首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Many genes are thought to be expressed during the haploid phase in plants, however, very few haploid-specific genes have been isolated so far. T-DNA insertion mutagenesis is a powerful tool for generating mutations that affect gametophyte viability and function, as disruption of a gene essential for these processes should lead to a defect in the transmission of the gametes. Mutants can therefore be screened on the basis of segregation distortion for a reporter resistance gene contained in the T-DNA. We have screened the Versailles collection of Arabidopsis transformants for 1:1 KanR:KanS segregation after selfing, focussing on gametophyte mutations which show normal transmission through one gametophyte and cause lethality or dysfunction of the other. Only 1.3% (207) of the 16,000 lines screened were scored as good candidates. Thorough genetic analysis of 38 putative T-DNA transmission defect lines (Ttd) identified 8 defective gametophyte mutants, which all showed 0 to 1% T-DNA transmission through the pollen. During the screen, we observed a high background of low-penetrance mutations, often affecting the function of both gametophytes, and many lines which were likely to carry chromosomal rearrangements. The reasons for the small number of retained lines (all male gametophytic) are discussed, as well as the finding that, for most of them, residual T-DNA transmission is obtained through the affected gametophyte.  相似文献   

3.
Many genes are thought to be expressed during the haploid phase in plants, however, very few haploid-specific genes have been isolated so far. T-DNA insertion mutagenesis is a powerful tool for generating mutations that affect gametophyte viability and function, as disruption of a gene essential for these processes should lead to a defect in the transmission of the gametes. Mutants can therefore be screened on the basis of segregation distortion for a reporter resistance gene contained in the T-DNA. We have screened the Versailles collection of Arabidopsis transformants for 1:1 KanR:KanS segregation after selfing, focussing on gametophyte mutations which show normal transmission through one gametophyte and cause lethality or dysfunction of the other. Only 1.3% (207) of the 16,000 lines screened were scored as good candidates. Thorough genetic analysis of 38 putative T-DNA transmission defect lines (Ttd) identified 8 defective gametophyte mutants, which all showed 0 to 1% T-DNA transmission through the pollen. During the screen, we observed a high background of low-penetrance mutations, often affecting the function of both gametophytes, and many lines which were likely to carry chromosomal rearrangements. The reasons for the small number of retained lines (all male gametophytic) are discussed, as well as the finding that, for most of them, residual T-DNA transmission is obtained through the affected gametophyte. Received: 27 July 1998 / Accepted: 16 September 1998  相似文献   

4.
An Arabidopsis deletion mutant was fortuitously identified from the alpha population of T-DNA insertional mutants generated at the University of Wisconsin Arabidopsis Knockout Facility. Segregation and reciprocal crosses indicated that the mutant was a gametophytic pollen sterile mutant. Pollen carrying the mutation has the unusual phenotype that it is viable, but cannot germinate. Thus, the mutant was named pollen germination defective mutant 1 (pgd1), based on the pollen phenotype. Flanking sequences of the T-DNA insertion in the pgd1 mutant were identified by thermal asymmetric interlaced (TAIL) PCR. Sequencing of bands from TAIL PCR revealed that the T-DNA was linked to the gene XLG1, At2g23460, at its downstream end, while directly upstream of the T-DNA was a region between At2g22830 and At2g22840, which was 65 genes upstream of XLG1. Southern blotting and genomic PCR confirmed that the 65 genes plus part of XLG1 were deleted in the pgd1 mutant. A 9,177 bp genomic sequence containing the XLG1 gene and upstream and downstream intergenic regions could not rescue the pgd1 pollen phenotype. One or more genes from the deleted region were presumably responsible for the pollen germination defect observed in the pgd1 mutant. Because relatively few mutations have been identified that affect pollen germination independent of any effect on pollen viability, this mutant line provides a new tool for identification of genes specifically involved in this phase of the reproductive cycle.  相似文献   

5.
In Arabidopsis, we previously identified two highly similar apyrases, AtAPY1 and AtAPY2. Here, T-DNA knockout (KO) mutations of each gene were isolated in a reverse genetic approach. The single KO mutants lacked a discernible phenotype. The double KO mutants, however, exhibited a complete inhibition of pollen germination, and this correlated with positive beta-glucuronidase staining in the pollen of apyrase promoter:beta-glucuronidase fusion transgenic lines. The vast majority of the pollen grains of these mutants were identical to wild type in size, shape, and nuclear state and were viable as assayed by metabolic activity and plasma membrane integrity. Complementation with either AtAPY1 or AtAPY2 cDNA rescued pollen germination, confirming that the phenotype was apyrase specific. Despite the redundancy of the two apyrases in rescue potential, transmission analyses suggested a greater role for AtAPY2 in male gamete success. The effect of mutant apyrase on the transmission through the female gametophyte was only marginal, and embryo development appeared normal in the absence of apyrases. The male-specific double KO mutation is fully penetrant and shows that apyrases play a crucial role in pollen germination.  相似文献   

6.
Male-sterile mutants are being studied to deepen our understanding of the complex processes of microsporogenesis and microgametogenesis. Due to difficulties associated with isolating the mutated gene, there is currently very little molecular information on the defects responsible for male sterility. As a first step in utilizing male-sterile mutants to better understand the bio-chemical and molecular processes that control pollen development, we have characterized a number of Arabidopsis thaliana lines that were generated by seed transformation and exhibit male sterility. We report here the identification and characterization of three male-sterile A. thaliana lines, all of which are tagged with T-DNA and show aberrant meiosis. A detailed cytochemical study was conducted on these lines to better understand the timing and nature of each mutation and to investigate how these mutations affect subsequent steps of pollen development. All three mutants undergo apparently normal morphogenesis until the onset of meiosis. In one line (6492) the mutation is most notable at the tetrad stage when up to eight microspores can be seen in each callose-encased tetrad. The resulting mutant microspores are of variable sizes and contain different amounts of DNA. Two other mutants (7219 and 7593) possess many common features, including variable developmental pathways, failure to produce callose, production of vacuolate, coenocytic (multi-nucleate) cells that are surrounded by persistent microsporocyte walls, and asynchronous patterns of development. Unlike the situation in wild-type plants, where developmental stages are correlated with bud length, such correlations are almost impossible with these two mutants. The sporogenous tissue within all three of these mutant lines collapses prior to anthesis.  相似文献   

7.
To identify genes with essential roles in male gametophytic development, including postpollination (progamic) events, we have undertaken a genetic screen based on segregation ratio distortion of a transposon-borne kanamycin-resistance marker. In a population of 3359 Arabidopsis Ds transposon insertion lines, we identified 20 mutants with stably reduced segregation ratios arising from reduced gametophytic transmission. All 20 mutants showed strict cosegregation of Ds and the reduced gametophytic transmission phenotype. Among these, 10 mutants affected both male and female transmission and 10 mutants showed male-specific transmission defects. Four male and female (ungud) mutants and 1 male-specific mutant showed cellular defects in microspores and/or in developing pollen. The 6 remaining ungud mutants and 9 male-specific (seth) mutants affected pollen functions during progamic development. In vitro and in vivo analyses are reported for 5 seth mutants. seth6 completely blocked pollen germination, while seth7 strongly reduced pollen germination efficiency and tube growth. In contrast, seth8, seth9, or seth10 pollen showed reduced competitive ability that was linked to slower rates of pollen tube growth. Gene sequences disrupted in seth insertions suggest essential functions for putative SETH proteins in diverse processes including protein anchoring, cell wall biosynthesis, signaling, and metabolism.  相似文献   

8.

Background

Mutations in several subunits of eukaryotic translation initiation factor 3 (eIF3) cause male transmission defects in Arabidopsis thaliana. To identify the stage of pollen development at which eIF3 becomes essential it is desirable to examine viable pollen and distinguish mutant from wild type. To accomplish this we have developed a broadly applicable method to track mutant alleles that are not already tagged by a visible marker gene through the male lineage of Arabidopsis.

Methodology/Principal Findings

Fluorescence tagged lines (FTLs) harbor a transgenic fluorescent protein gene (XFP) expressed by the pollen-specific LAT52 promoter at a defined chromosomal position. In the existing collection of FTLs there are enough XFP marker genes to track nearly every nuclear gene by virtue of its genetic linkage to a transgenic marker gene. Using FTLs in a quartet mutant, which yields mature pollen tetrads, we determined that the pollen transmission defect of the eif3h-1 allele is due to a combination of reduced pollen germination and reduced pollen tube elongation. We also detected reduced pollen germination for eif3e. However, neither eif3h nor eif3e, unlike other known gametophytic mutations, measurably disrupted the early stages of pollen maturation.

Conclusion/Significance

eIF3h and eIF3e both become essential during pollen germination, a stage of vigorous translation of newly transcribed mRNAs. These data delimit the end of the developmental window during which paternal rescue is still possible. Moreover, the FTL collection of mapped fluorescent protein transgenes represents an attractive resource for elucidating the pollen development phenotypes of any fine-mapped mutation in Arabidopsis.  相似文献   

9.
Cole RA  Synek L  Zarsky V  Fowler JE 《Plant physiology》2005,138(4):2005-2018
The exocyst, a complex of eight proteins, contributes to the morphogenesis of polarized cells in a broad range of eukaryotes. In these organisms, the exocyst appears to facilitate vesicle docking at the plasma membrane during exocytosis. Although we had identified orthologs for each of the eight exocyst components in Arabidopsis (Arabidopsis thaliana), no function has been demonstrated for any of them in plants. The gene encoding one exocyst component ortholog, AtSEC8, is expressed in pollen and vegetative tissues of Arabidopsis. Genetic studies utilizing an allelic series of six independent T-DNA mutations reveal a role for SEC8 in male gametophyte function. Three T-DNA insertions in SEC8 cause an absolute, male-specific transmission defect that can be complemented by expression of SEC8 from the LAT52 pollen promoter. Microscopic analysis shows no obvious abnormalities in the microgametogenesis of the SEC8 mutants, and the mutant pollen grains appear to respond to the signals that initiate germination. However, in vivo assays indicate that these mutant pollen grains are unable to germinate a pollen tube. The other three T-DNA insertions are associated with a partial transmission defect, such that the mutant allele is transmitted through the pollen at a reduced frequency. The partial transmission defect is only evident when mutant gametophytes must compete with wild-type gametophytes, and arises in part from a reduced pollen tube growth rate. These data support the hypothesis that one function of the putative plant exocyst is to facilitate the initiation and maintenance of the polarized growth of pollen tubes.  相似文献   

10.
11.
Ordered collections of Arabidopsis thaliana lines containing mapped T-DNA insertions have become an important resource for plant scientists performing genetic studies. Previous reports have indicated that T-DNA insertion lines can have chromosomal translocations associated with the T-DNA insertion site, but the prevalence of these rearrangements has not been well documented. To determine the frequency with which translocations are present in a widely-used collection of T-DNA insertion lines, we analyzed 64 independent lines from the Salk T-DNA mutant collection. Chromosomal translocations were detected in 12 of the 64 lines surveyed (19%). Two assays were used to screen the T-DNA lines for translocations: pollen viability and genome-wide genetic mapping. Although the measurement of pollen viability is an indirect screen for the presence of a translocation, all 11 of the T-DNA lines showing an abnormal pollen phenotype were found to contain a translocation when analyzed using genetic mapping. A normal pollen phenotype does not, however, guarantee the absence of a translocation. We observed one T-DNA line with normal pollen that nevertheless had a translocation based on genetic mapping results. One additional phenomenon that we observed through our genetic mapping experiments was that the T-DNA junctions on the 5'- and 3'-sides of a targeted gene can genetically separate from each other in some cases. Two of the lines in our survey displayed this 'T-DNA borders separate' phenomenon. Experimental procedures for efficiently screening T-DNA lines for the presence of chromosomal abnormalities are presented and discussed.  相似文献   

12.
阐明拟南芥受精和早期胚胎发生过程对理解被子植物生殖发育有着重要的指导意义,而利用正向遗传学方法研究拟南芥突变体的表型及其分子机理是探究植物基因功能最常用的一种方法。基于常规的插入突变(包括T-DNA和转座子)、化学诱变(如ethylmethane sulfonate,EMS)和高能射线方法构建的突变体库中假阳性突变体多,难以高效筛选到受精和早期胚胎发生相关基因的突变体。为解决这一难题,本研究建立了一种构建T-DNA插入突变体文库的新方法。即在载体p CAMBIA1302的T-DNA元件上增加花粉特异荧光标记基因(p LAT52∷EGFP),并遗传转化具有四分体花粉的Columbia野生型拟南芥突变体qrt1-2;对获得的突变体库可利用花粉荧光快速排除假阳性突变体,并采用反向PCR(inverse-PCR)扩增技术确定突变位点。此方法在筛选拟南芥受精和早期胚胎发生相关基因突变体上的成功应用表明,其是一种效率高、针对性强、操作相对快捷方便的拟南芥突变体筛选方法。  相似文献   

13.
T-DNA标签法是一种以农杆菌介导的遗传转化为基础来创造插入突变体库, 从而高通量地分离和克隆植物功能基因的方法。但由于种种原因, 水稻插入突变体库的利用效率较低。为了提高水稻插入突变体库的利用效率, 结合水稻一个双拷贝T-DNA插入突变体的发现和鉴定研究, 通过特异PCR检测、侧翼序列与目标性状的共分离分析, 在1个双插入位点均为杂合的植株的后代株系中分拆了2个插入事件, 分离出目标性状存在遗传分离且只带有1个插入事件的后代株系, 为后续的共分离检测和基因克隆研究打下了重要的基础。由此产生了对插入突变体库中的非串联多拷贝插入标签系进行研究的一些思路和方法, 提出来与同行商榷。  相似文献   

14.
A collection of transgenic Arabidopsis thaliana plants has been obtained by Agrobacterium-mediated transformation. The genomes of the transgenic plants contain insertions of T-DNA of the vector plasmids pLD3 or pPCVRN4. Genes bearing T-DNA insertions were shown to constitute 12-18% of the total number of A. thaliana genes. Seventy-five lines have been chosen from the collection and subjected to genetic and molecular-genetic analysis. Of these, 5 were dominant mutants, and 70, recessive insertion mutants with various morphological defects. Identification of mutant phenotypes and genetic characterization of the transgenic lines have been performed with the use of nutrient media supplemented with exogenous hormones, which revealed five recessive lethal mutants and one dominant sterile mutant.  相似文献   

15.
Although many male-sterile mutants have been identified inArbidopsis thaliana, few of the corresponding genes have been cloned. In order to facilitate cloning of a male sterility gene, 23 of Feldmann's T-DNA-generated, reduced-fertility lines were screened to identify a tagged male-sterile mutation. Malesterile mutants were identified, as well as mutants that were both male and female sterile. Segregation of the kanamycin marker gene in the progeny of 15 of these lines was studied. Forty percent had functional T-DNAs (encoding resistance to kanamycin) inserted at a single locus, the remainder segregating for two or more functional T-DNA inserts. Linkage between T-DNA inserts and mutant phenotype was tested for six lines. In three of these lines, mutations were not linked to a T-DNA insert. In three lines, the mutation segregated with a T-DNA insert.  相似文献   

16.
Porphyra yezoensis Ueda conchospore germlings (1–4-cell stages) were treated with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) for inducing mutations. Three kinds of color-mutated gametophytic blades, which were composed of the mutated cells wholly, sectorially or spottedly, were obtained; and most of them were sectorially variegated blades. The highest frequency of these mutated blades was 1.3%. Four different pigmentation mutant strains were obtained by regenerating single cells and protoplasts that were enzymatically isolated from the mutated sectors of the sectorially variegated blades. The mutants were relatively stable in color in both gametophytic blade and conchocelis phases. In the two phases, each mutant strain showed characteristic differences in the in vivo absorption spectra, and had different pigment contents of major photosynthetic pigments (chlorophyll a, phycoerythrin and phycocyanin) as compared with the wild-type and with each other. The gametophytic blades from the four mutant lines showed significant differences in growth and photosynthetic rates, when they were cultured in the same conditions. By crossing the mutant with the wild-type, it was found that the color phenotypes of two mutants reported above, were resulted from two mutations in different genes, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
18.
Reproduction in angiosperms depends on communication processes of the male gametophyte (pollen) with the female floral organs (pistil, transmitting tissue) and the female gametophyte (embryo sac). Pollen-pistil interactions control pollen hydration, germination and growth through the stylar tissue. The female gametophyte is involved in guiding the growing pollen tube towards the micropyle and embryo sac. One of the two synergids flanking the egg cell starts to degenerate and becomes receptive for pollen tube entry. Pollen tube growth arrests and the tip of the pollen tube ruptures to release the sperm cells. Failures in the mutual interaction between the synergid and the pollen tube necessarily impair fertility. But the control of pollen tube reception is not understood. We isolated a semisterile, female gametophytic mutant from Arabidopsis thaliana, named feronia after the Etruscan goddess of fertility, which impairs this process. In the feronia mutant, embryo sac development and pollen tube guidance were unaffected in all ovules, although one half of the ovules bore mutant female gametophytes. However, when the pollen tube entered the receptive synergid of a feronia mutant female gametophyte, it continued to grow, failed to rupture and release the sperm cells, and invaded the embryo sac. Thus, the feronia mutation disrupts the interaction between the male and female gametophyte required to elicit these processes. Frequently, mutant embryo sacs received supernumerary pollen tubes. We analysed feronia with synergid-specific GUS marker lines, which demonstrated that the specification and differentiation of the synergids was normal. However, GUS expression in mutant gametophytes persisted after pollen tube entry, in contrast to wild-type embryo sacs where it rapidly decreased. Apparently, the failure in pollen tube reception results in the continued expression of synergid-specific genes, probably leading to an extended expression of a potential pollen tube attractant.  相似文献   

19.
20.
 In order to dissect the complex genetic system that controls pollen development, we have undertaken a program of transposon insertion mutagenesis, with the purpose of producing mutations in gametophytically acting genes that are important for this process. The present work reports the developmental cytology of one of the mutants isolated, gaMS-2 (gametophytic male sterile-2). A peculiar feature of the mutant grains was lack of differentiation between the vegetative and the generative nuclei, leading to alteration in number, conformation and placement of nuclei. At anthesis, the grains carrying the mutant allele are about 40% of the normal grain size, contain a very reduced amount of starch and exhibit various nuclear abnormalities. Received: 31 May 1996 / Revision accepted: 26 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号