首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
During three consecutive years with contrasting precipitation, we analysed the relationship between strategies of N conservation in the dominant plant functional groups (perennial grasses and evergreen shrubs) of the Patagonian Monte and the main components of N cycling in soil. We hypothesised that the different patterns of N conservation in perennial grasses and evergreen shrubs would have direct consequences for soil-N, inorganic-N release and microbial-N flush in soil. In autumn and late spring of 1999, 2000, and 2001, we assessed N and C concentration in green and senesced leaves, N-resorption efficiency and C/N ratio in senesced leaves of three dominant species of each plant functional group. In the soil associated with species of each plant functional group, we determined N and C concentration, potential-N mineralisation, and the associated microbial-N flush. Slow-growing evergreen shrubs exhibited low N-concentration in green leaves, high N-concentration in senesced leaves and low N-resorption from senescing leaves. In contrast, fast-growing perennial grasses showed high N-concentration in green leaves, low N-concentration in senesced leaves, and high N-resorption from senescing leaves. In evergreen shrubs, the maintenance of long-lasting green leaves with low N-concentration was the most important mechanism of N conservation. In contrast, perennial grasses conserved N through high N-resorption from senescing leaves. Soil-N concentration, potential N-mineralisation, and microbial-N flush in the soil were higher underneath evergreen shrubs than beneath perennial grasses. Observed differences, however, were lower than expected considering the quality of the organic matter supplied by each plant fuctional group to the soil. A possible reason for this relatively weak trend may be the capacity of evergreen shrubs to slow down N cycling through low leaf turnover and the presence of secondary compounds in leaves. Alternatively or simultaneously, the weak relationship between plant and soil N could result from shrubs being able to colonise N-poor soils while grasses may preferably occupy fertile microsites previously influenced by the decomposition pathway of evergreen shrubs. Differences between evergreen shrubs and perennial grasses in the mechanisms of plant N-conservation and in components of N cycling in the underlying soil were consistent over the three years of the study with differing precipitation. Inter-annual differences in N concentration in green leaves and in the microbial-N flush in soil indicate that during the wettest year fast-growing perennial grasses would outcompete slow-growing evergreen shrubs and microorganisms for N uptake.  相似文献   

2.
In two consecutive years, we analysed the effect of litter quality, quantity and decomposability on soil N at three characteristic sites of the Patagonian Monte. We assessed (i) concentrations of N, C, lignin and total phenolics and the C/N ratio in senesced leaves as indicators of litter quality of three species of each dominant plant life form (evergreen shrubs and perennial grasses), and (ii) N, and organic-C concentrations, potential N-mineralisation and microbial-N flush in the soil beneath each species. Rate constants of potential decomposition of senesced leaves and N content in decaying leaves during the incubation period were assessed in composite samples of the three sites as indicators of litter decomposability. Further, we estimated for each species leaf-litter production, leaf-litter on soil, and the mass of standing senesced leaves during the senescence period. Senesced leaves of evergreen shrubs showed higher decomposability than those of perennial grasses. Leaf-litter production, leaf-litter on soil, and the mass of standing senesced leaves differed significantly among species. The largest variations in leaf-litter production and leaf-litter on soil were observed in evergreen shrubs. The mass of standing senesced leaves was larger in perennial grasses than in evergreen shrubs. Nitrogen, organic C and potential N-mineralisation in soil were higher underneath evergreen shrubs than beneath perennial grasses, while no significant differences were found in microbial-N flush among life forms. The initial concentrations of C, N and total phenolics of senesced leaves explained together 78% of the total variance observed in the dry mass loss of decaying leaves. Litter decomposition rates explained 98%, 98%, 73%, and 67% of the total variance of soil N, organic C, net-N mineralisation, and microbial-N flush, respectively. We concluded that leaf-litter decomposition rates along with leaf-litter production are meaningful indicators of plant local effects on soil N dynamics in shrublands of the Patagonian Monte, and probably in other similar ecosystem of the world dominated by slow growing species that accumulate a wide variety of secondary metabolites including phenolics. Indicators such as C/N or lignin concentration usually used to predict litter decomposability or local plant effects may not be adequate in the case of slow growing species that accumulate a wide range of secondary metabolites or have long leaf lifespan and low leaf-litter production.  相似文献   

3.
Grouping species may provide some degree of simplification to understand the ecological function of plants on key ecosystem processes. We asked whether groups of plant species based on morpho-chemical traits associated with plant persistence and stress/disturbance resistance reflect dominant plant growth forms in arid ecosystems. We selected twelve sites across an aridity gradient in northern Patagonia. At each site, we identified modal size plants of each dominant species and assessed specific leaf area (SLA), plant height, seed mass, N and soluble phenol concentration in green and senesced leaves at each plant. Plant species were grouped according with plant growth forms (perennial grasses, evergreen shrubs and deciduous shrubs) and plant morphological and/or chemical traits using cluster analysis. We calculated mean values of each plant trait for each species group and plant growth form. Plant growth forms significantly differed among them in most of the morpho-chemical traits. Evergreen shrubs were tall plants with the highest seed mass and soluble phenols in leaves, deciduous shrubs were also tall plants with high SLA and the highest N in leaves, and perennial grasses were short plants with high SLA and low concentration of N and soluble phenols in leaves. Grouping species by the combination of morpho-chemical traits yielded 4 groups in which species from one growth form prevailed. These species groups differed in soluble phenol concentration in senesced leaves and plant height. These traits were highly correlated. We concluded that (1) plant height is a relevant synthetic variable, (2) growth forms adequately summarize ecological strategies of species in arid ecosystems, and (3) the inclusion of plant morphological and chemical traits related to defenses against environmental stresses and herbivory enhanced the potential of species grouping, particularly within shrubby growth forms.  相似文献   

4.
Question: Do coexisting plant life forms differ in overall phenology, leaf traits and patterns of leaf litterfall? Location: Patagonian Monte, Chubut Province, Argentina. Methods: We assessed phenology, traits of green and senesced leaves and the pattern of leaf litterfall in 12 species of coexisting life forms (perennial grasses, deciduous shrubs, evergreen shrubs). Results: We did not identify differences in phenology, leaf traits and patterns of leaf litterfall among life forms but these attributes contrasted among species. Independent of the life form, the maintenance of green leaves or vegetative growth during the dry season was mostly associated with leaves with high leaf mass per area (LMA) and high concentration of secondary compounds. Low LMA species produced low litterfall mass with low concentration of secondary compounds, and high N concentration. High LMA species produced the largest mass of leaf litterfall. Accordingly, species were distributed along two main dimensions of ecological variation, the dimension secondary compounds in leaves ‐ length and timing of the vegetative growth period (SC ‐ VGP) and the dimension leaf mass per area ‐ leaf litterfall mass (LMA ‐ LLM). Conclusions: Phenology, leaf traits and leaf litterfall varied among species and overlapped among life forms. The two dimensions of ecological variation among species (SC ‐ VGP, LMA ‐ LLM) represent distinct combinations of plant traits or strategies related to resource acquisition and drought tolerance which are reflected in the patterns of leaf litterfall.  相似文献   

5.
Nitrogen (N) resorption from senescing leaves is an important mechanism of N conservation for terrestrial plant species, but changes in N-resorption traits over wide-range and multi-level N addition gradients have not been well characterized. Here, a 3-year N addition experiment was conducted to determine the effects of N addition on N resorption of six temperate grassland species belonging to three different life-forms: Stipa krylovii Roshev. (grass), Cleistogenes squarrosa (T.) Keng (grass), Artemisia frigida Willd. (semishrub), Melissitus ruthenica C.W.Wang (semishrub and N-fixer), Potentilla acaulis L. (forb) and Allium bidentatum Fisch.ex Prokh. (forb). Generally, N concentrations in green leaves increased asymptotically for all species. N concentrations in senescent leaves for most species (5/6) also increased asymptotically, except that the N concentration in senescent leaves of A. bidentatum was independent of N addition. N-resorption efficiency decreased with increasing N addition level only for S. krylovii and A. frigida, while no clear responses were found for other species. These results suggest that long-term N fertilization increased N uptake and decreased N-resorption proficiency, but the effects on N-resorption efficiency were species-specific for different temperate grassland species in northern China. These inter-specific differences in N resorption may influence the positive feedback between species dominance and N availability and thus soil N cycling in the grassland ecosystem in this region.  相似文献   

6.
Leaf longevity and nutrient resorption efficiency are important strategies to conserve plant nutrients. Theory suggests a negative relationship between them and also proposes that high concentration of phenolics in long‐lived leaves may reduce nutrient resorption. In order to provide new evidence on these relationships, we explored whether N‐resorption efficiency is related to leaf longevity, secondary compounds and other leaf traits in coexisting plant species of different life forms in the arid Patagonian Monte, Argentina. We assessed N‐resorption efficiency, green leaf traits (leaf mass per area (LMA), leaf longevity and lignin, total soluble phenolics and N concentrations) and N concentration in senescent leaves of 12 species of different life forms (evergreen shrubs, deciduous shrubs and perennial grasses) with contrasting leaf traits. We found that leaf longevity was positively correlated to LMA and lignin, and negatively correlated to N concentration in green leaves. N concentrations both in green and senescent leaves were positively related. N‐resorption efficiency was not associated with the concentration of secondary compounds (total soluble phenolics and lignin) but it was negatively related to LMA and leaf longevity and positively related to N concentration in green leaves. Furthermore, leaf traits overlapped among life forms highlighting that life forms are not a good indicator of the functional properties (at least in relation to nutrient conservation) of species. In conclusion, our findings indicated that differences in N‐resorption efficiency among coexisting species were more related to N concentration in green leaves, leaf lifespan and LMA than to the presence of secondary compounds at least those assessed in our study (soluble phenolics and lignin). Accordingly, N‐resorption efficiency seems to be modulated, at least in part, by the productivity–persistence trade‐off.  相似文献   

7.
Desert shrubs often accumulate different types of phenolic compounds but what determines the amount and diversity of these compounds is an issue scarcely explored. The aim of this study was to assess differences in the amount and diversity of phenolic compounds in leaves among coexisting shrub species differing in rooting depth and leaf turnover. We hypothesized that the diversity and amount of phenolic compounds in leaves of desert shrubs are related to access to soil water through rooting depth, and to leaf turnover. The study was carried out in the Patagonian Monte of Argentina. We collected green leaves of six species representing the dominant shrub morphotypes (tall evergreen, tall deciduous, and medium evergreen shrubs) and assessed lignin concentration and groups of soluble phenols obtained by sequential extraction with ethyl ether, ethyl acetate, and amyl alcohol. We also assessed nitrogen concentration in leaves and leaf mass per unit area (LMA) as traits related to leaf lifespan. The diversity of phenolic compounds was higher in green leaves of tall shrubs with deep rooting depth than in those of medium evergreen shrubs with shallow rooting depth. Diversity of phenolic compounds in green leaves was negatively related to lignin concentration. Evergreen shrubs had higher amount of phenolic compounds in green leaves than deciduous ones and the total amount of phenolic compounds in green leaves was positively related to LMA. We concluded that access to soil water sources and leaf turnover were related to the amount and diversity of phenolic compounds in green leaves of desert shrub species and these results are consistent with those predicted by the resource availability theory for plants from resource-rich and resource-poor habitats.  相似文献   

8.
Global trends in senesced-leaf nitrogen and phosphorus   总被引:1,自引:0,他引:1  
Aim Senesced‐leaf litter plays an important role in the functioning of terrestrial ecosystems. While green‐leaf nutrients have been reported to be affected by climatic factors at the global scale, the global patterns of senesced‐leaf nutrients are not well understood. Location Global. Methods Here, bringing together a global dataset of senesced‐leaf N and P spanning 1253 observations and 638 plant species at 365 sites and of associated mean climatic indices, we describe the world‐wide trends in senesced‐leaf N and P and their stoichiometric ratios. Results Concentration of senesced‐leaf N was highest in tropical forests, intermediate in boreal, temperate, and mediterranean forests and grasslands, and lowest in tundra, whereas P concentration was highest in grasslands, lowest in tropical forests and intermediate in other ecosystems. Tropical forests had the highest N : P and C : P ratios in senesced leaves. When all data were pooled, N concentration significantly increased, but senesced‐leaf P concentration decreased with increasing mean annual temperature (MAT) and mean annual precipitation (MAP). The N : P and C : P ratios also increased with MAT and MAP, but C : N ratios decreased. Plant functional type (PFT), i.e. life‐form (grass, herb, shrub or tree), phylogeny (angiosperm versus gymnosperm) and leaf habit (deciduous versus evergreen), affected senesced‐leaf N, P, N : P, C : N and C : P with a ranking of senesced‐leaf N from high to low: forbs ≈ shrubs ≈ trees > grasses, while the ranking of P was forbs ≈ shrubs ≈ trees < grasses. The climatic trends of senesced‐leaf N and P and their stoichiometric ratios were similar between PFTs. Main conclusions Globally, senesced‐leaf N and P concentrations differed among ecosystem types, from tropical forest to tundra. Differences were significantly related to global climate variables such as MAT and MAP and also related to plant functional types. These results at the global scale suggest that nutrient feedback to soil through leaf senescence depends on both the climatic conditions and the plant composition of an ecosystem.  相似文献   

9.
The objective of this study was to investigate the variation in leaf litterfall patterns of desert plant species in relation to the intra- and interannual variation of precipitation. We collected the leaf litterfall of 12 representative species of the dominant life forms in the arid Patagonian Monte (evergreen shrubs, deciduous shrubs, and perennial grasses) at monthly intervals during three consecutive years. All shrub species showed a marked seasonality in the pattern of leaf litterfall, but the date of the peak of leaf litterfall differed among them. The peak of leaf litterfall in three deciduous and three evergreen shrubs occurred in summer months while in one deciduous shrub and in two other evergreen shrubs the peak of leaf litterfall was in autumn and winter, respectively. In contrast, the leaf litterfall of perennial grasses occurred through the year without a seasonal pattern. In most shrub species, increasing annual precipitation was related to increasing leaf litterfall and the peak of leaf litterfall was positively related to precipitation events occurred some months before, during winter. Moreover, the magnitude of responses in terms of variation in leaf litterfall in relation to interannual variation of precipitation was not the same for all species. Evergreen shrubs showed lower responses than deciduous species. These differences in leaf litterfall patterns were consistent with differences in leaf traits. In conclusion, we found new evidence of species-specific responses of leaf litterfall patterns to precipitation, suggesting that other factors than precipitation may control leaf litterfall in desert plants.  相似文献   

10.
Nitrogen (N) resorption from senescing tissues enables plants to conserve and reuse this important nutrient. As such, it is expected that plant species adapted to infertile soils could have a higher N-resorption efficiency (percentage reduction of nitrogen between green and senescing tissues) and/or higher N-resorption proficiency (absolute reduction of nitrogen in senescing tissues) than those adapted to fertile soils. To test this hypothesis, we investigated the relationships among soil characteristics (total N, nitrate-N, ammonium-N, pH and moisture) and N resorption in Stipa kryloviiRoshev., a species occurred widely in natural grasslands of northern China. N contents in green and senescing tissues were 6.7±0.1 and 3.3±0.1 mg g–1, respectively. The mean value of N-resorption efficiency was found to be 72.1%. The N-resorption efficiency in S. kryloviiwas independent of soil characteristics. The N-resorption proficiency in S. kryloviiwas dependent on soil nitrate- and ammonium-N, but it was relatively independent of soil total N. The N-resorption proficiency was negatively correlated with soil pH and moisture. There was a positive correlation between N concentration in green tissues and resorption efficiency. However, N-resorption efficiency was not correlated significantly with N concentration in senescing tissues. These results indicate that the intraspecific variation in N resorption of Stipa kryloviiRoshev. is associated with soil regimes and that higher N resorption on N-poor soils is an adaptive strategy for S. kryloviito maximize N use under conditions of limited N supply.  相似文献   

11.
在湿润的青藏高原东南部, 为什么常绿灌木广泛占据高海拔的林线过渡带及以上的高山带, 而落叶灌木只能零星分布?未来气候变暖对该区不同功能群物种的影响是否相同?通过测定西藏东南部色季拉山林线过渡带7种灌木凋落叶的氮含量, 比较了极端高海拔地区灌木不同表达单位的叶氮回收潜力在不同功能群间的差异, 以及不同海拔、不同坡向间的差异, 试图从养分限制的角度为解答上述科学问题提供基础数据。研究结果表明: 1)从基于单位质量叶氮含量(Nmass)的叶氮回收潜力来看, 常绿灌木裂毛雪山杜鹃(薄毛海绵杜鹃) (Rhododendron aganniphum var. schizopeplum)显著高于其他6种落叶灌木, 但由于受比叶重的影响, 基于单位面积叶氮含量(Narea)的叶氮回收潜力则表现为落叶灌木总体较高; 2)落叶灌木山生柳(Salix oritrepha)和拉萨小檗(Berberis hemsleyana)的叶氮回收潜力在不同海拔或不同坡向间均无显著差异, 但裂毛雪山杜鹃基于Nmass的叶氮回收潜力在高海拔地段明显偏高。在极端高海拔的林线过渡带, 通过降低凋落叶中的氮含量(增加叶氮回收潜力)以达到高效的养分利用可能是常绿灌木裂毛雪山杜鹃适应高寒胁迫环境的重要策略。与落叶灌木相比, 常绿灌木裂毛雪山杜鹃叶氮回收潜力对未来气候变暖可能更敏感。  相似文献   

12.
We assessed leafing patterns (rate, timing, and duration of leafing) and leaf traits (leaf longevity, leaf mass per area and leaf-chemistry) in four co-occurring evergreen shrubs of the genus Larrea and Chuquiraga (each having two species) in the arid Patagonian Monte of Argentina. We asked whether species with leaves well-defended against water shortage (high LMA, leaf longevity, and lignin concentration, and low N concentration) have lower leaf production, duration of the leafing period, and inter-annual variation of leafing than species with the opposite traits. We observed two distinctive leafing patterns each related to one genus. Chuquiraga species produced new leaves concentrated in a massive short leafing event (5–48 days) while new leaves of Larrea species emerged gradually (128–258 days). Observed leafing patterns were consistent with simultaneous and successive leafing types previously described for woody plants. The peak of leaf production occurred earlier in Chuquiraga species (mid September) than in Larrea species (mid October–late November). Moreover, Chuquiraga species displayed leaves with the longest leaf lifespan, while leaves of Larrea species had the lowest LMA and the highest N and soluble phenolics concentrations. We also observed that only the leaf production of Larrea species increased in humid years. We concluded that co-occurring evergreen species in the Patagonian Monte displayed different leafing patterns, which were associated with some relevant leaf traits acting as plant defenses against water stress and herbivores. Differences in leafing patterns could provide evidence of ecological differentiation among coexisting species of the same life form.  相似文献   

13.
广西猫儿山不同海拔常绿和落叶树种的营养再吸收模式   总被引:1,自引:0,他引:1  
土壤养分供给性大小是否影响植物氮和磷再吸收效率仍存在争议。调查了广西猫儿山不同海拔常绿和落叶树种成熟和衰老叶片的氮和磷含量,探讨营养再吸收是否受到叶片习性和海拔的影响。所有树种氮和磷再吸收效率的平均值分别为56.5%和52.1%。常绿树种比落叶树种有显著较高的氮再吸收效率(P0.001)和磷再吸收效率(P0.01),这与前者有较低的衰老叶片氮和磷含量密切相关。随着海拔的上升,氮再吸收效率显著下降(P0.01),磷再吸收效率显著提高(P0.05)。氮再吸收效率与土壤氮:磷比(r=-0.41,P0.05)和成熟叶片氮:磷比(r=-0.37,P0.05)负相关,磷再吸收效率与土壤氮:磷比(r=0.44,P0.05)和成熟叶片氮:磷比(r=0.47,P0.01)正相关,表明了树种对低海拔氮限制的适应逐渐转变为对高海拔磷限制的适应。此外,氮再吸收效率与年均温正相关(r=0.43,P0.05)而磷再吸收效率与年均温负相关(r=-0.45,P0.01),这表明气温也是调节树木营养再吸收格局的重要影响因素。不同海拔树种氮和磷再吸收模式的差异可能是引起广西猫儿山常绿树种沿海拔形成双峰分布的原因之一。  相似文献   

14.
Early spring shoot and fine-root development of four evergreen and three deciduous shrub species were analyzed in a subarctic muskeg at Fairbanks, Alaska. The overwintered foliage of the evergreen shrubs regreened earlier than new leaves developed on the deciduous species. Likewise, the evergreen shrubs produced new fine roots earlier than the deciduous species. The total nonstructural carbohydrate (TNC) concentration did not decline in the evergreen shrub Ledum palustre during the spring development. This contrasted with the deciduous shrub Betula glandulosa, where a significant TNC reduction in stem tissue coincided with bud break and fine-root growth flush.  相似文献   

15.
Abstract Nutrient resorption from senescing leaves enables plants to conserve and reuse nutrients. As such, it could be expected that plant species adapted to infertile soils have a higher nutrient resorption efficiency (percentage reduction of nutrients between green and senesced leaves) and/or higher nutrient resorption proficiency (absolute reduction of nutrients in senesced leaves) than those adapted to fertile soils. Our objective was to compare nitrogen (N) and phosphorous (P) resorption of two congener grasses that successfully occupy uplands of relatively low fertility (Stipa gynerioides) or lowlands of relatively high fertility (Stipa brachychaeta) in natural grasslands of central Argentina. The two Stipa species did not differ in N and P resorption efficiency, but S. gynerioides had a higher N and P resorption proficiency than S. brachychaeta. As a consequence, leaf‐level N and P use efficiency were higher in the species adapted to low fertility conditions than in the species adapted to high fertility conditions. The higher nutrient resorption proficiency of S. gynerioides was also associated with relatively low leaf‐litter decomposition and nutrient release rates found in a previous study.  相似文献   

16.
Tesfay Teklay 《Plant and Soil》2004,267(1-2):297-307
Foliar inputs from indigenous agroforestry trees and shrubs could provide sufficient nutrients and organic matter to sustain crop growth. However, concentrations of foliar nutrients and organic constituents show considerable seasonal, inter- and/or intra-species variations. To determine this variability, green and senesced leaves were sampled during dry and wet seasons from Cordia africana, Albizia gummifera and Milletia ferruginea trees at Wondo Genet, southern Ethiopia. Cordia is a deciduous, non-leguminous tree, while Albizia and Milletia are semi-deciduous and leguminous trees. Leaves were analyzed for concentrations of ash, N, P, K, cellulose, lignin, soluble polyphenols, and condensed tannins. Results from statistical analyses showed significant seasonal variations (P < 0.001) in concentrations of all leaf constituents, except for P and cellulose. Foliar concentrations of ash, N, soluble polyphenols, and condensed tannins were higher during the wet season while those of K and lignin were higher during the dry season. Green leaves had significantly higher (p < 0.001) N and P concentrations than senesced leaves, while senesced leaves had higher concentrations of K, cellulose, soluble polyphenols, and condensed tannins. The ‘ Relative Percentage Changes’ in concentration of N and P in senesced leaves, i.e., their enrichment or depletion with such nutrients relative to those in green leaves, were significantly higher (P < 0.001) for Cordia than Albizia and Milletia. On the other hand, there was no consistent pattern in the enrichment or depletion of senesced leaves with organic constituents, but these leaves were in most cases more enriched with organic constituents than green leaves. Over all, the percentage depletion or enrichment ranged from about 8% to 38% for N; 24% to 63% for P; −141% to 48% for K; −44% to 15% for cellulose; −44% to 51% for lignin; −203% to −61% for soluble polyphenols; and −290% to 11% for condensed tannins. It was concluded that variations in species and life-form (legume versus non-legume), season, and developmental stage of leaves could affect the quality of organic material from agroforestry species, which has important implications for management of organic residues in tropical agricultural systems.  相似文献   

17.
Summary Tundra plant growth forms can generally be characterized as consisting predominantly of low-growing perennial grasses and sedges, perennial herbaceous forbs, dwarf deciduous shrubs, and dwarf evergreen shrubs. Gross aboveground carbon allocation, leaf growth, and photosynthesis pattern studies were initiated to develop a quantitative understanding of the functional importance of these particular tundra growth forms. Photosynthetic capacities of 13 species were determined under standardized exposure conditions using a14CO2 field system and ranged between 5 and 47 mg CO2·g dry wt-1·h-1. These results, in conjunction with detailed leaf growth determinations, support the generalization that species with an evergreen growth form have lower photosynthetic capacities than species with a perennial graminoid, forb, or deciduous shrub growth form. However, these low photosynthetic capacities in evergreen shrubs are associated with relatively extended leaf longevities. Conversely, deciduous shrub forms exhibited high photosynthetic capacities, but were offset by relatively short leaf longevity periods. The perennial grasses, sedges, and forbs showed patterns intermediate to these. As a result, it appears that among tundra species of different growth form, photosynthetic capacity is inversely related to leaf longevity.  相似文献   

18.
The effects of elevated carbon dioxide (CO2) on plant litter are critical determinants of ecosystem feedback to changing atmospheric CO2 concentrations. We measured concentrations of nitrogen (N) and carbon (C) and calculated C : N ratios of green leaves of two desert perennial shrubs, and the same quality parameters plus lignin and cellulose content of leaf litter from four shrub species exposed to elevated CO2 (FACE technology; Hendrey & Kimball, 1994 ) for 3 years in an intact Mojave Desert ecosystem. Shrubs tested were Larrea tridentata, Lycium pallidum, Lycium andersonii and Ambrosia dumosa. We calculated resorption efficiency from green tissue and leaf litter N data and measured lignin and cellulose content in litter in the last year study. Green leaves of L. tridentata grown under elevated CO2 had significantly lower N concentrations and higher C : N ratios than shrubs grown in ambient conditions in 1999 (P < 0.05). Lycium pallidum green leaves grown under elevated CO2 had significantly lower N concentrations and higher C : N ratios than shrubs grown under ambient conditions in 2000 (P < 0.05). There was no CO2 effect on C content of either species. We found no effect of CO2 on N or C content, C : N ratios, or lignin or cellulose concentrations in leaf litter of L. tridentata, L. pallidum, L. andersonii, or A. dumosa. There was no significant effect of CO2 on estimates of shrub resorption efficiency. There was a seasonal effect on green tissue and litter tissue quality for L. tridentata, with lower tissue N content in summer than in spring or winter months. These data suggest that any productivity increases with elevated CO2 in desert ecosystems may not be limited by lower leaf litter quality and that resorption efficiency calculations are best performed on an individual leaf basis.  相似文献   

19.
Grazing influences the morphology and growth rate of shrubs, and consequently, their population dynamics. It has been shown that grazing directly affects the growth of shrubs. On the other hand, the reduction of grass biomass by herbivores reduces soil–water competition between grasses and shrubs, and indirectly, could enhance the growth of shrubs. However, the assessment of the long-term effects of grazing on the growth of shrubs in the arid Patagonia has been hampered by the lack of long and homogeneous records of plant population dynamics and primary production. In this study, we combined growth-ring and allometric analyses to assess the long-term effect of grazing on individuals of Anarthrophyllum rigidum, a leguminous shrub widely distributed across the Patagonian steppe. A. rigidum has evergreen leaves rich in proteins that constitute an important complement to the diet of sheep, particularly in winter when the abundance of grasses is reduced. Our observations indicate that individuals of A. rigidum nearby the water source used by livestock were smaller in size (35.5 cm vs. 67.39 cm), presented a larger number of basal branches (23 vs. 12), and showed slower rates of growth (8.2 mm year?1 vs. 14.3 mm year?1) than individuals located far from the water source. This first quantification of the long-term effects of grazing on A. rigidum in the dry Patagonian steppe suggests that beneficial effects of grazing through the reduction of grasses that compete with shrubs for soil–water should be more obvious for livestock non-preferred than preferred shrubs  相似文献   

20.
Nutrient resorption from senescing leaves is an important aspect of internal plant nutrient cycling. Global environmental change very likely affects this process. In an 8-month experiment, we investigated the effect of increased nitrogen (N) availability and CO2 concentration on the contribution of leaf N resorption to the internal nitrogen dynamics of the perennial deciduous graminoid Molinia caerulea (L.) Moench. Plants were grown in a factorial combination of two levels of N (65 and 265 N ha−1 year−1) and CO2 (380 and 700 μL L−1) in a greenhouse. Both N and CO2 addition increased the total biomass and the total N pools of mature Molinia plants considerably, without a significant interaction. Nitrogen-resorption efficiency from senescing leaves (% of the mature leaf N pool that is resorbed) was neither affected by the N- nor by the CO2 treatments. When averaged over the treatments, the N-resorption efficiency was 85% ± 1 (SE). The final N concentration in the litter (N-resorption proficiency) was also not affected by the treatments and was on average 3.6 mg N g−1 ± 0.25 (SE). The contribution of resorbed N from senescing leaves to the late seasonal N requirements (seed and stem production and storage of N for next year’s growth) of M. caerulea plants was (negatively) affected by the N treatment only, and no interaction effects with CO2 were found. Resorption from stems and/or direct reserve and seed formation during growth became relatively more important. Thus, internal N cycling processes in Molinia caerulea are only affected when N availability is increased, but not under elevated CO2 concentrations. Under high N conditions, this species shifts from a N recycling strategy to reserve formation during growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号