首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acute effects of methylmercury chloride (MMC) on the endocrine functions were investigated with doses too small to cause any typical neurological dysfunctions. The hormones included PRL, LH, TSH, ACTH, corticosterone (Bk), testosterone (TLI), total thyroxine (T4) and free thyroxine (free T4). The changes in serum hormone levels from 1 hour through 10 days after a single injection of MMC (12 mg/kg s.c.) (Exp. 1), and dose-response relationships between MMC doses (2 to 16 mg/kg s.c.) and the serum hormone levels at 25 hours after MMC injection (Exp. 2) were examined. The acute effects revealed, which were all reversible, are summarized as follows; MMC might directly inhibit thyroxine synthesis; MMC could affect only stimulatively the pituitary-adrenal axis and PRL synthesis/release, the primary action site for which may be the CNS; and the effects of the pituitary-gonadal axis were inconsistent and, therefore, this axis seems to be relatively resistant to MMC. On the other hand, the responses of PRL and TSH to TRH loading, which were examined for both groups in Exp. 3, suggested that MMC could not affect the metabolizing activity for serum PRL and TSH. The hormone levels of the MMC group enhanced by TRH recovered very rapidly as in the control group. Thus, these acute and reversible endocrine effects seem to indicate relatively earlier development of possible chronic and irreversible effects on the endocrine functions when exposed to methylmercury chronically, and these should be examined further.  相似文献   

2.
Thyroid hormone action on ACTH secretion   总被引:1,自引:0,他引:1  
Thyroid hormone effects on pituitary ACTH have not been well established. Adult male Sprague-Dawley rats were rendered hypo- and hyperthyroid while undergoing treatment with 6-Propylthiouracil (PTU) and L-Thyroxine (T4). At the time of decapitation, plasma values for T4 (micrograms/100 ml) were 3.9 +/- 0.4 in the control, 17.3 +/- 2.2 in the T4 and less than 2 in the PTU treated group; plasma T3 and TSH confirmed hyper- and hypothyroidism in the T4 and PTU treated groups respectively. Plasma immunoassayable ACTH and corticosterone were significantly increased in hyperthyroid and decreased in the PTU treated animals. Pituitaries were removed and incubated in DMEM. After 3 h incubation, ACTH content and secretion to the medium were significantly lower in the PTU group. As expected, pituitary TSH content and secretion were decreased in the T4 treated animals. These data indicate that thyroid hormones influence pituitary-adrenal function by increasing ACTH secretion and consequently corticosterone production.  相似文献   

3.
OBJECTIVE: Endocrine dysfunction is a common problem in patients with human immunodeficiency virus infection (HIV). We therefore evaluated the endocrine function in 31 male homosexual HIV-1-infected men: mean age 37 +/- 7.2 years (range 24-52). METHODS AND MATERIALS: Blood was obtained for baseline T3, T4, TSH, LH, FSH, prolactin, testosterone, ACTH and cortisol values. Endocrine function tests were performed as TRH, CRH, ACTH, LH-RH and HCG tests. RESULTS: Thyroid function: There was a temporarily increased TSH in 3 of 17 patients but normal levels for T3, T4 and fT4 (without thyroid antibodies). One patient showed signs of latent hyperthyroidism (no response in TRH test). Adrenocortical function: Two patients had adrenal insufficiency. They showed a normal baseline cortisol level, an elevated ACTH level and no increase in cortisol levels after stimulation with CRH. All other patients revealed normal responses on the CRH/ACTH tests. Gonadal function: 9 patients had elevated FSH levels (tubular insufficiency), 4 patients additionally had increased LH levels (hypergonadotropic hypogonadism). 5 patients showed signs of tertiary hypogonadism (low LH and testosterone, increase of LH after stimulation with LH-RH). CONCLUSION: In disorders of thyroid and adrenocortical function of primary or tertiary origin, a substitution of hormones should be taken into consideration.  相似文献   

4.
Summary This study was conducted to determine changes in thyroid-gonadal interaction in the edible dormouse during the phase of the annual cycle that corresponds to the end of the breeding season (from June to September). We evaluated intra-hypothalamic luteinizing hormone-releasing hormone (LHRH) content, and plasma concentrations of luteinizing hormone (LH), testosterone, thyroid-stimulating hormone (TSH) and thyroxine (T4) in three groups of dormice: (1) controls; (2) dormice receiving sufficient T4 supplementation to maintain June levels in control animals until September, thus counteracting the seasonal reduction of T4 that normally begins in July; and (3) thyroidectomized dormice. The effect of thyroidectomy was only detectable in June, when plasma T4 concentration in the control group was maximal, and consisted of a significant decrease in plasma testosterone levels. This provides strong support for the hypothesis that thyroid function positively influences gonadal function during the breeding season. The T4 supplementation resulted in a decrease in hypothalamic LHRH concentration, suggesting that an increased LHRH release led to the observed stimulated hypophyseal secretion of LH in June and September and the increased circulating testosterone levels in September. There was no detectable effect in July and August. These results show that thyroid axis activation of the hypothalamic-pituitary-gonadal system is only possible during certain phases of the annual cycle, particularly evidenced here during the breeding season. They also reinforce our conclusions drawn from the thyroidectomy results. Conversely, the summer testicular regression which normally occurs after the breeding season is no longer controlled by plasma T4 levels. Even though the sensitivity of the gonadal axis to the thyroid axis appears to reappear at the end of the summer, results of previous studies indicate that this resumption is only temporary.Abbreviations LH luteinizing hormone - LHRH luteinizing hormone-releasing hormone - RIA radioimmunoassay - T4 thyroxine - TSH thyroid-stimulating hormone  相似文献   

5.
The administration of either glucocorticoids (dexamethasone or corticosterone) or adrenocorticotropic hormone (ACTH) to chicken embryos was followed by increase in the circulating concentration of triiodothyronine (T3), the T3 to thyroxine (T4) ratio and the activity of liver T4-5' monodeiodinase. No consistent changes in plasma concentrations of T4 or GH were observed. In post-hatching chicks, corticosterone and dexamethasone depressed the circulating concentrations of both T4 and T3. Iopanoc acid, an inhibitor of liver T4-5' monodeiodinase, elevated plasma concentrations of T4 and depressed those of T3 in both chicken embryos and young chicks. It is suggested that glucocorticoids affect circulating concentrations of T4 and T3 both by affecting the activity of the liver T4-5' monodeiodinase and by influencing the hypothalamo-pituitary axis.  相似文献   

6.
To characterize the participation of vasopressin (AVP) and oxytocin (OT) in hypothalamus-pituitary-adrenal regulation after adrenalectomy (ADX), we evaluated corticosterone, ACTH, AVP and OT plasma concentrations and AVP and OT content of the paraventricular nucleus (PVN) at different periods (3 h, 1, 3, 7 and 14 days) in sham or ADX rats under basal conditions and after immobilization stress. ADX animals showed undetectable corticosterone levels, while sham animals showed a marked increase in corticosterone and ACTH 3 h after surgery, then lowering to basal control levels. ADX rats showed high basal ACTH levels with a triphasic response without changes after immobilization. After three hours, the ADX group showed higher OT levels than the sham group. OT was increased after immobilization stress in sham and ADX groups. AVP plasma levels did not change throughout the basal or stress studies in either group. There was a decrease in hypothalamic AVP content 1 and 3 days after ADX under basal and stress conditions. Plasma osmolality showed a significant decrease in the ADX group at 3, 7, and 14 days. In conclusion, there are different pituitary-adrenal axis set points after removal of the glucocorticoid negative feedback. The role of vasopressinergic and oxytocinergic neurons in the ACTH secretion after ADX or immobilization stress appears to differ. Magnocellular AVP is unlikely to contribute to ACTH secretion in response to ADX or immobilization stress. On the other hand, OT is elicited by immobilization stress and might contribute to the ACTH secretion during short-term ADX.  相似文献   

7.
Hypoxia is a common cause of neonatal morbidity and mortality. We have previously demonstrated a dramatic ACTH-independent activation of adrenal steroidogenesis in hypoxic neonatal rats, leading to increases in circulating corticosterone levels. The purpose of the present study was to determine if this ACTH-independent increase in corticosterone inhibits the ACTH response to acute stimuli. Neonatal rats were exposed to normoxia (control) or hypoxia from birth to 5 or 7 days of age. At the end of the exposure, plasma ACTH and corticosterone were measured before and after either ether vapors were administered for 3 min or CRH (10 microg/kg) was given intraperitoneally. Thyroid function, pituitary pro-opiomelanocortin (POMC) mRNA and ACTH content, and hypothalamic corticotropin-releasing hormone (CRH), neuropeptide Y (NPY), and AVP mRNA were also assessed. Hypoxia led to a significant increase in corticosterone without a large increase in ACTH, confirming previous studies. The ACTH responses to ether or CRH administration were almost completely inhibited in hypoxic pups. Hypoxia did not affect the established regulators of the neonatal hypothalamic-pituitary-adrenal axis, including pituitary POMC or ACTH content, hypothalamic CRH, NPY, or AVP mRNA (parvo- or magnocellular), or thyroid function. We conclude that hypoxia from birth to 5 or 7 days of age leads to an attenuated ACTH response to acute stimuli, most likely due to glucocorticoid negative feedback. The neural and biochemical mechanism of this effect has yet to be elucidated.  相似文献   

8.
The effect of hypothyroidism upon the morphology and the function of several endocrine glands was studied in radiothyroidectomized male rats. It was found that T3, T4, insulin, prolactin and corticosterone levels were significantly lower in hypothyroid rats. TSH levels were significantly higher in these animals while no changes were depicted in testosterone levels. The administration of T4 drew back to normal range the above-mentioned altered serum hormone levels. The studies performed with light microscopy revealed alterations only in the TSH secretory cells of the adenohypophysis. Conversely, when using the electron microscope to study the different endocrine glands, clear alterations were depicted in the TSH and prolactin secretory cells of the adenohypophysis, as well as in the pancreatic B cells and the cells of the zona fasciculata of the adrenal cortex. No abnormal changes were demonstrable at the level of the seminiferous tubules of the testis. All the above morphological changes were corrected by the administration of T4 to hypothyroid rats. These results suggest that the hypothyroid state is a complex hormonal dysfunction rather than a single hormonal defect. The secretory alterations are accompanied by fine cellular alterations in the corresponding glands.  相似文献   

9.
The effects of hemithyroidectomy and thyrotropin administration on rat thyroid gland function were studied in adult male rats. Immediately after surgery or sham operation rats were treated daily with 0.12 IU of bovine thyrotropin (TSH) for 3 or 5 days. In control rats TSH dose applied resulted in an increase in serum T4 level at day 5 of experiment. Serum thyroxine concentration markedly decreased in sham operated and hemithyroidectomised rats, an effect observed at days 3 and 5 of experiment. TSH administration had no effect on serum T4 concentration in sham operated rats while in hemithyroidectomised animals such a treatment resulted in a marked increase in serum T4 level, a phenomenon observed in both time intervals studied. The reasons for hemithyroidectomy-induced hyperresponsiveness of rat thyroid residual lobe to thyrotropin are unknown.  相似文献   

10.
To evaluate the role of perinatal thyroid status in the development of pituitary-thyroid axis regulation, we administered triiodothyronine to newborn rats for the first five days postpartum to achieve hyperthyroidism, or propylthiouracil perinatally to rat dams and pups from gestational day 17 through postnatal day 5 to achieve hypothyroidism. Plasma T4, T3, and TSH levels were determined from birth through 50 days postpartum. Administration of exogenous T3 produced the expected immediate suppression of plasma T4 and TSH, with recovery toward normal values beginning within days of discontinuing the T3 regimen. Plasma T3 values were markedly elevated during the period in which T3 was being given, but subsequently became subnormal, with deficits persisting into young adulthood. With the PTU regimen, plasma T4 and T3 levels were markedly suppressed through postnatal day 10, rose over the ensuing two weeks, but nevertheless showed significant deficits into adulthood. TSH levels in the immediate neonatal period were subnormal in the PTU group, despite the marked lowering of circulating thyroid hormones; TSH then rose dramatically to levels four times normal, subsiding to control values by the end of the first month. These results suggest that a critical period exists in which regulation of pituitary-thyroid axis function is programmed. During this phase, TSH secretion can be suppressed by excess thyroid hormones, but cannot be increased by hormone deficiencies. Perhaps more importantly, perinatal thyroid status "programs" its own future reactivity, so that early hypothyroidism results in reduced T4 and T3 levels in adulthood, despite normal levels of TSH.  相似文献   

11.
In order to determine the mechanism by which stress may affect the secretion and function of luteinizing hormone (LH) in primates, the response of the adrenal and gonadal axes was followed in male rhesus monkeys during brief restraint in primate chairs and during various hormone treatments. To further assess the responsiveness of the gonadal axis, gonadotropin releasing hormone (GnRH) was administered during the experiments. Corticosteroid levels were elevated throughout the first restraint trial as compared to those in subsequent trials. LH was elevated in the first sample of the first trial as compared to that in the following trials. The responses of LH to GnRH were equivalent in all trials, while the testosterone response to GnRH was attenuated in the first trial. A single injection of adrenocorti-cotropin (ACTH, 40 IU), while increasing circulating corticosteroids similarly to that observed during the first restraint trial, failed to cause an acute initial release of LH. However, ACTH did lower the testosterone response to GnRH. Following 5 days of ACTH treatment (40 IU twice daily), basal LH was suppressed, and the testosterone response to GnRH was decreased. Following 5 days of cortisol injections (100 mg twice daily), basal LH and testosterone were suppressed, but again only the testosterone response to GnRH was attenuated. Acute restraint stress, acting by some mechanism other than the activation of adrenal axis, stimulates a transient release of LH. While the stress-stimulated release of corticosteroids failed to affect the LH response following GnRH administration, it did act directly on the testes to prevent the normal release of testosterone. Finally, chronic elevation of corticosteroids, produced by ACTH or cortisol administration, suppressed basal serum LH and attenuated the response of testosterone to GnRH.  相似文献   

12.
To clarify the maturation process of the pituitary-thyroid axis during the perinatal period, thyrotropin (TSH) response to thyrotropin releasing hormone (TRH) and serum thyroid hormone levels were examined in 26 healthy infants of 30 to 40 weeks gestation. A TRH stimulation test was performed on 10 to 20 postnatal days. Basal concentrations of serum thyroxine (T4), free thyroxine (free T4) and triiodothyronine (T3) were positively correlated to gestational age and birth weight (p less than 0.001-0.01). Seven infants of 30 to 35 gestational weeks demonstrated an exaggerated TSH response to TRH (49.7 +/- 6.7 microU/ml versus 22.1 +/- 4.8 microU/ml, p less than 0.001), which was gradually reduced with gestational age and normalized after 37 weeks gestation. A similar decrease in TSH responsiveness to TRH was also observed longitudinally in all of 5 high responders repeatedly examined. There was a negative correlation between basal or peak TSH concentrations and postconceptional age in high responders (r = -0.59 p less than 0.05, r = -0.66 p less than 0.01), whereas in the normal responders TSH response, remained at a constant level during 31 to 43 postconceptional weeks. On the other hand, there was no correlation between basal or peak TSH levels and serum thyroid hormones. These results indicate that (1) maturation of the pituitary-thyroid axis is intrinsically controlled by gestational age rather than by serum thyroid hormone levels, (2) hypersecretion of TSH in preterm infants induces a progressive increase in serum thyroid hormones, and (3) although there is individual variation in the maturation process, the feedback regulation of the pituitary-thyroid axis matures by approximately the 37th gestational week.  相似文献   

13.
The aim of the present study was to investigate the pituitary-thyroid axis function during the long-term (30 days) intramuscular administration of 4 mg/day of thyrotropin-releasing hormone tartrate (TRH-T) in 15 patients with spinocerebellar degeneration. The study was performed as follows: (1) acute 4 mg TRH-T test with hourly prolactin (PRL) and thyroid-stimulating hormone (TSH) level evaluations for 6 h; (2) placebo; and (3) 4 mg/day of TRH-T administration for 30 days with TSH, PRL, and free T3 and T4 (FT3 and FT4) levels evaluated on days 1, 15 and 30. Hormone determination was performed just before and 1 h after placebo or TRH-T administration. The acute administration of TRH-T caused a sustained rise of TSH which lasted until the 6th hour and of PRL which declined after 1 h (p < 0.01). During placebo administration, no change of TSH, PRL, FT3 or FT4 was observed. On the 1st day of treatment, 1 h after the TRH-T injection, a significant increase of both TSH and PRL levels occurred (p < 0.01). As compared to the 1st day, a significant decrease of the TSH (p < 0.01) levels occurred on the 15th and 30th days before TRH-T: the TSH response to TRH-T administration was present although less than on the 1st day (p < 0.01). Moreover, throughout the whole period of treatment, no difference was recorded for PRL levels before or after TRH-T administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The overlapping effect of TSH and FSH on the gonad and on the thyroid gland can be demonstrated in cockerels even at the age of five weeks. These hormones influence the secretion of testosterone in a similar way and to a similar extent, while on the thyroxine level the influence of the specific hormone is more pronounced. Neonatal FSH and TSH treatment considerably decreased the basal testosterone level measured at the age of five weeks. Neonatal FSH treatment increased the basal T4 level while TSH treatment decreased it. The effect of TSH treatment administered at the age of five weeks in increasing the testosterone level was weakened after neonatal pretreatment with any iodine hormone. The effect of TSH treatment could only be inhibited by neonatal FSH pretreatment. Neonatal pretreatment with any of the trophormones caused a diminution of the T4 level augmenting of FSH and TSH administered at the age of five weeks.  相似文献   

15.
The hypothalamus-pituitary-target gland axis is thought to be linked with insomnia, yet there has been a lack of further systematic studies to prove this. This study included 30 patients with primary insomnia (PI), 30 patients with depression-comorbid insomnia (DCI), and 30 healthy controls for exploring the alterations in the hypothalamus-pituitary-adrenal/thyroid axes’ hormones and gonadotropin-releasing hormone (GnRH). The Pittsburgh Sleep Quality Index was used to evaluate sleep quality in all subjects. The serum concentrations of corticotrophin-releasing hormone (CRH), thyrotrophin-releasing hormone (TRH), GnRH, adrenocorticotropic hormone (ACTH), thyroid stimulating hormone (TSH), cortisol, total triiodothyronine (TT3), and total thyroxine (TT4) in the morning (between 0730 h and 0800 h) were detected. Compared to the controls, all hormonal levels were elevated in the insomniacs, except ACTH and TSH in the PI group. Compared to the DCI patients, the PI patients had higher levels of CRH, cortisol, TT3, and TT4 but lower levels of TRH, GnRH, and ACTH. Spearman’s correlation analysis indicated that CRH, TRH, GnRH, TSH, cortisol, TT4, and TT3 were positively correlated with the severity of insomnia. The linear regression analysis showed that only CRH, GnRH, cortisol, and TT3 were affected by the PSQI scores among all subjects, and only CRH was included in the regression model by the “stepwise” method in the insomnia patients. Our results indicated that PI patients may have over-activity of the hypothalamus-pituitary-adrenal/thyroid axes and an elevated level of GnRH in the morning.  相似文献   

16.
Acute nicotine administration has been shown to activate the hypothalamic-pituitary-adrenal (HPA) axis and stimulate secretion of adrenocorticotrophic hormone (ACTH), corticosterone/cortisol and beta-endorphin (beta-END) in both rodents and humans, raising the possibility that activation of the HPA axis by nicotine may mediate some of the effects of nicotine. Since stress can increase the risk of drug use and abuse, we hypothesized that repeated stress would increase the ability of nicotine to stimulate the secretion of HPA hormones. To test our hypothesis, mice were exposed to repeated stress (swimming in 15 degrees C water for 3 min/day for 5 days) and killed 15 min after injection of saline or nicotine (0.1 mg/kg, s.c.). Repeated exposure to stress increased the ability of nicotine to stimulate plasma ACTH (p<0.05) and beta-END (p<0.05), but not corticosterone secretion. In contrast, repeated exposure to stress increased the post-saline injection levels of corticosterone (p<0.05), but not ACTH and beta-END. The present results suggest that chronic stress leads to an enhanced sensitivity of some components of the HPA axis to a subsequent nicotine challenge.  相似文献   

17.
Mild psychological stressors provoke an acute rise in core temperature (T(C)), stimulate the hypothalamo-pituitary-adrenocortical (HPA) axis, and induce various stress-related behaviors. In the present study, we examined the effect of ablation of the anteroventral third ventricle region (AV3V) on both physiological and behavioral responses to a novel environment. T(C) was monitored in male Sprague-Dawley rats, with either sham or AV3V lesions, during a 5-h exposure to a novel environment. Trunk blood was collected, in a second group of rats, for the assessment of plasma levels of ACTH and corticosterone. Novelty-induced grooming and rearing behaviors were assessed in a third group of animals. T(C) was elevated in all animals after 30 min in the novel environment, but the rise was exaggerated in rats with AV3V lesions ( approximately 0.5 degrees C). AV3V-lesion rats maintained a higher core temperature for 2 h before it returned to the same level as the control group. Plasma levels of ACTH and corticosterone were also exaggerated in the AV3V lesion group after 30 min in a novel environment. In contrast to the physiological responses, the behavioral measures of grooming and rearing revealed no differences between the groups. The results from the current study suggest that neurons within the AV3V region exert an inhibitory influence on the HPA axis and fever developed in response to stressful psychological stimuli. They also confirm that the physiological and hormonal components of the stress response are independent of certain behavioral measures of stress.  相似文献   

18.
The rapid activation of stress-responsive neuroendocrine systems is a basic reaction of animals to perturbations in their environment. One well-established response is that of the hypothalamo-pituitary-adrenal (HPA) axis. In rats, corticosterone is the major adrenal steroid secreted and is released in direct response to adrenocorticotropin (ACTH) secreted from the anterior pituitary gland. ACTH in turn is regulated by the hypothalamic factor, corticotropin-releasing hormone. A sex difference exists in the response of the HPA axis to stress, with females reacting more robustly than males. It has been demonstrated that in both sexes, products of the HPA axis inhibit reproductive function. Conversely, the sex differences in HPA function are in part due to differences in the circulating gonadal steroid hormone milieu. It appears that testosterone can act to inhibit HPA function, whereas estrogen can enhance HPA function. One mechanism by which androgens and estrogens modulate stress responses is through the binding to their cognate receptors in the central nervous system. The distribution and regulation of androgen and estrogen receptors within the CNS suggest possible sites and mechanisms by which gonadal steroid hormones can influence stress responses. In the case of androgens, data suggest that the control of the hypothalamic paraventricular nucleus is mediated trans-synaptically. For estrogen, modulation of the HPA axis may be due to changes in glucocorticoid receptor-mediated negative feedback mechanisms. The results of a variety of studies suggest that gonadal steroid hormones, particularly testosterone, modulate HPA activity in an attempt to prevent the deleterious effects of HPA activation on reproductive function.  相似文献   

19.
We examined the effect of acclimation to moderate hyperthermic environment on the ACTH, TSH, T3, T4 and corticosterone level, as well as the relative weight of hypophysis, thyroid and adrenal glands in streptozotocin-diabetic rats. Increased activity of the hypothalamo-pituitary-adrenocortical (HPA) axis has been demonstrated in diabetic animals, whereas insulin treatment restores the changes. Heat acclimation reduces the level of ACTH and corticosterone in control animals and moderates the hormonal disturbances caused by diabetes. Simultaneously, our study revealed impairment in the activity of the hypothalamo-pituitary-thyroid (HPT) axis. Acclimation to 35±1 °C resulted in significantly lower T3 and T4 levels in control, diabetic and insulin-treated animals. Relative weight of the hypophysis, thyroid and adrenal glands is decreased in heat-acclimated rats. Our assumption is that there might be a cross tolerance between diabetes and heat acclimation on a hormonal level.  相似文献   

20.
Cholestatic patients often present with clinical features suggestive of adrenal insufficiency. In the bile duct-ligated (BDL) model of cholestasis, the hypothalamic-pituitary-adrenal (HPA) axis is suppressed. The consequences of this suppression on cholangiocyte proliferation are unknown. We evaluated 1) HPA axis activity in various rat models of cholestasis and 2) effects of HPA axis modulation on cholangiocyte proliferation. Expression of regulatory molecules of the HPA axis was determined after BDL, partial BDL, and α-naphthylisothiocyanate (ANIT) intoxication. The HPA axis was suppressed by inhibition of hypothalamic corticotropin-releasing hormone (CRH) expression by central administration of CRH-specific Vivo-morpholinos or by adrenalectomy. After BDL, the HPA axis was reactivated by 1) central administration of CRH, 2) systemic ACTH treatment, or 3) treatment with cortisol or corticosterone for 7 days postsurgery. There was decreased expression of 1) hypothalamic CRH, 2) pituitary ACTH, and 3) key glucocorticoid synthesis enzymes in the adrenal glands. Serum corticosterone and cortisol remained low after BDL (but not partial BDL) compared with sham surgery and after 2 wk of ANIT feeding. Experimental suppression of the HPA axis increased cholangiocyte proliferation, shown by increased cytokeratin-19- and proliferating cell nuclear antigen-positive cholangiocytes. Conversely, restoration of HPA axis activity inhibited BDL-induced cholangiocyte proliferation. Suppression of the HPA axis is an early event following BDL and induces cholangiocyte proliferation. Knowledge of the role of the HPA axis during cholestasis may lead to development of innovative treatment paradigms for chronic liver disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号