首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new procedure for purification of glucose-6-phosphate dehydrogenase resulting in an electrophoretically homogenous preparation made up of 5.10(8) cells (390 mg of protein) is proposed. The enzyme yield is more than 20%. The molecular weights of a subunit and a native enzyme are 55000 and 220000, respectively. The isoelectric point for the protein lies at 4,8. The kinetics of the enzyme thermal inactivation obey the first order equation with the inactivation rate constant of 6.10(-3) min-1.  相似文献   

2.
3.
Post-translational modifications of human glucose-6-phosphate dehydrogenase   总被引:3,自引:0,他引:3  
A Kahn  P Boivin  M Vibert  D Cottreau  J C Dreyfus 《Biochimie》1974,56(10):1395-1407
  相似文献   

4.
5.
The steady-state kinetics of human erythrocyte glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ 1-oxidoreductase, EC 1.1.1.49) dimers were studied by initial rate measurement. These experiments gave intersecting double-reciprocal plots suggesting a ternary complex mechanism with a Km for NADP and glucose 6-phosphate of 11 microM and 43 microM, respectively. These studies were combined with rate measurements in the presence of one product (NADPH), dead-end inhibitors, as well as alternative substrates. The inhibition by NADPH was found to be competitive with respect to both substrates. Alternate substrates experiments gave linear double-reciprocal plots over a wide range of substrate concentrations. The results suggest that the dimeric enzyme follows either a random or a Theorell-Chance mechanism.  相似文献   

6.
7.
The kinetic properties of placental glucose-6-phosphate dehydrogenase were studied, since this enzyme is expected to be an important component of the placental protection system. In this capacity it is also very important for the health of the fetus. The placental enzyme obeyed "Rapid Equilibrium Ordered Bi Bi" sequential kinetics with K(m) values of 40+/-8 microM for glucose-6-phosphate and 20+/-10 microM for NADP. Glucose-6-phosphate, 2-deoxyglucose-6-phosphate and galactose-6-phosphate were used with catalytic efficiencies (k(cat)/K(m)) of 7.4 x 10(6), 4.89 x 10(4) and 1.57 x 10(4) M(-1).s(-1), respectively. The K(m)app values for galactose-6-phosphate and for 2-deoxyglucose-6-phosphate were 10+/-2 and 0.87+/-0.06 mM. With galactose-6-phosphate as substrate, the same K(m) value for NADP as glucose-6-phosphate was obtained and it was independent of galactose-6-phosphate concentration. On the other hand, when 2-deoxyglucose-6-phosphate used as substrate, the K(m) for NADP decreased from 30+/-6 to 10+/-2 microM as the substrate concentration was increased from 0.3 to 1.5 mM. Deamino-NADP, but not NAD, was a coenzyme for placental glucose-6-phosphate dehydrogenase. The catalytic efficiencies of NADP and deamino-NADP (glucose-6-phosphate as substrate) were 1.48 x 10(7) and 4.80 x 10(6) M(-1)s(-1), respectively. With both coenzymes, a hyperbolic saturation and an inhibition above 300 microM coenzyme concentration, was observed. Human placental glucose-6-phosphate dehydrogenase was inhibited competitively by 2,3-diphosphoglycerate (K(i)=15+/-3 mM) and NADPH (K(i)=17.1+/-3.2 microM). The small dissociation constant for the G6PD:NADPH complex pointed to tight enzyme:NADPH binding and the important role of NADPH in the regulation of the pentose phosphate pathway.  相似文献   

8.
Sigmoid kinetics of human erythrocyte glucose-6-phosphate dehydrogenase   总被引:1,自引:0,他引:1  
Several disagreements and inconsistencies have appeared regarding whether human erythrocyte glucose-6-phosphate dehydrogenase exhibits sigmoid or classical kinetics with respect to NADP+ binding. The latest report is that the purified enzyme exhibits classical kinetics while the intracellular enzyme exhibits sigmoid kinetics (H. N. Kirkman, and G. F. Gaetani (1986) J. Biol. Chem. 261, 4033-4038). The various investigations were carried out at fixed pH, ionic strength, and temperature. The steady-state kinetics of crude and purified erythrocyte glucose-6-phosphate dehydrogenase are reported here at various temperatures, ionic strengths, and pH values and as a function of glucose 6-phosphate concentration. Sigmoid kinetics were observed for both purified and crude enzyme samples at high pH, temperature, ionic strength, and concentration of glucose 6-phosphate with Hill coefficients varying between 1.40 and 1.90. In contrast, at low pH, temperature, and ionic strength, the crude enzyme samples exhibit sigmoid kinetics while the purified samples exhibit classical kinetics despite the high concentration of glucose 6-phosphate. High concentrations of glucose 6-phosphate and factors favoring the enzyme in the dimeric form are necessary conditions for the observation of sigmoid kinetics in human erythrocyte glucose-6-phosphate dehydrogenase. These factors are high pH, ionic strength, and temperature. The observed sigmoid kinetics in this enzyme is explained as arising from tetramer-dimer transitions.  相似文献   

9.
Pure glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate:NADP+ 1-oxidoreductase, EC 1.1.1.49) is transformed into 'hyperanodic forms' when incubated at acidic pH and in the presence of NADP+ with excess of glucose-6-phosphate or with some 'NADP+ modifying proteins' purified from the same cells. The enzyme hyperanodic forms exhibit low isoelectric point, altered kinetic properties and high lability to heat, urea, and proteolysis. Differences between hyperanodic and native forms of glucose-6-phosphate dehydrogenase are also noted by microcomplement fixation analysis, ultraviolet absorbance difference spectrum and fluorescence emission spectrum. Drastic denaturation of the enzyme by urea and acid treatment did not suppress the difference of isoelectric point between native and hyperanodic forms of glucose-6-phosphate dehydrogenase. From our data we suggest that the conversion into hyperanodic forms could be due to the covalent binding on the enzyme of a degradation product of the pyridine nucleotide coenzyme. This modification could constitute a physiological transient step toward the definitive degradation of the enzyme.  相似文献   

10.
Two anodic isoenzymes of glucose-6-phosphate dehydrogenase (G6PDH) were isolated from tobacco suspension culture WR-132, utilizing fractional ammonium sulfate precipitation and DEAE-cellulose chromatography. The pH optimum was 9.0 for isoenzyme G6PDH I and 8.0–8.3 for G6PDH IV. Isoenzyme G6PDH I exhibited Michaelis-Menten kinetics for both substrates, G6P and NADP+, with Km's of 0.22 mM and 0.06 mM, respectively. G6PDH IV exhibited Michaelis-Menten kinetics for G6P with a Km of 0.31 mM. The NADP+ double reciprocal plot showed an abrupt transition between two linear sections. This transition corresponds to an abrupt increase in the apparent Km and Vmax values with increasing NADP+, denoting negative cooperativity. The two Km's for high and low NADP+ concentrations were 0.06 mM and 0.015 mM, respectively. MWs of the isoenzymes as determined by SDS disc gel electrophoresis were 85 000–91 000 for G6PDH I and 54 000–59 000 for G6PDH IV. Gel filtration chromatography on Sephadex G-150 showed MW's of 91 000 for G6PDH I and 115 000 for G6PDH IV. A probable dimeric structure for IV is suggested, with two NADP+ binding sites.  相似文献   

11.
12.
Diagnostics of heterozygotes are required for population studies, for the detection and consultation of persons with G-6-PD deficiency prone to hemolysis. The diagnostics of heterozygous females with the corresponding trait are problematic in families without hemizygous patients. 1. The determination of the activity is only applicable to the differentiation between heterozygotes and homozygotes if the activities are below the reference range. Heterozygous G-6-PD deficiency with normal activity cannot be identified by this method. 2. Existence of G-6-PD defects is demonstrated by mosaicism even in case of normactivity (T?nztest). 3. Incubation with and without NADP of stroma-free hemolysates involving heat labile enzyme mutants results in a marked decrease of activity within 20 min at 46 degrees C. 4. Electrophoresis on Cellogel demonstrates changes of charge in the mutated enzyme. 5. Family examination verifies suspicion of the heterozygous trait. A combination of parameters is recommended to obtain an improvement in the detection of persons with the heterozygous trait.  相似文献   

13.
Full-length cDNA coding for human glucose-6-phosphate dehydrogenase (G6PD) was inserted into a eukaryotic expression vector containing the immediate early promoter of cytomegalovirus. When this plasmid was introduced into cos cells by transfection it led to the production of high levels of human G6PD. cDNAs containing mutations found in G6PD-deficient individuals were constructed by in vitro mutagenesis and expressed in the same system. Characterization of the G6PD proteins obtained in this way confirmed the primary structure inferred for the variant enzymes. An enzyme in which lysine-205 had been mutated to threonine was produced and found to have no G6PD activity, proving that this lysine residue is essential for enzyme activity in human G6PD.  相似文献   

14.
To control some aspects of Lipid metabolism in G-6-PD defective subjects, are evaluated the haematic levels of Cholesterol, Tri glycerides, total Lipids and Lipoproteins. There is no significative difference between enzymopathic and normal control subjects.  相似文献   

15.
Hemolysis in glucose-6-phosphate dehydrogenase deficiency   总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
Atherosclerosis is an inflammatory-fibroproliferative response of the arterial wall involving a complex set of interconnected events where cell proliferation (lymphomonocytes, and endothelial and smooth-muscle cells) and substantial perturbations of intracellular cholesterol metabolism are considered to be among the main features. Glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the hexose-monophosphate shunt pathway, is an essential enzyme involved in both cell growth and cholesterol metabolism, raising the question as to whether G6PD deficiency may have metabolic and growth implications in a deficient population. In the present study, we investigated cell growth and cholesterol metabolism in peripheral blood lymphomononuclear cells (PBMC) from G6PD-normal (n = 5) and -deficient (n = 5) subjects stimulated with lectins (phytohaemoagglutinin and Concanavalin A). G6PD activity, DNA ([3H]-thymidine incorporation) cholesterol synthesis and esterification ([14C]-acetate and [14C]-oleate incorporation), and G6PD, HMGCoA reductase and low density lipoprotein (LDL) receptor mRNA levels (RT-PCR) all increased following lectin stimulation in both normal and G6PD-deficient cells. However, these parameters were significantly lower in G6PD-deficient cells (P < 0.05). It is of interest that G6PD-deficient PBMC, which showed lower expression of G6PD and higher expression of the LDL receptor gene than normal PBMC under basal conditions, exhibited an opposite pattern after stimulation: G6PD and HMGCoA reductase being expressed at significantly higher levels in deficient than in normal cells (P < 0.05). We conclude that the reduced capability of G6PD-deficient cells to respond to mitogenic stimuli and to synthesize cholesterol esters may represent favourable conditions for reducing the risk of cardiovascular diseases.  相似文献   

18.
Kinetic and electrophoretic properties of 230--300 fold purified preparations of glucose-6-phosphate dehydrogenase (G6PD) from red cells of donors and patients with acute drug hemolytic anemia due to G6PD deficiency were studied. A new abnormal variant of G6PD isolated from red cell of a patient with acute drug hemolytic anemia, which was not described in literature, has been discovered. The abnormal enzyme differs from the normal by decreased Michaelis constant for glucose-6-phosphate and nicotinamide adenine dinucleotide phosphate (NADP), by increased utilization of analogues of substrates--2-deoxy-glucose-6-phosphate and particularly deamino-NADP, by low thermal stability, by the character of pH-dependence, by the appearance of a single band of G6PD activity in polyacrylamide gel electrophoresis.  相似文献   

19.
Over 400 supposedly biochemically and genetically distinct variants of glucose-6-phosphate dehydrogenase (G6PD) have been described in the past. In order to investigate these variants at the DNA sequence level we have now determined the relevant sequences of introns of G6PD and describe a method which allows us to rapidly determine the sequence of the entire coding region of G6PD. This technique was applied to six variants that cause G6PD deficiency to be functionally so severe as to result in nonspherocytic hemolytic anemia. Although the patients were all unrelated, G6PD Marion, Gastonia, and Minnesota each had identical mutations, a G----T at nucleotide (nt) 637 in exon 6 leading to a Val----Leu substitution at amino acid 213. The mutations of Nashville and Anaheim were identical to each other, viz. G----A at nt 1178 in exon 10 producing a Arg----His substitution at amino acid 393. G6PD Loma Linda had a C----A substitution at nt 1089 in exon 10, producing a Asn----Lys change at amino acid 363. The results confirm our earlier results suggesting that the NADP-binding site is in a small region of exon 10 and suggest the possibility that this area is also concerned with the binding of glucose-6-P.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号