized in contrast to laminins with deleted alpha1-, beta1-, or gamma1-LN domains or with duplicated beta1- or alpha1-LN domains. Laminins with a full complement of LN and LG domains accumulated on cell surfaces substantially above those lacking either LN or LG domains and formed a lamina densa. Accumulation of type IV collagen onto the cell surface was found to require laminin with separate contributions arising from the presence of laminin LN domains, nidogen-1, and the nidogen-binding site in laminin. Collectively, the data support the hypothesis that basement membrane assembly depends on laminin self-assembly through formation of alpha-, beta-, and gamma-LN domain complexes and LG-mediated cell surface anchorage. Furthermore, type IV collagen recruitment into the laminin extracellular matrices appears to be mediated through a nidogen bridge with a lesser contribution arising from a direct interaction with laminin.  相似文献   

15.
A monoclonal antibody, IV-IA8, generated against chicken type IV collagen has been characterized and shown to bind specifically to a conformational-dependent site within a major, triple helical domain of the type IV molecule. Immunohistochemical localization of the antigenic determinant with IV-IA8 revealed that the basement membranes of a variety of chick tissues were stained but that the basement membrane of the corneal epithelium showed little, if any, staining. Thus, basement membranes may differ in their content of type IV collagen, or in the way in which it is assembled. The specificity of the antibody was determined by inhibition ELISA using purified collagen types I-V and three purified molecular domains of chick type IV collagen ([F1]2F2, F3, and 7S) as inhibitors. Only unfractionated type IV collagen and the (F1)2F2 domain bound the antibody. Antibody binding was destroyed by thermal denaturation of the collagen, the loss occurring at a temperature similar to that at which previous optical rotatory dispersion studies had shown melting of the triple helical structure of (F1)2F2. Such domain-specific monoclonal antibodies should prove to be useful probes in studies involving immunological dissection of the type IV collagen molecule, its assembly within basement membranes, and changes in its distribution during normal development and in disease.  相似文献   

16.
Collagen type VI was demonstrated immunomorphologically in articular cartilage (distal femur) of young (2–8 weeks) and adult mice by fluorescence and electron microscopy (gold-labelled second antibody—sandwich method) using pre-and post-embedding techniques. This collagen type was mainly seen in the vicinity of chondrocytes, and in larger amounts in adult cartilage. Electron-microscopic inspection (pre-embedding technique) revealed labelling above plaques that were 40–160 nm in size, and from which up to 7 fine filaments ( 10 nm) per unit sectional plane radiated. Using the post-embedding technique, only labelled plaques could be demonstrated; fine filaments were not perceptible. This was partly a result of the low contrast. It is assumed that the globular ends of up to 20 of the fine type VI filaments are anchored in one plaque and that the antibodies bind to the non-collagenous globular domains. Filaments radiated from the plaques and formed a threedimensional network that stabilized the structures of the cartilaginous matrix. Antibodies against fibronectin also labelled similar plaques. The ends of the type VI filaments are possibly linked into the plaques by fibronectin.  相似文献   

17.
Localization of type IV collagen was analyzed at the ultrastructural level in mouse embryonic molars by using a preembedding technique. Cryostat sections were incubated with type IV collagen antibody and then treated with the peroxidase-antiperoxidase complex. This antibody was visualized at the epithelio-mesenchymal interface. Labeling was intense and uniformly distributed throughout the basement membrane. However, it was mainly restricted to the lamina densa. No immunostaining was detectable in the lamina lucida but it was crossed by fine filaments that appeared as projections from the lamina densa to the epithelial cell plasma membrane. At the mesenchymal aspect of the basement membrane, projections of labeled material extended from the lamina densa in the underlying dental mesenchyme. At the presecretory stage of odontoblasts, these projections were in close connection with mesenchymal cell processes.  相似文献   

18.
《The Journal of cell biology》1983,97(5):1524-1537
The ultrastructure of Reichert's membrane, a thick basement membrane in the parietal wall of the yolk sac, has been examined in 13-14-d pregnant rats. This membrane is composed of more or less distinct parallel layers, each one of which resembles a common basement membrane. After routine fixation in glutaraldehyde followed by osmium tetroxide, the layers appear to be mainly composed of 3-8-nm thick cords arranged in a three-dimensional network. Loosely scattered among the cords are unbranched, straight tubular structures with a diameter of 7-10 nm, which mainly run parallel to the surface and to one another; they are referred to as basotubules. Permanganate fixation emphasizes the presence of a thick feltwork of irregular material around basotubules. Finally, minute dot-like structures measuring 3.5 nm and referred to as double pegs are present within the meshes of the cord network. Reichert's membranes have been treated for 2-48 h at 25 degrees C with plasmin, a proteolytic enzyme known to rapidly digest laminin and fibronectin. After a 2-h treatment, most of the substance of the cords is digested away leaving a three-dimensional network of 1.5-2.0-nm thick filaments. The interpretation is that the cords are formed of a plasmin-resistant core filament and a plasmin-extractable sheath. When plasmin treatment is prolonged for 15 h or longer, the filaments are dissociated and disappear, while basotubules are maintained. Plasmin digestion also reveals that basotubules are composed of two parts: a ribbon-like helical wrapping and tubule proper. Further changes in the tubule under plasmin influence are interpreted as a dissociation into pentagonal units suggestive of the presence of the amyloid P component. After 48 h of plasmin treatment, basotubules are further disaggregated and dispersed, leaving only linearly arranged double pegs. Reichert's membranes with or without a 2- hr plasmin treatment have been immunostained by exposure to antibodies against either laminin or type IV collagen with the help of peroxidase markers. The results indicate that the sheath of the cords contains laminin antigenicity, while the core filament contains type IV collagen antigenicity. It is proposed that Reichert's membrane consists mainly of a three-dimensional network of cords composed of a type IV collagen filament enclosed within a laminin-containing sheath. Also present are basotubules--which may contain the amyloid P component--and double pegs whose nature is unknown.  相似文献   

19.
Laminin self-assembles in vitro into a polymer by a reversible, entropy-driven and calcium-facilitated process dependent upon the participation of the short arm globular domains. We now find that this polymer is required for the structural integrity of the collagen-free basement membrane of cultured embryonal carcinoma cells (ECC) and for the supramolecular organization and anchorage of laminin in the collagen-rich basement membrane of the Engelbreth-Holm-Swarm tumor (EHS). First, low temperature and EDTA induced the dissolution of ECC basement membranes and released approximately 80% of total laminin from the EHS basement membrane. Second, laminin elastase fragments (E4 and E1') possessing the short arm globules of the B1, B2, and A chains selectively acted as competitive ligands that dissolved ECC basement membranes and displaced laminin from the EHS basement membrane into solution. The fraction of laminin released increased as a function of ligand concentration, approaching the level of the EDTA-reversible pool. The smaller (approximately 20%) residual pool of EHS laminin, in contrast, could only be effectively displaced by E1' and E4 if the collagenous network was first degraded with bacterial collagenase. The supramolecular architecture of freeze-etched and platinum/carbon replicated reconstituted laminin gel polymer, ECC, and collagenase-treated EHS basement membranes were compared and found to be similar, further supporting the biochemical data. We conclude that laminin forms a network independent of that of type IV collagen in basement membranes. Furthermore, in the EHS basement membrane four-fifths of laminin is anchored strictly through noncovalent bonds between laminin monomers while one-fifth is anchored through a combination of these bonds and laminin-collagen bridges.  相似文献   

20.
Bovine corneal endothelial cells deposit an extracellular matrix in short-term cultures, which contains various morphologically distinct structures when analysed by electron microscopy after negative staining. Amongst these were long-spacing fibers with a 150 nm periodicity, which appeared also to be assembled into more complex hexagonal lattices. Another structure was fine filaments, 10-40 nm in diameter, which occasionally exhibited 67 nm periodic cross-striation. Non-striated 10-20 nm filaments sometimes formed radially oriented bundles arranged in networks and fuzzy granular material was associated with the filaments in the bundles. Often, these bundles extended into solitary filaments, 10-20 nm in diameter, with a smooth surface. In addition, amorphous patches were seen, which contained dense aggregates of fibrillar and granular material. In longer-term cultures, some of the structures coalesced to form large fibrillar bundles. By using specific antibodies to various extracellular matrix components and immunolabeling with gold some of these structures could be identified as to their protein composition. Whereas fibronectin antibodies labeled a variety of structures--fine filaments with granular materials, radially oriented bundles, patchy amorphous aggregates and small granular material scattered throughout the background--type III collagen antibody predominantly labeled filaments with periodic banding (10-40 nm in diameter). A small amount of type III specific labeling was also observed over the networks of radially oriented fibrils and fine filaments associated with granular material. Type IV collagen and laminin antibodies localized in areas of the patchy amorphous aggregates. Type VI collagen antibodies, on the other hand, labeled fine filaments and the gold particles showed a pattern of 100 nm periodicity. Many of the fine 10-20 nm filaments exhibited a tubular appearance on cross-section, but they were not reactive with any of the antibodies used. Also negative were the long-spacing fibers and assemblies--including hexagonal lattices--containing this structural element.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号