首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated a specific enzymatic biosensor for detecting target pollutant 3,5-dinitro-trifluoromethylbenzene (3,5-DNBTF). The predicted enzyme is a nitroreductase that catalyzes the total nitroreduction of 3,5-DNBTF to its corresponding diamine. The photo-activation of this diamine offers a large panel of detection tools. After broad screening of microorganisms, only the strains belonging to the genus Bacillus were able to reduce the two nitro groups of 3,5-DNBTF. Among them, Bacillus LMA, isolated from explosives-polluted effluents, was the most efficient in reducing this compound. The involved nitroreductase was identified by 2D gel electrophoresis coupled to mass spectrometry, as the Bacillus subtilis oxygen-insensitive nitroreductase NfrA. The enzyme was purified by mono-P chromatofocusing.  相似文献   

2.
The Bacillus subtilis pgdS gene, which is located at the immediate downstream of the pgs operon for poly-γ-glutamate (PGA) biosynthesis, encodes a PGA depolymerase. The pgdS gene product shows the structural feature of a membrane-associated protein. The mature form of the gene product, identified as a B. subtilis extracellular protein, was produced in Escherichia coli clone cells. Since the mature PGA depolymerase has been modified with the histidine-tag at its C-terminus, it could be simply purified by metal-chelating affinity chromatography. This purified enzyme digested PGAs from B. subtilis ( -glutamate content, 70%) and from Bacillus megaterium (30%) in an endopeptidase-like fashion. In contrast, PGA from Natrialba aegyptiaca, which consists only of -glutamate, was resistant to the enzyme, suggesting that, unlike fungal PGA endo-depolymerases, the bacterial enzyme recognizes the -glutamate unit in PGA.  相似文献   

3.
The gene encoding the meso-diaminopimelate dehydrogenase of Bacillus sphaericus was cloned into E. coli cells and its complete DNA sequence was determined. The meso-diaminopimelate dehydrogenase gene consisted of 978 nucleotides and encoded 326 amino acid residues corresponding to the subunit of the dimeric enzyme. The amino acid sequence deduced from the nucleotide sequence of the enzyme gene of B. sphaericus showed 50% identity with those of the enzymes from Corynebacterium glutamicum and Brevibacterium flavum. The enzyme gene from B. sphaericus was highly expressed in E. coli cells. We purified the enzyme to homogeneity from a transformant with 76% recovery. The N-terminal amino acid of both the enzyme from B. sphaericus and the transformant were serine, indicating that the N-terminal methionine is removed by post-translational modification in B. sphaericus and E. coli cells.  相似文献   

4.
A psychrophilic alanine racemase from Bacillus psychrosaccharolyticus has a higher catalytic activity than a thermophilic alanine racemase from Bacillus stearothermophilus even at 60 °C in the presence of pyridoxal 5′-phosphate (PLP), although the thermostability of the former enzyme is lower than that of the latter one [FEMS Microbial. Lett. 192 (2000) 169]. In order to improve the thermostability of the psychrophilic enzyme, two hydrophilic amino acid residues (Glu150 and Arg151) at a surface loop surrounding the active site of the enzyme were substituted with the corresponding residues (Val and Ala) in the B. stearothermophilus alanine racemase. The mutant enzyme (ER150,151VA) showed a higher thermostability, and a markedly lower Km value for PLP, than the wild type one. In addition, the catalytic activities at low temperatures and kinetic parameters of the two enzymes indicated that the mutant enzyme was more psychrophilic than the wild type one. Thus, the psychrophilic alanine racemase was improved in both psychrophilicity and thermostability by the site-directed mutagenesis. The mutant enzyme may be useful for the production of stereospecifically deuterated NADH and various -amino acids.  相似文献   

5.
A Bacillus niacini strain (EM001) producing an ofloxacin ester-enantioselective esterase was isolated from the soil samples collected near Taejon, Korea. The cloned gene showed that the esterase EM001 composed of 495 amino acids corresponding to a relative molecular weight (Mr) of 54,098 kDa. Based on the Mr and the protein sequence, the esterase EM001 was similar to p-nitrobenzyl esterase from Bacillus subtilis with an identity of 41.8%. The optimum temperature and pH of the purified His-tagged enzyme were 45 °C and 9.0, respectively. The purified esterase EM001 hydrolyzed preferably (R)-ofloxacin propyl ester than (S)-form ester at the initial reaction phase with an eeP of 67% until the conversion rate become up to 35%.  相似文献   

6.
The use of sugarcane bagasse and grass as low cost raw material for xylanase production by Bacillus circulans D1 in submerged fermentation was investigated. The microorganism was cultivated in a mineral medium containing hydrolysate of bagasse or grass as carbon source. High production of enzyme was obtained during growth in media with bagasse hydrolysates (8.4 U/mL) and in media with grass hydrolysates (7.5 U/mL). Xylanase production in media with hydrolysates was very close to that obtained in xylan containing media (7.0 U/mL) and this fact confirm the feasibility of using this agro-industrial byproducts by B. circulans D1 as an alternative to save costs on the enzyme production process.  相似文献   

7.
White grubs (Coleoptera: Scarabaeidae) are cosmopolitan and polyphagous insect pests of agricultural crops, forests and pastures around the world. The lack of an environmentally sound approach for white grub management has prompted the exploration and detection of a novel microbial biocontrol agent against these sub-terranean insect pests. In this study we describe the isolation, establishment of pathogenesis, biochemical characterization and phylogenetic analysis of an entomopathogenic Bacillus cereus strain WGPSB-2 (MTCC 7182), isolated from an atrophied pupa of Anomala dimidiata, collected from the N.W. Indian Himalayas. The sequencing and subsequent comparison of the 16S rDNA revealed that the strain has100% similarity with Bacillus cereus sequences. Phylogenetic analysis of the 16S rDNA sequence revealed that the isolate is closely related to Bacillus thuringiensis and Bacillus sphaericus. In vitro bioassays showed that the isolate was able to infect and cause 92 and 67% mortality in second instar larvae of Anomala dimidiata and Holotrichia seticollis, respectively. The infected larvae exhibited bacterial septicemia like symptoms and mortality occurred between the third and ninth weeks after inoculation. The culture has been granted the accession number MTCC 7182 by the Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology, Chandigarh, India.  相似文献   

8.
A DNA fragment containing the information coding for the GGCC-specific Bacillus sphaericus R modification methylase, BspR, was inserted into plasmid vector pKK223-3 under the control of the strong and inducible tac promoter, and transformed into Escherichia coli HB101. Upon induction this strain accumulated the methylase enzyme (while cell growth was inhibited) up to several percent of total cellular protein. Homogeneous methylase could be prepared in three purification steps.  相似文献   

9.
A new bacterial strain, identified as Bacillus subtilis US116, was isolated from Tunisian soil and selected for its potential production of an atypical amylase with an industrial interest. The identification was founded on physiological tests and molecular techniques related to the 16S rRNA, 23S rRNA genes and intergenic sequences showing the highest similarity of 98% with regions in the complete genome of Bacillus subtilis 168 (accession no. Z99104). This strain produces an atypical amylase that was purified to homogeneity by a combination of acetone precipitation, size exclusion and ion exchange chromatography. The molecular mass of the enzyme is about 60 kDa as determined by SDS–PAGE. Optimal conditions for the activity of the purified enzyme are pH 6 and 65 °C. The half-life duration is about 3 h at 70 °C and 5 h at 65 °C. This enzyme belongs to the endo-type amylases according to the hydrolytic mode study using Ceralpha and Betamyl methods. It is classified as a maltoheptaose- and maltohexaose-forming amylase since it generates about 30% maltohexaose (DP6) and 20% maltoheptaose (DP7) from starch. Moreover, the minimum length of maltosaccharide cleaved by this enzyme was maltoheptaose.  相似文献   

10.
To facilitate X-ray crystal structure solution of farnesyl diphosphate (FPP) synthase of Bacillus stearothermophilus, selenomethionyl recombinant enzyme was overproduced in a methionine (Met) auxotrophic strain of Escherichia coli, and purified to homogeneity by two chromatographic steps. About 50 mg of the pure selenomethionyl enzyme was obtained from 2 g of E. coli cells. Inductively coupled plasma (ICP) emission spectrometric analysis for selenium content showed that all of the Met residues in the FPP synthase were substituted by selenomethionine (SeMet). The selenomethionyl recombinant enzyme showed similar chromatographic behavior, heat stability, immunochemical property, product specificity, and kinetic parameters to those of the wild-type enzyme, indicating that SeMet substitution has little effect on the prenyltransferase with respect to substrate binding, enzymatic activity, and structure.  相似文献   

11.
The gene encoding glucose dehydrogenase (EC 1.1.1.47) from Bacillus subtilis was inserted in a plasmid 1.0 kb downstream from a lac promoter, resulting in a 70-fold higher production of the enzyme when expressed in Escherichia coli. A glucose dehydrogenase mutant containing a cysteine residue at position 44 could also be expressed at the same high level. This single cysteine residue was used as an ‘affinity tag’ to simplify the purification procedure as well as for site-specific immobilization of glucose dehydrogenase on Thiopropyl-Sepharose. This enzyme was purified to homogeneity with a final recovery of 65% and a specific activity of 240 U/mg. The oriented immobilization resulted in increased thermal stability.  相似文献   

12.
Poly-γ-glutamate (PGA) is a most promising biodegradable polymer. In extracellular mucilage-producing Bacillus subtilis, the pgsBCA genes encode the membrane-associated PGA synthetase complex. It was recently speculated that PGA synthetase consists of both the intact 44 kDa and the in-phase overlapping 33 kDa-ywsC (corresponding to pgsB) gene products. This review covers current research into B. subtilis PGA synthetase and discusses the structural and functional features of the enzyme.  相似文献   

13.
The structural component of the tyrS gene of Escherichia coli, comprising 1269 base pairs, has been fully sequenced by the combined M13/dideoxychain termination approach. The gene has a codon usage pattern which is typical of highly expressed proteins and similar to other Escherichia coli aminoacyl-tRNA synthetase genes. Peptide purification and sequencing has been used to locate the N-terminus and to provide confirmation of 95% of the translated protein sequence. This latter yields on Mr of 47 403 for the Escherichia coli tyrosyl-tRNA synthetase, and reveals considerable homology with the primary structure of the analogous enzyme isolated from Bacillus staerothermophilus.  相似文献   

14.
Biodegradation of Some Organic Flotation Reagents by Bacillus polymyxa   总被引:1,自引:0,他引:1  
The soil bacterium Bacillus polymyxa is shown to effectively remove organic flotation collectors such as dodecyl amine, diamine, sodium isopropyl xanthate, and sodium oleate from alkaline solutions. Adsorption and bacterial growth studies indicated enhanced surface affinity of the amine collectors toward the bacterial cells. All the above organic reagents could be efficiently removed from alkaline solutions through bacterial interaction. Ultraviolet (UV)-visible and Fourier transform infrared (FTIR) spectra during biodegradation of these reagents revealed the stages in biodegradation. Possible mechanisms are outlined.  相似文献   

15.
The main contribution of the presented work was to introduce the use of proteases modified with the soluble polymer polyethylene glycol (PEG) in the bio-finishing process of wool fibres, to target enzyme action to the outer parts of wool fibres, i.e. to avoid the diffusion and consequent destroying of the inner parts of the wool fibre structure, in the case of native proteases using.

Different proteolytic enzymes from Bacillus lentus and Bacillus subtilis in native and PEG-modified forms were investigated and their influence on the modification of wool fibres morphology surface, chemical structure, as well as the hydrolysis of wool proteins, the physico-mechanical properties, and the sorption properties of 1:2 metal complex dye during dyeing were studied. SEM images of wool fibres confirmed smoother and cleaner fibre surfaces without fibre damages using PEG-modified proteases. Modified enzyme products have a benefit effect on the wool fibres felting behaviours (14%) in the case when PEG-modified B. lentus is used, without markedly fibre damage expressed by tensile strength and weight loss of the fibre. Meanwhile the dye exhaustion showed slower but comparable level of dye uptake at the end of the dyeing.  相似文献   


16.
We describe the structure and function of psychrophilic alanine racemases from Bacillus psychrosaccharolyticus and Pseudomonas fluorescens. These enzymes showed high catalytic activities even at 0°C and were extremely labile at temperatures over 35°C. The enzymes were also found to be less resistant to organic solvents than alanine racemases from thermophilic and mesophilic bacteria, both in vivo and in vitro. Both enzymes have a dimeric structure and contain 2 mol of pyridoxal 5′-phosphate (PLP) per mol as a coenzyme. The enzyme from B. psychrosaccharolyticus was found to have a markedly large Km value (5.0 μM) for PLP in comparison with other reported alanine racemases, and was stable at temperatures up to 50°C in the presence of excess amounts of PLP. The dissociation of PLP from the P. fluorescens enzyme may trigger the unfolding of the secondary structure. The enzyme from B. psychrosaccharolyticus has a distinguishing hydrophilic region around residue no. 150 in its deduced amino acid sequence, whereas the corresponding regions of other Bacillus alanine racemases are hydrophobic. The position of this region in the three dimensional structure of this enzyme was predicted to be in a surface loop surrounding the active site. This hydrophilic region may interact with solvent, reduce the compactness of the active site, and destabilize the enzyme.  相似文献   

17.
A tandem repeat of the family VI cellulose binding domain (CBD) from Clostridium stercorarium xylanase (XylA) was fused at the carboxyl-terminus of Bacillus halodurans xylanase (XylA). B. halodurans XylA is an enzyme which is active in the alkaline region of pH and lacks a CBD. The constructed chimera was expressed in Escherichia coli, purified to homogeneity, and then subjected to detailed characterization. The chimeric enzyme displayed pH activity and stability profiles similar to those of the parental enzyme. The optimal temperature of the chimera was observed at 60 °C and the enzyme was stable up to 50 °C. Binding studies with insoluble polysaccharides indicated that the chimera had acquired an increased affinity for oat spelt xylan and acid-swollen cellulose. The bound chimeric enzyme was desorbed from insoluble substrates with sugars and soluble polysaccharides, indicating that the CBDs also possess an affinity for soluble sugars. Overall, the chimera displayed a higher level of hydrolytic activity toward insoluble oat spelt xylan than its parental enzyme and a similar level of activity toward soluble xylan.  相似文献   

18.
A thermostable, alkaline active xylanase was purified to homogeneity from the culture supernatant of an alkaliphilic Bacillus halodurans S7, which was isolated from a soda lake in the Ethiopian Rift Valley. The molecular weight and the pI of this enzyme were estimated to be around 43 kDa and 4.5, respectively. When assayed at 70 °C, it was optimally active at pH 9.0–9.5. The optimum temperature for the activity was 75 °C at pH 9 and 70 °C at pH 10. The enzyme was stable over a broad pH range and showed good thermal stability when incubated at 65 °C in pH 9 buffer. The enzyme activity was strongly inhibited by Mn2+. Partial inhibition was also observed in the presence of 5 mM Cu2+, Co2+ and EDTA. Inhibition by Hg2+ and dithiothreitol was insignificant. The enzyme was free from cellulase activity and degraded xylan in an endo-fashion.  相似文献   

19.
The structural gene (leudh) coding for leucine dehydrogenase from Bacillus sphaericus IFO 3525 was cloned into Escherichia coli cells and sequenced. The open reading frame coded for a protein of 39.8 kDa. The deduced amino acid sequence of the leucine dehydrogenase from B. sphaericus showed 76–79% identity with those of leucine dehydrogenases from other sources. About 16% of the amino acid residues of the deduced amino acid sequence were different from the sequence obtained by X-ray analysis of the B. sphaericus enzyme. The recombinant enzyme was purified to homogeneity with a 79% yield. The enzyme was a homooctamer (340 kDa) and showed the activity of 71.7 μmol·min−1·mg−1) of protein. The mutant enzymes, in which more than six amino acid residues were deleted from the C-terminal of the enzyme, showed no activity. The mutant enzyme with deletion of four amino acid residues from the C-terminal of the enzyme was a dimer and showed 4.5% of the activity of the native enzyme. The dimeric enzyme was more unstable than the native enzyme, and the Km values for -leucine and NAD+ increased. These results suggest that the Asn-Ile-Leu-Asn residues of the C-terminal region of the enzyme play an important role in the subunit interaction of the enzyme.  相似文献   

20.
Xylanase B from Paenibacillus barcinonensis was cloned in shuttle vectors for Escherichia coli and Bacillus subtilis, and expressed in Bacillus hosts. Several recombinant strains were constructed, among which B. subtilis MW15/pRBSPOX20 showed the highest production. This recombinant strain consists of a protease double mutant host containing P. barcinonensis xynB gene under the control of a phage SPO2 strong promoter. Maximum production was found when the strain was cultured in nutrient broth supplemented with xylans. Analysis of xylanase B location in B. subtilis MW15/pRBSPOX20 showed that the enzyme remained cell-associated in young cultures, consistent with its intracellular location in its original host, P. barcinonensis, and the lack of a signal peptide. However, when cultures reached the stationary phase, xylanase B was released to the external medium as a result of cell lysis. The amount of enzyme located in the supernatants of old cultures could account for 50% of total xylanase activity. Analysis by SDS-PAGE showed that xylanase B is an abundant protein found in the culture medium in late stationary phase cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号