首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Resveratrol (Res), a polyphenolic compound found largely in the skin of red grape and wine, exhibits a wide range of pharmaceutical properties and plays a role in prevention of human cardiovascular diseases [Pendurthi et al., Arterioscler. Thromb. Vasc. Biol. 19, 419–426 (1999)]. It shows a strong affinity towards protein binding and used as inhibitor for cyclo- oxygenase and ribonuclease reductase. The aim of this study was to examine the interaction of resveratrol with human serum albumin (HSA) in aqueous solution at physiological conditions, using a constant protein concentration (0.3 mM) and various pigment contents μM to mM). FTIR, UV-Visible, CD, and fluorescence spectroscopic methods were used to determine the resveratrol binding mode, the binding constant and the effects of pigment complexation on protein secondary structure.

Structural analysis showed that resveratrol bind non-specifically (H-bonding) via polypeptide polar groups with overall binding constant of KRes = 2.56× 105 M?1. The protein secondary structure, analysed by CD spectroscopy, showed no major alterations at low resveratrol concentrations (0.125 mM), whereas at high pigment content (1 mM), major increase of α-helix from 57% (free HSA) to 62% and a decrease of β-sheet from 10% (free HSA) to 7% occurred in the resveratrol-HSA complexes. The results indicate a partial stabilization of protein secondary structure at high resveratrol content.  相似文献   

2.
Protein physical and chemical properties can be altered by polymer interaction. The presence of several high affinity binding sites on human serum albumin (HSA) makes it a possible target for many organic and polymer molecules. This study was designed to examine the interaction of HSA with poly(ethylene glycol) (PEG) in aqueous solution at physiological conditions. Fourier transform infrared, ultraviolet-visible, and CD spectroscopic methods were used to determine the polymer binding mode, the binding constant, and the effects of polymer complexation on protein secondary structure.The spectroscopic results showed that PEG is located along the polypeptide chains through H-bonding interactions with an overall affinity constant of K = 4.12 x 10(5) M(-1). The protein secondary structure showed no alterations at low PEG concentration (0.1 mM), whereas at high polymer content (1 mM), a reduction of alpha-helix from 59 (free HSA) to 53% and an increase of beta-turn from 11 (free HSA) to 22% occurred in the PEG-HSA complexes (infrared data). The CDSSTR program (CD data) also showed no major alterations of the protein secondary structure at low PEG concentrations (0.1 and 0.5 mM), while at high polymer content (1 mM), a major reduction of alpha-helix from 69 (free HSA) to 58% and an increase of beta-turn from 7 (free HSA) to 18% was observed.  相似文献   

3.
Porphyrins and their metal derivatives are strong protein binders. Some of these compounds have been used for radiation sensitization therapy of cancer and are targeted to interact with cellular DNA and protein. The presence of several high-affinity binding sites on human serum albumin (HSA) makes it possible target for many organic and inorganic molecules. Chlorophyll a and chlorophyllin (a food-grade derivative of chlorophyll), the ubiquitous green plant pigment widely consumed by humans, are potent inhibitors of experimental carcinogenesis and interact with protein and DNA in many ways. This study was designed to examine the interaction of HSA with chlorophyll (Chl) and chlorophyllin (Chln) in aqueous solution at physiological conditions. Fourier transform infrared, UV-visible, and CD spectroscopic methods were used to determine the pigment binding mode, the binding constant, and the effects of porphyrin complexation on protein secondary structure. Spectroscopic results showed that chlorophyll and chlorophyllin are located along the polypeptide chains with no specific interaction. Stronger protein association was observed for Chl than for Chln, with overall binding constants of K(Chl) = 2.9 x 10(4)M(-1) and K(Chln) = 7.0 x 10(3)M(-1). The protein conformation was altered (infrared data) with reduction of alpha-helix from 55% (free HSA) to 41-40% and increase of beta-structure from 22% (free HSA) to 29-35% in the pigment-protein complexes. Using the CDSSTR program (CD data) also showed major reduction of alpha-helix from 66% (free HSA) to 58 and 55% upon complexation with Chl and Chln, respectively.  相似文献   

4.
Vitamin A components, retinol and retinoic acid, are fat-soluble micronutrients and critical for many biological processes, including vision, reproduction, growth, and regulation of cell proliferation and differentiation. The cellular uptake of Vitamin A is through specific interaction of a plasma membrane receptor with serum retinol-binding protein. Human serum albumin (HSA), as a transport protein, is the major target of several micronutrients in vivo. The aim of present study was to examine the interaction of retinol and retinoic acid with human serum albumin in aqueous solution at physiological conditions using constant protein concentration and various retinoid contents. FTIR, UV–vis, CD and fluorescence spectroscopic methods were used to determine retinoid binding mode, the binding constant and the effects of complexation on protein secondary structure.

Structural analysis showed that retinol and retinoic acid bind non-specifically (H-bonding) via protein polar groups with binding constants of Kret = 1.32 (±0.30) × 105 M−1 and Kretac = 3.33 (±0.35) × 105 M−1. The protein secondary structure showed no alterations at low retinoid concentrations (0.125 mM), whereas at high retinoid content (1 mM), an increase of -helix from 55% (free HSA) to 60% and a decrease of β-sheet from 22% (free HSA) to 18% occurred in the retinoid–HSA complexes. The results point to a partial stabilization of protein secondary structure at high retinoid content.  相似文献   


5.
Interaction of taxol with human serum albumin   总被引:16,自引:0,他引:16  
Taxol (paclitaxel) is an anticancer drug, which interacts with microtuble proteins, in a manner that catalyzes their formation from tubulin and stabilizes the resulting structures (Nogales et al., Nature 375 (1995) 424-427). This study was designed to examine the interaction of taxol with human serum albumin (HSA) in aqueous solution at physiological pH with drug concentrations of 0.0001-0.1 mM, and HSA (fatty acid free) concentration of 2% w/v. Gel electrophoresis, absorption spectra and Fourier transform infrared (FTIR) spectroscopy with self-deconvolution and second-derivative resolution enhancement were used to determine the drug binding mode, binding constant and the protein secondary structure in the presence of taxol in aqueous solution. Spectroscopic evidence showed that taxol-protein interaction results into two types of drug-HSA complexes with overall binding constant of K=1.43 x 10(4) M(-1). The molar ratios of complexes were of taxol/HSA 30/1 (30 mM taxol) and 90/1 (90 mM taxol) with the complex ratios of 1.9 and 3.4 drug molecules per HSA molecule, respectively. The taxol binding results in major protein secondary structural changes from that of the alpha-helix 55 to 45% and beta-sheet 22 to 26%, beta-anti 12 to 15% and turn 11 to 16%, in the taxol-HSA complexes. The observed spectral changes indicate a partial unfolding of the protein structure, in the presence of taxol in aqueous solution.  相似文献   

6.
Polyamine analogues show antitumor activity in experimental models, and their ability to alter activity of cytotoxic chemotherapeutic agents in breast cancer is well documented. Association of polyamines with nucleic acids and protein is included in their mechanism of action. The aim of this study was to examine the interaction of human serum albumin (HSA) with several polyamine analogues, such as 1,11-diamino-4,8-diazaundecane (333), 3,7,11,15-tetrazaheptadecane.4HCl (BE-333), and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333), in aqueous solution at physiological conditions using a constant protein concentration and various polyamine contents (microM to mM). FTIR, UV-visible, and CD spectroscopic methods were used to determine the polyamine binding mode and the effects of polyamine complexation on protein stability and secondary structure. Structural analysis showed that polyamines bind nonspecifically (H-bonding) via polypeptide polar groups with binding constants of K333 = 9.30 x 10(3) M(-1), KBE-333 = 5.63 x 10(2) M(-1), and KBE-3333 = 3.66 x 10(2) M(-1). The protein secondary structure showed major alterations with a reduction of alpha-helix from 55% (free protein) to 43-50% and an increase of beta-sheet from 17% (free protein) to 29-36% in the 333, BE-333, and BE-3333 complexes, indicating partial protein unfolding upon polyamine interaction. HSA structure was less perturbed by polyamine analogues compared to those of the biogenic polyamines.  相似文献   

7.
The question addressed in this study is how does the protein-DNA complexation affect the structure and dynamics of DNA and protein in aqueous solution. We examined the interaction of calf-thymus DNA with human serum albumin (HSA) in aqueous solution at physiological conditions, using constant DNA concentration of 12.5 mM (phosphate) and various HSA contents 0.25 to 2% or 0.04 to 0.3 mM. Affinity capillary electrophoresis and FTIR spectroscopic methods were used to determine the protein binding mode, the association constant, sequence preference, and the biopolymer secondary structural changes in the HSA-DNA complexes. Spectroscopic evidence showed two types of HSA-DNA complexes with strong binding of K(1) = 4.5 x 10(5) M(-1) and weak binding of K(2) = 6.10 x 10(4) M(-1). The two major binding sites were located on the G-C bases and the backbone PO(2) group. The protein-DNA interaction stabilizes the HSA secondary structure. A minor alteration of B-DNA structure was observed, while no major protein conformational changes occurred.  相似文献   

8.
9.
Lead is a potent environmental toxin that has accumulated above its natural level as a result of human activity. Pb cation shows major affinity towards protein complexation and it has been used as modulator of protein-membrane interactions. We located the binding sites of Pb(II) with human serum (HSA) and bovine serum albumins (BSA) at physiological conditions, using constant protein concentration and various Pb contents. FTIR, UV-visible, CD, fluorescence and X-ray photoelectron spectroscopic (XPS) methods were used to analyse Pb binding sites, the binding constant and the effect of metal ion complexation on HSA and BSA stability and conformations. Structural analysis showed that Pb binds strongly to HSA and BSA via hydrophilic contacts with overall binding constants of K(Pb-HSA)?=?8.2 (±0.8)×10(4) M(-1) and K(Pb-BSA)?=?7.5 (±0.7)×10(4) M(-1). The number of bound Pb cation per protein is 0.7 per HSA and BSA complexes. XPS located the binding sites of Pb cation with protein N and O atoms. Pb complexation alters protein conformation by a major reduction of α-helix from 57% (free HSA) to 48% (metal-complex) and 63% (free BSA) to 52% (metal-complex) inducing a partial protein destabilization.  相似文献   

10.
The binding of rhein with human serum albumin (HSA) has been studied in detail by spectroscopic method including circular dichroism (CD), Fourier transformation infrared spectra (FT-IR), fluorescence spectra. The binding parameters for the reaction have been calculated according to Scatchard equation at different temperatures. The plots indicated that the binding of HSA to rhein at 303, 310 and 318 K is characterized by one binding site with the affinity constant K at (4.93+/-0.16)x10(5), (4.02+/-0.16)x10(5) and (2.69+/-0.16)x10(5) M-1, respectively. The secondary structure compositions of free HSA and its rhein complexes were estimated by the FT-IR spectra. FT-IR and curve-fitted results of amide I band are in good agreement with the analyses of CD spectra. Molecular Modeling method was used to calculate the interaction modes between the drug and HSA.  相似文献   

11.
The binding interaction between temsirolimus, an important antirenal cancer drug, and HSA, an important carrier protein was scrutinized making use of UV and fluorescence spectroscopy. Hyper chromaticity observed in UV spectroscopy in the presence of temsirolimus as compared to free HSA suggests the formation of complex between HSA and temsirolimus. Fluorescence quenching experiments clearly showed quenching in the fluorescence of HSA in the presence of temsirolimus confirming the complex formation and also confirmed that static mode of interaction is operative for this binding process. Binding constant values obtained through UV and fluorescence spectroscopy reveal strong interaction; temsirolimus binds to HSA at 298 K with a binding constant of 2.9 × 104 M?1implying the strength of interaction. The negative Gibbs free energy obtained through Isothermal titration calorimetry as well as quenching experiments suggests that binding process is spontaneous. Molecular docking further provides an insight of various residues that are involved in this binding process; showing the binding energy to be -12.9 kcal/mol. CD spectroscopy was retorted to analyze changes in secondary structure of HSA; increased intensity in presence of temsirolimus showing changes in secondary structure of HSA induced by temsirolimus. This study is of importance as it provides an insight into the binding mechanism of an important antirenal cancer drug with an important carrier protein. Once temsirolimus binds to HSA, it changes conformation of HSA which in turn can alter the functionality of this important carrier protein and this altered functionality of HSA can be highlighted in variety of diseases.  相似文献   

12.
Quercetin (Qu), a flavonoid compound, exists widely in the human diet and exhibits a variety of pharmacological activities. This work is aimed at studying the effect of Qu on the bioactive protein, human serum albumin (HSA) under simulated biophysical conditions. Multiple spectroscopic methods (including fluorescence and circular dichroism), electrochemical impedance spectra (EIS) and molecular modeling were employed to investigate the interaction between Qu and HSA. The fluorescence quenching and EIS experimental results showed that the fluorescence quenching of HSA was caused by formation of a Qu–HSA complex in the ground state, which belonged to the static quenching mechanism. Based on the calculated thermodynamic parameters, it concluded that the interaction was a spontaneous process and hydrogen bonds combined with van der Waal's forces played a major role in stabilizing the Qu–HSA complex. Molecular modeling results demonstrated that several amino acids participated in the binding process and the formed Qu–HSA complex was stabilized by H‐bonding network at site I in sub‐domain IIA, which was further confirmed by the site marker competitive experiments. The evidence from circular dichroism (CD) indicated that the secondary structure and microenvironment of HSA were changed. Alterations in the conformation of HSA were observed with a reduction in the amount of α helix from 59.9% (free HSA) to 56% (Qu–HSA complex), indicating a slight unfolding of the protein polypeptides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
cis-Pt(NH3)2Cl2 (cisplatin) is an antitumor drug with many severe toxic side effects including enzymatic structural changes associated with its mechanism of action. This study is designed to examine the interaction of cisplatin drug with ribonuclease A (RNase A) in aqueous solution at physiological pH, using drug concentration of 0.0001 mM to 0.1 mM with final protein concentration of 2% w/v. Absorption spectra and Fourier transform infrared (FTIR) spectroscopy with its self-deconvolution, second derivative resolution enhancement and curve-fitting procedures were used to characterize the drug binding mode, association constant and the protein secondary structure in the cisplatin-RNase complexes. Spectroscopic results show that at low drug concentration (0.0001 mM), no interaction occurs between cisplatin and RNase, while at higher drug concentrations, cisplatin binds indirectly to the polypeptide C=O, C-N (via H2O or NH3 group) and directly to the S-H donor atom with overall binding constant 5.66 x 10(3)M(-1). At high drug concentration, major protein secondary structural changes occur from that of the alpha-helix 29% (free enzyme) to 20% and beta-sheet 39% (free enzyme) to 45% in the cisplatin-RNase complexes. The observed structural changes indicate a partial protein unfolding in the presence of cisplatin at high drug concentration.  相似文献   

14.
The heat capacity changes for interaction of human serum albumin (HSA) and a cationic surfactant—cetylpyridinium chloride (CPC), were studied at conditions close to physiological (50 mM HEPES or phosphate buffer, pH 7.4 and 160 mM NaCl) carrying out isothermal calorimetric titrations (ITC) at various temperatures (20-40 °C). ITC measurements indicated that the small endothermic changes associated with CPC demicellization were temperature independent at these conditions. Surprisingly, important enthalpy changes associated with binding of CPC to HSA were exothermic and temperature independent at lower concentrations (below 0.022 mM) of CPC and endothermic and temperature dependent at higher concentrations of CPC. The values of heat capacity changes were obtained for each studied concentration of CPC from the plot of enthalpy changes vs temperature. The obtained results demonstrate the temperature independence of heat capacity changes at entire range of studied CPC concentrations. Both enthalpograms and heat capacity curves indicate the two-step mechanism of HSA folding changes due to its interactions with CPC. The first step corresponds to transition from native state to partially unfolded state and the second to unfolding and to the loss of tertiary structure. The analysis of the results indicates that predominant cooperative unfolding occurs at CPC/HSA molar ratio region between 25 and 30. Such information could not be extracted from thermograms and describes the role of heat capacity as a major thermodynamic quantity giving insight on physical, mechanistic and even atomic-level into how HSA may unfold and interact with CPC. The effect of CPC binding on HSA intrinsic fluorescence, UV-Vis and CD spectra were also examined. Hence, the analysis of spectral data confirms the ITC results about the biphasic mechanism of HSA folding changes induced by CPC. The CD measurement also represents the conservation of considerable secondary structure of HSA due to interaction with CPC.  相似文献   

15.
DNA-RNase H adducts were used for site specific cleavage of RNA and DNA-RNA duplexes, whereas nonspecific DNA interaction with ribonuclease A (RNase A) has been observed. The aim of this study was to examine the complexation of calf-thymus DNA with RNase A at physiological condition, using constant DNA concentration (12.5 mM) and various protein contents (1 microM to 270 microM). FTIR, UV-visible, and CD spectroscopic methods were used to analyse protein binding mode, the binding constant and the effects of nucleic acid-enzyme interaction on both DNA and protein conformations. Our structural analysis showed a strong RNase-PO2 binding and minor interaction with G-C bases with overall binding constant of K = 6.1 x 10(4) M(-1). The RNase-DNA interaction alters the protein secondary structure with a major reduction of the alpha-helix and increase of the beta-sheet and random structure, while DNA remains in the B-family structure.  相似文献   

16.
Structural changes associated with the exposure of human serum albumin (HSA) to glucose with or without the presence of Cu (II) have been characterized using a bank of methods for structural analysis including circular dichroism (CD), amino acid analysis (AAA), fluorescence measurements, SDS-PAGE, and boronate binding (which is a measure of Amadori product formation). We show that in the short-term (10 d) incubation mixtures, HSA is resistant to Cu (II)-mediated oxidative damage and that the early products of glycation of HSA had minimal effects on the folded structure. Amino acid analysis showed that there was no formation of advanced glycation endproducts (AGE), which can be measured by loss of lysine. This remained the case in longer term incubation of HSA (56 d) in the hyperglycemic concentration range (5–25 mM glucose) despite increased levels of Amadori product (60% boronate binding) and the formation of glycophore (Excitation 350, Emission 425). At high, nonphysiological concentrations (100 mM and 500 mM) of glucose, glycophore formation increased and 3 and 11 mol Lysine-glucose adduct/mol HSA were converted to AGE, respectively. This was accompanied by increased damage to tryptophan and protein-protein crosslinking but only minor tertiary structural change. In the presence of Cu (II), however, AGE formation was accompanied by extensive damage to histidine and tryptophan side chains, main chain fragmentation, and loss of both secondary and tertiary structure. Thus, changes in structure appear to be the result of oxidation as opposed to glycation, per se. © 1997 Elsevier Science Inc.  相似文献   

17.
Binding of the bioactive component jatrorrhizine to human serum albumin   总被引:2,自引:0,他引:2  
The interaction between Jatrorrhizine with human serum albumin (HSA) were studied by fluorescence quenching technique, circular dichroism (CD) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. Fluorescence data revealed the presence of a single class of binding site on HSA and its binding constants (K) are 7.278 x 10(4), 6.526 x 10(4), and 5.965 x 10(4) L.mol(-1) at 296, 303, and 310 K, respectively. The CD spectra and FT-IR spectra have proved that the protein secondary structure changed in the presence of Jatrorrhizine in aqueous solution. The effect of common ions on the binding constants was also investigated. In addition, the thermodynamic functions standard enthalpy (DeltaH(0)) and standard entropy (DeltaS(0)) for the reaction were calculated to be -10.891 kJ.mol(-1) and 56.267 J.mol(-1) K(-1), according to the van't Hoff equation. These data indicated that hydrophobic and electrostatic interactions played a major role in the binding of Jatrorrhizine to HSA. Furthermore, the displacement experiments indicated that Jatrorrhizine could bind to the site I of HSA, which was also in agreement with the result of the molecular modeling study.  相似文献   

18.
The interaction between the natural polyphenol resveratrol and human serum albumin (HSA), the most abundant transport protein in plasma, has been studied in the absence and in the presence of up to six molecules of stearic acids (SA) pre-complexed with the protein. The study has been carried out by using the intrinsic fluorescence of both HSA and resveratrol. Protein and polyphenol fluorescence data indicate that resveratrol binds to HSA with an association constant k a ?=?(1.10?±?0.14)?×?105?M?1 and (1.09?±?0.02)?×?105?M?1, respectively, whereas Job plot evidences the formation of an equimolar protein/drug complex. Low SA content associated with HSA does not affect significantly the structural conformation of the protein and its interaction with resveratrol, whereas high SA content induces conformational changes in the protein, and reduces resveratrol binding affinity. The photostability of resveratrol in the different samples changes in the order: buffer <?(high [SA]/HSA)?<?HSA?<?(low [SA]/HSA). The results on (SA/HSA)-resveratrol samples highlight the ability of the protein to bind hydrophobic and amphiphilic ligands and to protect from degradation an important antioxidant molecule under biologically relevant conditions.  相似文献   

19.
The interaction between [Pd(But-dtc)(phen)]NO3 (where But-dtc = butyldithiocarbamate and phen = 1,10-phenanthroline) with HSA (Human Serum Albumin) was investigated by applying fluorescence, UV–Vis and circular dichroism techniques under physiological conditions. The results of fluorescence spectra indicated that the Pd(II) complex could effectively quench the fluorescence intensity of HSA molecules via static mechanism. The number of binding sites and binding constant of HSA–Pd(II) complex were calculated. Analysis of absorption titration data on the interaction between Pd(II) complex and HSA revealed the formation of HSA–Pd(II) complex with high-binding affinity. Thermodynamic parameters indicated that hydrophobic forces play a major role in this interaction. Furthermore, CD measurements were taken to explore changes in HSA secondary structure induced by the Pd(II) complex.  相似文献   

20.
We report different analytical methods used to study the effects of 3\'-azido-3\'-deoxythymidine, aspirin, taxol, cisplatin, atrazine, 2,4-dichlorophenoxyacetic, biogenic polyamines, chlorophyll, chlorophyllin, poly(ethylene glycol), vanadyl cation, vanadate anion, cobalt-hexamine cation, and As2O3, on the stability and secondary structure of human serum albumin (HSA) in aqueous solution, using capillary electrophoresis, Fourier transform infrared, ultraviolet visible, and circular dichroism (CD) spectroscopic methods. The concentrations of HSA used were 4% to 2% or 0.6 to 0.3 mM, while different ligand concentrations were 1 microM to 1 mM. Structural data showed drugs are mostly located along the polypeptide chains with both specific and nonspecific interactions. The stability of drug-protein complexes were in the order K(VO(2+)) 1.2 x 10(8) M(-1) > K(AZT) 1.9 x 10(6) M(-)1 > K(PEG) 4.1 x 10(5) M(-1) > K(atrazine) 3.5 x 10(4) M(-1) > K(chlorophyll) 2.9 x 10(4) M(-1) > K2,4-D 2.5 x 10(4) M-1 > K(spermine) 1.7 x 10(4) M(-1) > K(taxol) 1.43 x 10(4) M(-1) > K(Co(3+)) > 1.1 x 10(4) M(-1) > K(aspirin) 1.04 x 10(4)i(-1) > K(chlorophyllin) 7.0 x 10(3) M(-1) > K(VO(3)(-)) 6.0 x 103 M(-1) > K(spermidine) 5.4 x 10(3) M(-1) > K(putrescine) 3.9 x 10(3) M(-1) > K(As(2)O(3)) 2.2 x 10(3) M(-1)> K(cisplatin) 1.2 x 10(2) M(-1). The protein conformation was altered (infrared and CD results) with major reduction of alpha-helix from 60 to 55% (free HSA) to 49 to 40% and increase of beta-structure from 22 to 15% (free HSA) to 33 to 23% in the drug-protein complexes. The alterations of protein secondary structure are attributed to a partial unfolding of HSA on drug complexation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号