首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular basis for the action of two natural inactivator proteins, isolated from rice and corn, on a purified assimilatory nitrate reductase has been examined by several physical techniques. Incubation of purified Chlorella nitrate reductase with either rice inactivator protein or corn inactivator protein results in a loss of NADH:nitrate reductase and the associated partial activity, NADH:cytochrome c reductase, but no loss in nitrate-reducing activity with reduced methyl viologen as the electron donor. The molecular weight of the reduced methyl viologen:nitrate reductase species, determined by sedimentation equilibrium in the Beckman airfuge after complete inactivation with rice inactivator protein or with corn inactivator protein, was 595,000 and 283,000, respectively, compared to a molecular weight of 376,000 for the untreated control determined under the same conditions. Two protein peaks were observed after molecular-sieve chromatography on Sephacryl S-300 of nitrate reductase inactivated by corn inactivator protein. The Stokes radii of these fragments were 68 and 24 Å, compared to a value of 81 Å for untreated nitrate reductase. The large fragment contained molybdenum and heme but no flavin, and had nitrate-reducing activity with reduced methyl viologen as electron donor. The small fragment contained FAD but had no NADH:cytochrome c reductase or nitrate-reducing activities. Molecular weights determined by sodium dodecyl sulfate-gel electrophoresis were 67,000 and 28,000 for the large and small fragments, respectively, compared to a subunit molecular weight of 99,000 determined for the untreated control. No change in subunit molecular weight of nitrate reductase after inactivation by rice inactivator protein was observed. These results indicate that rice inactivator protein acts by binding to nitrate reductase. The stoichiometry of binding is 1–2 molecules of rice inactivator protein to one tetrameric molecule of nitrate reductase. Corn inactivator protein, in contrast, acts by cleavage of a Mr 30,000 fragment from nitrate reductase which is associated with FAD. The remaining fragment is a tetramer of Mr 70,000 subunits which retains nitrate-reducing activity and contains molybdenum and heme but has no NADH:dehydrogenase activity. The action of rice inactivator protein was partially prevented by NADH and completely prevented by a combination of NADH and cyanide, while the action of corn inactivator protein was not significantly affected by these effectors.  相似文献   

2.
A cDNA sequence related to the human cytochrome P-450 responsible for S-mephenytoin 4-hydroxylation (P-450MP) has been isolated from a human liver bacteriophage lambda gt11 library with antibodies specific for P-450MP. The total length of the cDNA is 2.5 kilobases (kb), of which there is a 1.6-kb EcoRI fragment coding for all but five amino acids corresponding to the N-terminus of the protein and including a small noncoding region at the 3' end. This 1.6-kb fragment has been sequenced and used as a probe to analyze human genomic DNA and liver RNA. The sequence shows extensive sequence similarity with that of rabbit liver cytochrome P-450 progesterone 21-hydroxylase [Tukey, R. H., Okino, S., Barnes, H., Griffin, K. J., & Johnson, E. F. (1985) J. Biol. Chem. 260, 13347-13354], and this cDNA, like the rabbit clone, appears to be part of a multigene family. At least two liver mRNA species, 2.2 kb and 3.5 kb, hybridize to the cDNA sequence. The cloning of this gene should aid in analyzing the molecular basis for the genetic polymorphism of S-mephenytoin 4-hydroxylation reported in humans.  相似文献   

3.
4.
cDNA clones were selected from a corn (Zea mays L.) leaf lambda gt11 expression library using polyclonal antibodies for corn leaf NADH:nitrate reductase. One clone, Zmnrl, had a 2.1 kilobase insert, which hybridized to a 3.2 kilobase mRNA. The deduced amino acid sequence of Zmnrl was nearly identical to peptide sequences of corn leaf NADH:nitrate reductase. Another clone, Zm6, had an insert of 1.4 kilobase, which hybridized to a 1.4 kilobase mRNA, and its sequence coded for chloroplastic NAD(P)+:glyceraldehyde-3-phosphate dehydrogenase based on comparisons to sequences of this enzyme from tobacco and corn. When nitrate was supplied to N-starved, etiolated corn plants, nitrate reductase, and glyceraldehyde-3-phosphate dehydrogenase mRNA levels in leaves increased in parallel. When green leaves were treated with nitrate, only nitrate reductase mRNA levels were increased. Nitrate is a specific inducer of nitrate reductase in green leaves, but appears to have a more general effect in etiolated leaves. In the dark, nitrate induced nitrate reductase expression in both etiolated and green leaves, indicating light and functional chloroplast were not required for enzyme expression.  相似文献   

5.
6.
Polyclonal antibodies have been raised against endonuclease V from the bacteriophage T4. This rabbit serum, from which endemic E. coli antibodies have been removed, reacts with a single protein from T4-infected E. coli with a molecular weight of 16078 dalton. It was confirmed that these antibodies were directed against endonuclease V through the inhibition of the pyrimidine dimer specific nicking activity of endonuclease V in an in vitro nicking assay. A phage lambda gt11 T4 dC DNA library was screened for phage which produced a beta-galactosidase-endonuclease V fusion protein. Immunopositive clones were detected at a frequency of 0.25% of the plaques in the library. Restriction enzyme analyses of the DNA from 45 of these phage showed that all contained a 1.8 kb T4 EcoRI fragment which had been inserted within lambda gt11 in a single orientation. Western analysis of proteins which were produced from an induction of lysogens made from these phage reveals a single fusion protein band with a molecular weight slightly larger than native beta-galactosidase.  相似文献   

7.
8.
Higher plant nitrate reductase can be divided into three functional domains representing its prosthetic groups: 1) flavin; 2) cytochrome b; and 3) Mo-pterin. The flavin domain has been synthesized by heterologous expression in Escherichia coli using a fragment of a corn leaf NADH:nitrate reductase cDNA clone, Zmnr1, which we had previously isolated and sequenced. A Xho2-BamH1 fragment was cut from Zmnr1, containing the sequence for the flavin domain, and ligated in the BamH1 site of expression vector pET3c. When this construct was expressed in E. coli, a 30 kD polypeptide was found to be newly synthesized. The flavin domain was purified to homogeneity using blue Sepharose and shown to have a molecular weight of 30 kD. The recombinant flavin domain has a ferricyanide reductase specific activity of 1000 mumols NADH oxidized/min/mg protein and a visible spectrum virtually identical to that of human NADH:cytochrome b5 reductase.  相似文献   

9.
A fragment of DNA from the yeast nuclear gene MST1 that codes for the mitochondrial tRNAThr1 synthetase was used as a probe to screen for other yeast threonyl-tRNA synthetase genes. At low stringency, the MST1 probe hybridizes strongly to a 6.6 kb EcoRI fragment of yeast genomic DNA with the homologous gene and in addition hybridizes more weakly to a smaller 3.6 kb EcoRI fragment with a second threonyl-tRNA synthetase gene (THS1). To clone THS1, a library was constructed by ligation to pUC18 of size selected (3-4.5 kb) EcoRI fragments of genomic DNA. Several clones containing the 3.6 kb EcoRI fragment were isolated. A 2,202 nucleotide long open reading frame corresponding to THS1 has been identified in the cloned fragment of DNA. The predicted protein encoded by THS1 is 38% identical to the E. coli threonyl-tRNA synthetase over the latter's length (642 amino acids) and is 42% identical to the predicted MST1 product over its 462 residues. In situ disruption of the chromosomal copy of THS1 is lethal to the cell, indicating that this gene codes for the cytoplasmic threonyl-tRNA synthetase.  相似文献   

10.
The chromosomal DNA of S. dysenteriae type I W30864 was isolated and digested by EcoRI. The 3-7 kb DNA fragments were recovered and ligated with vector pUC-19. After transformation, the recombinants were screened by SLT gene probe. The positive clones were obtained. The cloned EcoRI fragment containing both ST-A and ST-B subunit gene was about 4.5 kb. The cloned ST strain was also detected by Hela-S3 cell for cytotoxicity, and detected by rabbit ileal loop test for enterotoxicity. Besides, the cloned strain showed the neurotoxic activity when experimented with mouse. The production of shiga toxin in the cloned strain was 16 times of that of its parent strain S. dysenteriae W30864. The production differences between ST producing stains and SLT producing strain was also tested in our experiment.  相似文献   

11.
Summary The main nitrogen source for most higher plants is soil nitrate. Prior to its incorporation into amino acids, plants reduce nitrate to ammonia in two enzymatic steps. Nitrate is reduced by nitrate reductase to nitrite, which is further reduced to ammonia by nitrite reductase. In this paper, the complete primary sequence of the precursor protein for spinach nitrite reductase has been deduced from cloned cDNAs. The cDNA clones were isolated from a nitrate-induced cDNA library in two ways: through the use of oligonucleotide probes based on partial amino acid sequences of nitrite reductase and through the use of antibodies raised against purified nitrite reductase. The precursor protein for nitrite reductase is 594 amino acids long and has a 32 amino acid extension at the N-terminal end of the mature protein. These 32 amino acids most likely serve as a transit peptide involved in directing this nuclearencoded protein into the chloroplast. The cDNA hybridizes to a 2.3 kb RNA whose steady-state level is markedly increased upon induction with nitrate.  相似文献   

12.
NADH:nitrate reductase was extracted from corn leaves (Zea mays L. W64A × W182E) and purified on blue Sepharose. After the nitrate reductase was further purified by polyacrylamide gel electrophoresis, it was used to immunize mice and a rabbit. Western blots of crude leaf extracts were used to demonstrate monospecificity of the mouse ascitic fluids and the rabbit antiserum. The electrophoretic properties of purified corn and squash NADH:nitrate reductases in both native and denatured states were shown to be similar using western blotting with mouse ascitic fluid. The corn leaf enzyme has a 115,000 polypeptide subunit like that of squash. Western blots could detect 3 to 10 nanograms of nitrate reductase protein. But the detection of proteolytic degradation products using western blotting was inconsistent and remains to be established. An enzyme-linked immunosorbent assay (ELISA) was developed for quantifying nitrate reductase protein in the crude extracts of corn leaves. Using a standard curve based on nitrate reductase activity, the ELISA for corn nitrate reductase could detect 0.5 to 10 nanograms of nitrate reductase protein and was adequately sensitive for quantitative analysis of nitrate reductase in crude extracts of leaves even when activity levels were very low. When the ELISA was used to compare the nitrate reductase protein content of corn roots and leaves, these tissues were estimated to contain 0.24 to 0.5 and 4 to 5 micrograms nitrate reductase protein/gram root and leaf, respectively.  相似文献   

13.
14.
15.
16.
Pseudomonas syringae pv. tabaci BR2 produces tabtoxin and causes wildfire disease on tobacco and bean plants. Approximately 2,700 Tn5 insertion mutants of a plasmid-free strain, PTBR 2.024, were generated by using suicide plasmid pGS9. Of these Tn5 mutants, 8 were no longer pathogenic on tobacco plants and 10 showed reduced symptoms. All of the eight nonpathogenic mutants caused typical wildfire disease symptoms on bean plants. Two of the nonpathogenic mutants failed to produce tabtoxin. The eight nonpathogenic mutants have Tn5 insertions into different EcoRI and SalI restriction fragments. The EcoRI fragments containing Tn5 from the eight nonpathogenic mutants were cloned into vector pTZ18R or pLAFR3. A genomic library of the parent strain was constructed in the broad-host-range cosmid pLAFR3. Three different cosmid clones that hybridized to the cloned Tn5-containing fragment from one of the nonpathogenic mutants, PTBR 4.000, were isolated from the genomic library. These clones contained six contiguous EcoRI fragments (a total of 57 kilobases [kb]). A 7.2-kb EcoRI fragment common to all three restored pathogenicity to mutant PTBR 4.000. None of the six EcoRI fragments hybridized to Tn5-containing fragments from the other seven mutants. The 7.2-kb fragment was conserved in P. syringae pv. tabaci and P. syringae pv. angulata, but not in other pathovars or strains. Because the mutants retained pathogenicity on bean plants and because of the conservation of the 7.2-kb EcoRI fragment only in pathovars of tobacco, we suggest that genes on the fragment might be related to host specificity.  相似文献   

17.
We report the molecular defect in an individual with homozygous hypobetalipoproteinemia. A unique TaqI restriction fragment length polymorphism was found in the midportion of the apolipoprotein B (apoB) gene using the genomic probe, pB51. The probe, which identifies TaqI fragments of 8.4 and 2.8 kilobases (kb) in normal individuals, hybridized to a single 11-kb fragment in the proband. The parents of the proband showed all three TaqI fragments, implying that they are heterozygotes for the mutant apoB allele. In this family, the mutant allele cosegregated with low total cholesterol levels and formal linkage analysis gave a decimal logarithm of the ratio score of 3.3 at a recombination frequency of 0. The polymorphic TaqI site was localized to an EcoRI fragment of 4 kb in normal individuals. The corresponding fragment in the proband was 3.4 kb, suggesting a 0.6-kb deletion in the mutant allele. Both the normal 4-kb EcoRI fragment and the mutant 3.4-kb EcoRI fragment were cloned and sequenced. In the normal allele, the 4-kb EcoRI fragment extends from intron 20 to 23. Exon 21 is flanked by Alu sequences that are in the same orientation. The mutant allele had a 694-bp deletion in this region which included a small part of the Alu sequence in intron 20, the entire exon 21, and most of the Alu sequence in intron 21. The polymorphic TaqI site, which lies within the Alu sequence in intron 21, was absent in the proband as a result of the deletion. The deletion of exon 21 results in a frame shift mutation and the introduction of a stop codon. Translation of the encoded mRNA would yield a prematurely terminated protein. This mutant apoB protein would be 1085 amino acids long with the 73 carboxyl-terminal residues out of frame. We postulate that the deletion of exon 21 is the consequence of a crossover event between the Alu sequences in introns 20 and 21 resulting in nonreciprocal exchange between two chromosomes.  相似文献   

18.
Organization of delta-crystallin genes in the chicken.   总被引:9,自引:1,他引:8       下载免费PDF全文
Double-stranded DNA was synthesized from delta-crystallin mRNA prepared from lens fibers of 15-day-old chick embryos and cloned at the Pst I site of the plasmid pBR322. Using the cloned cDNA and single-stranded cDNA as hybridization probes, a number of genomic DNA fragments containing delta-crystallin gene sequences have been cloned from the partial and complete EcoRI digests of chick brain DNA. One of the clones from the partial digests contains a DNA fragment that consists of four EcoRI fragments of 7.6 kb, 4.0 kb, 2.6 kb, and 0.8 kb. The gene sequences reside in the (5')7.6 kb - 0.8 kb - 4.0 kb (3') fragments. Electron microscopy has provided evidence that the cloned DNA fragment includes the entire gene sequences complementary to delta-crystallin mRNA except for the 3' terminal poly(A) tail, and that the delta-crystallin gene is interrupted by at least 13 intervening sequences. Another clone contains a genomic fragment that consists of two EcoRI fragments of 3.0 kb and 11 kb. The DNA fragment in the latter clone represents a different delta-crystallin gene, as judged by restriction endonuclease mapping and by electron microscopy.  相似文献   

19.
Nitrate reductase was purified from leaves of Nicotiana plumbaginifolia using either 5'AMP-Sepharose chromatography or two steps of immunoaffinity chromatography involving monoclonal antibodies directed against nitrate reductase from maize and against ribulose-1,5-bisphosphate carboxylase from N. plumbaginifolia. Nitrate reductase obtained by the first method was purified 1000-fold to a specific activity of 9 units/mg protein. The second method produced an homogenous enzyme, purified 21,000-fold to a specific activity of 80 units/mg protein. SDS/PAGE of nitrate reductase always resulted in two bands of 107 and 99.5 kDa. The 107-kDa band was the nitrate reductase subunit of N. plumbaginifolia; the smaller one of 99.5 kDa is thought, as commonly reported, to result from proteolysis of the larger protein. The molecular mass of 107 kDa is close to the values calculated from the coding sequences of the two nitrate reductase genes recently cloned from tobacco (Nicotiana tabacum cv Xanthi).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号