首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The killing of cultured hepatocytes by tert-butyl hydroperoxide (TBHP) occurs by different mechanisms depending on the presence or absence of the antioxidant N,N'-diphenylphenylenediamine (DPPD). In either situation there is evidence of mitochondrial damage. The mitochondrial inner membrane potential is lost, a result determined by the release from the cells of the lipophilic cation [3H]triphenylmethylphosphonium (TPMP+). Deenergization of the mitochondria is accompanied by a loss of ATP. Oligomycin reduced ATP stores without release of TPMP+ or without effect on the viability of the hepatocytes over the same time course that TBHP killed the majority of the cells. Monensin, a H+/Na+ ionophore, potentiated the toxicity of tert-butyl hydroperoxide in the presence or absence of DPPD. By contrast, extracellular acidosis reduced the toxicity of tert-butyl hydroperoxide in the presence or absence of DPPD. Neither monensin nor extracellular acidosis affected the metabolism of tert-butyl hydroperoxide, the release of TPMP+, or the extent of the peroxidation of cellular lipids. These data document the presence of mitochondrial damage in hepatocytes intoxicated with TBHP in both the presence and absence of DPPD. Furthermore, the potentiation by monensin is readily explained by the proposal that mitochondrial deenergization is accompanied by an intracellular acidosis. Such acidosis tends to delay the development of lethal cell injury. The protective effect of extracellular acidosis supports this interpretation.  相似文献   

2.
Mitochondria in plant cells undergo fusion and fission frequently. Although the mechanisms and proteins of mitochondrial fusion are well known in yeast and mammalian cells, they remain poorly understood in plant cells. To clarify the physiological requirements for plant mitochondrial fusion, we investigated the fusion frequency of mitochondria in tobacco cultured cells using the photoconvertible fluorescent protein Kaede and some physiological inhibitors. The latter included two uncouplers, 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP), an inhibitor of mitochondrial ATP synthase, oligomycin, and an actin polymerization inhibitor, latrunculin B (Lat B). The frequency of mitochondrial fusion was clearly reduced by DNP, CCCP and oligomycin, but not by Lat B, although Lat B severely inhibited mitochondrial movement. Moreover, DNP, CCCP and oligomycin evidently lowered the cellular ATP levels. These results indicate that plant mitochondrial fusion depends on the cellular ATP level, but not on actin polymerization.  相似文献   

3.
Mitochondrial dysfunction has been widely associated with programmed cell death. Studies of intact cells are important for the understanding of the process of cell death and its relation to mitochondrial physiology. Using cytofluorometric approaches we studied the mitochondrial behavior in an erythroleukemic cell line. The effects of protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), potassium exchanger (nigericin), potassium ionophore (valinomycin), Na+K+-ATPase inhibitor (ouabain) and mitochondrial permeability transition pore inhibitor (cyclosporin A) were evaluated. Cyclosporin A (CSA) was very effective in attenuating the disruption of inner mitochondrial membrane potential induced by CCCP. However, CSA failed to protect the loss of inner mitochondrial membrane potential induced by potassium intracellular flux manipulation. Our findings suggest that mitochondrial cyclophilin is not involved in the cell events mediated by deregulation of potassium flux, underlining the need for further studies in intact tumor cells for a better understanding of the involvement of mitochondria physiology in cell death events.  相似文献   

4.
The relationships between mitochondrial transmembrane potential, ATP concentration, and cytotoxicity were evaluated after exposure of isolated rat hepatocytes to different mitochondrial poisons. Both the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its fully oxidized metabolite, the 1-methyl-4-phenylpyridinium (MPP+) ion, caused a concentration- and time-dependent depolarization of mitochondrial membranes which followed ATP depletion and preceded cytotoxicity. The effect of MPTP, but not that of MPP+, was prevented by deprenyl, an inhibitor of MPTP conversion to MPP+ via monoamine oxidase type B. Addition of fructose to the hepatocyte incubations treated with either MPTP or MPP+ counteracted the loss of mitochondrial transmembrane potential. Fructose was also effective in protecting against the mitochondrial membrane depolarization as well as ATP depletion and cytotoxicity induced by antimycin. A, carbonyl cyanide p-trifluoromethoxyphenyl hydrazone, and valinomycin. Data confirm the key role played by MPP(+)-induced mitochondrial damage in MPTP toxicity and indicate that (i) ATP produced via the glycolytic pathway can be utilized by hepatocytes to maintain mitochondrial electrochemical gradient, and (ii) a loss of mitochondrial membrane potential may occur only when supplies of ATP are depleted.  相似文献   

5.
Nemorosone, a natural-occurring polycyclic polyprenylated acylphloroglucinol, has received increasing attention due to its strong in vitro anti-cancer action. Here, we have demonstrated the toxic effect of nemorosone (1-25 μM) on HepG2 cells by means of the MTT assay, as well as early mitochondrial membrane potential dissipation and ATP depletion in this cancer cell line. In mitochondria isolated from rat liver, nemorosone (50-500 nM) displayed a protonophoric uncoupling activity, showing potency comparable to the classic protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). Nemorosone enhanced the succinate-supported state 4 respiration rate, dissipated mitochondrial membrane potential, released Ca(2+) from Ca(2+)-loaded mitochondria, decreased Ca(2+) uptake and depleted ATP. The protonophoric property of nemorosone was attested by the induction of mitochondrial swelling in hyposmotic K(+)-acetate medium in the presence of valinomycin. In addition, uncoupling concentrations of nemorosone in the presence of Ca(2+) plus ruthenium red induced the mitochondrial permeability transition process. Therefore, nemorosone is a new potent protonophoric mitochondrial uncoupler and this property is potentially involved in its toxicity on cancer cells.  相似文献   

6.
A difference spectrum with a peak of absorbance at 526nm appears slowly upon addition of valinomycin or KCN in combination with oligomycin to a hepatocyte suspension in the presence of safranine. When the cells are incubated at 37 degrees C in a medium containing safranine, a slow decrease in the absorbance occurs at the wavelength pair 524-484 nm. The change in absorbance is completed within 20-30 min after additions of cells to a medium containing safranine. At this time the safranine concentration of the outer medium is considerably decreased. The safranine signal is completely reversed by valinomycin, carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone or KCN in combination with oligomycin. None of these treatments have any immediate effect on cellular ATP concentrations or the 36Cl- equilibrium potential across the plasma membrane. In the presence of iodoacetate a slow reversal of the trace can be induced upon addition of KCN, but not of oligomycin alone. Rotenone, in combination with oligomycin, does not reverse the safranine signal except when both KF and iodoacetate are present, in which case a slow reversal is seen. A subsequent addition of duroquinone brings back the signal to the same level as in the presence of rotenone alone. The results indicate that the spectral response of safranine in the presence of isolated hepatocytes is a result of a slow penetration of safranine into intracellular mitochondria, where aggregation of safranine molecules occurs as a response to the mitochondrial membrane potential.  相似文献   

7.
Three mutant strains of Bacillus subtilis were isolated on the basis of their ability to grow in the presence of 5 microM carbonyl cyanide m-chlorophenylhydrazone (CCCP). The mutants (AG2A, AG1A3, and AG3A) were also resistant to 2,4-dinitrophenol, and AG2A exhibited resistance to tributyltin and neomycin. The mutants all exhibited (i) elevated levels of membrane ATPase activity relative to the wild type; (ii) slightly elevated respiratory rates, with the cytochrome contents of the membranes being the same as or slightly lower than those of the wild type; (3) a passive membrane permeability to protons that was indistinguishable from that of the wild type in the absence of CCCP and that was increased by addition of CCCP to the same extent as observed with the wild type; and (4) an enhanced sensitivity to valinomycin with respect to the ability of the ionophore to reduce the transmembrane electrical potential. Finally and importantly, starved whole cells of all the mutants synthesized more ATP than the wild type did upon energization in the presence of any one of several agents that lowered the proton motive force. Studies of revertants indicated that the phenotype resulted from a single mutation. Since a mutation in the coupling membrane might produce such pleiotropic effects, an analysis of the membrane lipids was undertaken with preparations made from cells grown in the absence of CCCP. The membrane lipids of the uncoupler-resistant strains differed from those of the wild type in having reduced amounts of monounsaturated C16 fatty acids and increased ratios of iso/anteiso branches on the C15 fatty acids. Correlations between protonophore resistance and the membrane lipid compositions of the wild type, mutants, and revertants were most consistent with the hypothesis that a reduction in the content of monounsaturated C16 fatty acids in the membrane phospholipids is related, perhaps casually, to the ability to synthesize ATP at low bulk transmembrane electrochemical gradients of protons.  相似文献   

8.
In electrically nonexcitable cells the activity of the plasma membrane calcium channels is controlled by events occurring in mitochondria, as well as in the lumen of the endoplasmic reticulum. Thapsigargin, a specific inhibitor of endoplasmic reticulum Ca2+-ATPase, produces the release of calcium from the endoplasmic reticulum and thus, activation of store-operated calcium channels in the plasma membrane. However, thapsigargin failed to produce significant activation of the channels in Jurkat cells that had been pretreated with mitochondria-directed agents: an uncoupler (carbonyl cyanide m-chlorophenylhydrazone) and oligomycin. This is in spite of the fact that Jurkat cells pretreated with carbonyl cyanide m-chlorophenylhydrazone plus oligomycin are otherwise energetically competent, due to a high rate of glycolysis and the inhibition of mitochondrial F1Fo-ATPase by oligomycin. The pool of intracellular ATP was found not to be influenced by the pretreatments of cells with oligomycin or with oligomycin plus carbonyl cyanide m-chlorophenylhydrazone. In the control cells, we found that the ATP pool amounted to 23.2 +/- 1.9 nmoles per 107 cells (n = 4). In cells pretreated with oligomycin the level of ATP was 21.8 +/- 1.9 nmoles per 107 cells (n = 4), and in cells pretreated with both oligomycin and an uncoupler the level of ATP was 22.1 +/- 0.2 nmoles per 107 cells (n = 3). Moreover, in cells pretreated with oligomycin plus carbonyl cyanide m-chlorophenylhydrazone and suspended in a nominally calcium-free medium, thapsigargin produces transient increases in cytosolic calcium identical to those in the control cells. Thus, this pretreatment does not modify either the content of intracellular calcium stores and/or the activity of calcium ATPase in the plasma membrane. Similar results were obtained when Jurkat cells were challenged by myxothiazol, a potent inhibitor of mitochondrial cytochrome bc1 oxidoreductase. Thapsigargin, although producing calcium release from intracellular stores, was ineffective in triggering the activation of calcium channels in the plasma membrane in the case of cells pretreated with myxothiazol and oligomycin. Our results suggest that coupled mitochondria participate directly in the control of calcium channel activity in the plasma membrane of Jurkat cells. When the mitochondrial protonmotive force is collapsed, either by carbonyl cyanide m-chlorophenylhydrazone or myxothiazol, the channel remains inactive even under conditions of empty intracellular calcium stores.  相似文献   

9.
Agonist-evoked cytosolic Ca(2+) spikes in mouse pancreatic acinar cells are specifically initiated in the apical secretory pole and are mostly confined to this region. The role played by mitochondria in this process has been investigated. Using the mitochondria-specific fluorescent dyes MitoTracker Green and Rhodamine 123, these organelles appeared as a bright belt concentrated mainly around the secretory granule area. We tested the effects of two different types of mitochondrial inhibitor on the cytosolic Ca(2+) concentration using simultaneous imaging of Ca(2+)-sensitive fluorescence (Fura 2) and electrophysiology. When carbonyl cyanide m-chlorophenylhydrazone (CCCP) was applied in the presence of the Ca(2+)-releasing messenger inositol 1,4, 5-trisphosphate (IP(3)), the local repetitive Ca(2+) responses in the granule area were transformed into a global rise in the cellular Ca(2+) concentration. In the absence of IP(3), CCCP had no effect on the cytosolic Ca(2+) levels. Antimycin and antimycin + oligomycin had the same effect as CCCP. Active mitochondria, strategically placed around the secretory pole, block Ca(2+) diffusion from the primary Ca(2+) release sites in the granule-rich area in the apical pole to the basal part of the cell containing the nucleus. When mitochondrial function is inhibited, this barrier disappears and the Ca(2+) signals spread all over the cytosol.  相似文献   

10.
In addition to their critical function in energy metabolism, mitochondria contain a permeability transition pore, which is regulated by adenine nucleotides. We investigated conditions required for ATP to induce a permeability transition in mammalian mitochondria. Mitochondrial swelling associated with mitochondria permeability transition (MPT) was initiated by adding succinate to a rat liver mitochondrial suspension containing alloxan, a diabetogenic agent. If alloxan was added immediately with or 5 min after adding succinate, MPT was strikingly decreased. MPT induced by alloxan was inhibited by EGTA and several agents causing thiol oxidation, suggesting that alloxan leads to permeability transition through a mechanism dependent on Ca(2+) uptake and sulfhydryl oxidation. Antimycin A and cyanide, inhibitors of electron transfer, carbonyl cyanide m-chlorophenylhydrazone, and oligomycin all inhibited MPT. During incubation with succinate, alloxan depleted ATP in mitochondria after an initial transient increase. However, in a mitochondrial suspension containing EGTA, ATP significantly increased in the presence of alloxan to a level greater than that of the control. These results suggest the involvement of energized transport of Ca(2+) in the MPT initiation. Addition of exogenous ATP, however, did not trigger MPT in the presence of alloxan and had no effect on MPT induced by alloxan. We conclude that alloxan-induced MPT requires mitochondrial energization, oxidation of protein thiols, and matrix ATP to promote energized uptake of Ca(2+).  相似文献   

11.
Liposome-encapsulated (LSOD) or free (FSOD), human recombinant Cu-Zn superoxide dismutase prevented the killing of cultured rat hepatocytes by tert-butyl hydroperoxide (TBHP). A dose of 32 U/ml of LSOD reduced the cell killing by 50%. By contrast, it required 288 U/ml of FSOD to similarly reduce the toxicity of TBHP by 50%. Both LSOD and FSOD increased the cell-associated superoxide dismutase activity of the cultured hepatocytes. Whereas 64 U/ml of LSOD increased cell-associated superoxide dismutase activity fourfold, it required 500 U/ml of FSOD to achieve a similar increase. Furthermore, methylamine, benzyl alcohol, cytochalasin B, oligomycin, and monensin, all inhibitors of endocytosis, prevented the increase in cell-associated superoxide dismutase produced by 500 U/ml of FSOD. These same inhibitors had no effect on the increase in cell-associated superoxide dismutase activity produced by a much lower concentration of LSOD. Thus, liposome-encapsulated superoxide dismutase prevented the cell killing by TBHP more efficiently than free superoxide dismutase because it more efficiently entered the hepatocytes by a mechanism that was independent of the endocytosis responsible for the uptake of FSOD. These data further define the conditions of the toxicity of TBHP. The target hepatocyte must contribute superoxide anions, in addition to the previously shown ferric iron. It is hypothesized that superoxide anions reduce ferric to ferrous iron; the latter then reacts with the hydroperoxide to form tert-butyl alkoxyl radicals. Such radicals are potent oxidizing agents that can initiate the peroxidation of cellular lipids previously shown to lethally injure the hepatocytes.  相似文献   

12.
We have exposed mouse thymocytes and P-815 mastocytoma cells to four different conditions reported to cause apoptosis: 1) incubation in the absence of mitogenic factors; 2) incubation in the presence of dexamethasone; 3) stimulation with external ATP; 4) treatment with high concentrations of the K+ ionophore valinomycin. These treatments caused DNA fragmentation to a varying extent in the two cell types. High stringency hybridization with a cDNA probe specific to a mitochondrial DNA sequence revealed that during apoptosis induced by lack of mitogenic factors, dexamethasone, or extracellular ATP, mitochondrial DNA was not fragmented. On the contrary, valinomycin caused extensive degradation of mitochondrial DNA. These results support the notion that DNA fragmentation during apoptosis is a specific nuclear event and suggest that other agents, such as valinomycin, may act less selectively.  相似文献   

13.
The maximal capacity of the mitochondrial electron transport system (ETS) in intact cells is frequently estimated by promoting protonophore-induced maximal oxygen consumption preceded by inhibition of oxidative phosphorylation by oligomycin. In the present study, human glioma (T98G and U-87MG) and prostate cancer (PC-3) cells were titrated with different concentrations of the protonophore CCCP to induce maximal oxygen consumption rate (OCR) within respirometers in a conventional growth medium. The results demonstrate that the presence of oligomycin or its A-isomer leads to underestimation of maximal ETS capacity. In the presence of oligomycin, the spare respiratory capacity (SRC), i.e., the difference between the maximal and basal cellular OCR, was underestimated by 25 to 45%. The inhibitory effect of oligomycin on SRC was more pronounced in T98G cells and was observed in both suspended and attached cells. Underestimation of SRC also occurred when oxidative phosphorylation was fully inhibited by the ATP synthase inhibitor citreoviridin. Further experiments indicated that oligomycin cannot be replaced by the adenine nucleotide translocase inhibitors bongkrekic acid or carboxyatractyloside because, although these compounds have effects in permeabilized cells, they do not inhibit oxidative phosphorylation in intact cells. We replaced CCCP by FCCP, another potent protonophore and similar results were observed. Lower maximal OCR and SRC values were obtained with the weaker protonophore 2,4-dinitrophenol, and these parameters were not affected by the presence of oligomycin. In permeabilized cells or isolated brain mitochondria incubated with respiratory substrates, only a minor inhibitory effect of oligomycin on CCCP-induced maximal OCR was observed. We conclude that unless a previously validated protocol is employed, maximal ETS capacity in intact cells should be estimated without oligomycin. The inhibitory effect of an ATP synthase blocker on potent protonophore-induced maximal OCR may be associated with impaired metabolism of mitochondrial respiratory substrates.  相似文献   

14.
Isometric force and 45Ca efflux from the sarcoplasmic reticulum were measured at 19 degrees C in frog skeletal muscle fibers skinned by microdissection. After Ca2+ loading, application of the ionophores monensin, an Na+(K+)/H+ exchanger, or gramicidin D, an H+ greater than K+ greater than Na+ channel-former, evoked rapid force development and stimulated release of approximately 30% of the accumulated 45Ca within 1 min, whereas CCCP (carbonyl cyanide pyruvate p-trichloromethoxyphenylhydrazone), a protonophore, and valinomycin, a neutral, K+-specific ionophore, did not. When monensin was present in all bathing solutions, i.e., before and during Ca2+ loading, subsequent application failed to elicit force development and to stimulate 45Ca efflux. 5 min pretreatment of the skinned fibers with 50 microM digitoxin, a permeant glycoside that specifically inhibits the Na+,K+ pump, inhibited monensin and gramicidin D stimulation of 45Ca efflux; similar pretreatment with 100 microM ouabain, an impermeant glycoside, was ineffective. Monensin stimulation of 45Ca efflux was abolished by brief pretreatment with 5 mM EGTA, which chelates myofilament-space calcium. These results suggest that: monensin and gramicidin D stimulate Ca2+ release from the sarcoplasmic reticulum that is mediated by depolarization of the transverse tubules, which seal off after sarcolemma removal and form closed compartments; a transverse tubule membrane potential (myofilament space-negative) is maintained and/or established by the operation of the Na+,K+ pump in the transverse tubule membranes and is sensitive to the permeant inhibitor digitoxin; the transverse tubule-mediated stimulation of 45Ca efflux appears to be entirely Ca2+ dependent.  相似文献   

15.
The role of Na+ in Vibrio alginolyticus oxidative phosphorylation has been studied. It has been found that the addition of a respiratory substrate, lactate, to bacterial cells exhausted in endogenous pools of substrates and ATP has a strong stimulating effect on oxygen consumption and ATP synthesis. Phosphorylation is found to be sensitive to anaerobiosis as well as to HQNO, an agent inhibiting the Na+-motive respiratory chain of V. alginolyticus. Na+ loaded cells incubated in a K+ or Li+ medium fail to synthesize ATP in response to lactate addition. The addition of Na+ at a concentration comparable to that inside the cell is shown to abolish the inhibiting effect of the high intracellular Na+ level. Neither lactate oxidation nor delta psi generation coupled with this oxidation is increased by external Na+ in the Na+-loaded cells. It is concluded that oxidative ATP synthesis in V. alginolyticus cells is inhibited by the artificially imposed reverse delta pNa, i.e., [Na+]in greater than [Na+]out. Oxidative phosphorylation is resistant to a protonophorous uncoupler (0.1 mM CCCP) in the K+-loaded cells incubated in a high Na+ medium, i.e., when delta pNa of the proper direction [( Na+]in less than [Na+]out) is present. The addition of monensin in the presence of CCCP completely arrests the ATP synthesis. Monensin without CCCP is ineffective. Oxidative phosphorylation in the same cells incubated in a high K+ medium (delta pNa is low) is decreased by CCCP even without monensin. Artificial formation of delta pNa by adding 0.25 M NaCl to the K+-loaded cells (Na+ pulse) results in a temporary increase in the ATP level which spontaneously decreases again within a few minutes. Na+ pulse-induced ATP synthesis is completely abolished by monensin and is resistant to CCCP, valinomycin and HQNO. 0.05 M NaCl increases the ATP level only slightly. Thus, V. alginolyticus cells at alkaline pH represent the first example of an oxidative phosphorylation system which uses Na+ instead of H+ as the coupling ion.  相似文献   

16.
Mitochondria are frequently the target of injury after stresses leading to necrotic and apoptoticcell death. Inhibition of oxidative phosphorylation progresses to uncoupling when opening ofa high conductance permeability transition (PT) pore in the mitochondrial inner membraneabruptly increases the permeability of the mitochondrial inner membrane to solutes of molecularmass up to 1500 Da. Cyclosporin A (CsA) blocks this mitochondrial permeability transition(MPT) and prevents necrotic cell death from oxidative stress, Ca2+ ionophore toxicity,Reye-related drug toxicity, pH-dependent ischemia/reperfusion injury, and other models of cell injury.Confocal fluorescence microscopy directly visualizes onset of the MPT from the movementof green-fluorescing calcein into mitochondria and the simultaneous release from mitochondriaof red-fluorescing tetramethylrhodamine methylester, a membrane potential-indicatingfluorophore. In oxidative stress to hepatocytes induced by tert-butylhydroperoxide, NAD(P)Hoxidation, increased mitochondrial Ca2+, and mitochondrial generation of reactive oxygen speciesprecede and contribute to onset of the MPT. Confocal microscopy also shows directly thatthe MPT is a critical event in apoptosis of hepatocytes induced by tumor necrosis factor-.Progression to necrotic and apoptotic cell killing depends, at least in part, on the effect theMPT has on cellular ATP levels. If ATP levels fall profoundly, necrotic killing ensues. If ATPlevels are at least partially maintained, apoptosis follows the MPT. Cellular features of bothapoptosis and necrosis frequently occur together after death signals and toxic stresses. A newterm, necrapoptosis, describes such death processes that begin with a common stress or deathsignal, progress by shared pathways, but culminate in either cell lysis (necrosis) or programmedcellular resorption (apoptosis) depending on modifying factors such as ATP.  相似文献   

17.
Abstract: The ability of mitochondrial Ca2+ transport to limit the elevation in free cytoplasmic Ca2+ concentration in neurones following an imposed Ca2+ load is reexamined. Cultured cerebellar granule cells were monitored by digital fura-2 imaging. Following KCI depolarization, addition of the protonophore carbonylcyanide m -chlorophenylhydrazone (CCCP) to depolarize mitochondria released a pool of Ca2+ into the cytoplasm in both somata and neurites. No CCCP-releasable pool was found in nondepolarized cells. Although the KCI-evoked somatic and neurite Ca2+ concentration elevations were enhanced when CCCP was present during KCI depolarization, this was associated with a collapsed ATP/ADP ratio. In the presence of the ATP synthase inhibitor oligomycin, glycolysis maintained high ATP/ADP ratios for at least 10 min. The further addition of the mitochondrial complex I inhibitor rotenone led to a collapse of the mitochondrial membrane potential, monitored by rhodamine-123, but had no effect on ATP/ADP ratios. In the presence of rotenone/oligomycin, no CCCP-releasable pool was found subsequent to KCI depolarization, consistent with the abolition of mitochondrial Ca2+ transport; however, paradoxically the KCI-evoked Ca2+ elevation is decreased. It is concluded that the CCCP-induced increase in cytoplasmic Ca2+ response to KCI is due to inhibition of nonmitochondrial ATP-dependent transport and that mitochondrial Ca2+ transport enhances entry of Ca2+, perhaps by removing the cation from cytoplasmic sites responsible for feedback inhibition of voltage-activated Ca2+ channel activity.  相似文献   

18.
19.
Sea urchin sperm have a single mitochondrion which, aside from its main ATP generating function, may regulate motility, intracellular Ca2+ concentration ([Ca2+]i) and possibly the acrosome reaction (AR). We have found that acute application of agents that inhibit mitochondrial function via differing mechanisms (CCCP, a proton gradient uncoupler, antimycin, a respiratory chain inhibitor, oligomycin, a mitochondrial ATPase inhibitor and CGP37157, a Na+/Ca2+ exchange inhibitor) increases [Ca2+]i with at least two differing profiles. These increases depend on the presence of extracellular Ca2+, which indicates they involve Ca2+ uptake and not only mitochondrial Ca2+ release. The plasma membrane permeation pathways activated by the mitochondrial inhibitors are permeable to Mn2+. Store-operated Ca2+ channel (SOC) blockers (Ni2+, SKF96365 and Gd2+) and internal-store ATPase inhibitors (thapsigargin and bisphenol) antagonize Ca2+ influx induced by the mitochondrial inhibitors. The results indicate that the functional status of the sea urchin sperm mitochondrion regulates Ca2+ entry through SOCs. As neither CCCP nor dicycloexyl carbodiimide (DCCD), another mitochondrial ATPase inhibitor, eliminate the oligomycin induced increase in [Ca2+]i, apparently oligomycin also has an extra mitochondrial target.  相似文献   

20.
The addition of ATP to bovine neurohypophysial secretory granules suspended in isotonic sucrose medium induces a positive polarization, delta psi, of their interior without affecting their internal pH. In KCl-containing media, ATP failed to generate large delta psi but induced a pH gradient (delta pH; interior acidic). These observations are consistent with the existence in the neurosecretory granule membrane of an ATP-dependent inward electrogenic H+ translocase (H+ pump), capable in KCl-containing media of acidifying the granule matrix by H+-Cl- cotransport. The delta psi and delta pH generated by the H+ pump, defined as the ATP-induced changes sensitive to the H+ ionophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), were blocked by N,N'-dicyclohexylcarbodiimide, an inhibitor of all H+ pumps, and were insensitive to oligomycin, a mitochondrial ATPase inhibitor. In sucrose medium, measurements were complicated by a Donnan equilibrium reflecting the presence in the granule of peptide hormones and neurophysins which resulted in a CCCP-resistant resting delta pH. In KCl-containing media, the Donnan equilibrium was destroyed since the membrane is permeable to cations, but under these conditions a CCCP-resistant K+-diffusion potential was observed. The ATP-induced delta psi was also monitored by the extrinsic fluorescent probe bis(3-phenyl-5-oxoisoxazol-4-yl)pentamethine oxonol. The hypothesis of a granule H+ pump is further supported by the presence of an oligomycin-resistant ATPase in the preparation and the ultrastructural localization of such an activity on the granule membrane. The H+ pump has been found in both newly formed and aged neurosecretory granules. Its possible physiological function is discussed with reference to that of chromaffin granules, with which it has many similarities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号