首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We investigated effects of plant density on floral phenology and potential mating in artificial populations of the outcrossing ornamental Nicotiana alata planted at three densities. Path analysis revealed that increasing plant density yielded significantly earlier peak flowering dates, significantly earlier last flowering dates, and significantly lower plant biomass. Direct effects of density on final flower number were not significant. Variation among replicate plots for first date of flowering was larger than variation among densities, indicating that factors other than density influence floral initiation.We did not record actual mating, but determined from phenological data the number and identity of potential mates. Increased density had several effects on potential mating patterns and on potential Ne, effective population number. At high density, fewer focal plants flowered for shorter durations. This led to less overlap in flowering time among plants, decreasing the number of potential parental combinations possible among the progeny. Two outcomes of high density, the lower total number of plants flowering and the lower number of plants flowering at most census dates, tended to reduce potential Ne. In contrast, it was low density, where variance in flower number was greatest, that was most likely to yield the greatest reduction in Ne due to variance in progeny number.At high density the potential for assortative mating among tall plants was much greater and occurred later than among large plants at low density. Much of the potential high density assortative mating occurred late in the phenology of individual plants, when there was likely to be lower fruit set.We discuss how ecological agents that alter flowering phenology can potentially alter the genetics of populations, the level and timing of assortative mating and, if genetic variation for response to such ecological agents exists, the potential selection regime.  相似文献   

2.
Pollen-limited plants are confronted with a difficult tradeoff because they must present showy floral displays to attract pollinators and yet must also minimize their apparency to herbivores. In these systems, traits that increase pollinator visitation may also increase herbivore oviposition and overall plant resistance may therefore be constrained to evolve largely as a correlated response to selection on plant apparency or vigor. We used a family-structured quantitative genetic experiment to evaluate the importance of ungulate browsing, flowering date and plant height (traits that are related to overall vigor), and variation in a putative phytochemical defense (cucurbitacin production) on patterns of seed fly attack in a scarlet gilia population. We found significant genetic variation in the amount of insect damage plants experience in the field, providing evidence that resistance may evolve. In addition, we found that browsing reduced seed fly attack and that oviposition is strongly related to plant size and flowering date; large, early flowering plants experience high attack. In addition, we found that high cucurbitacin production was correlated with low seed fly damage, although this effect was relatively weak.We found directional selection on final plant height and flowering date; tall, early flowering plants had the highest reproductive success. In addition, we found negative directional selection on cucurbitacin production, which may indicate a high cost of cucurbitacin or other functions of this phytochemical. Although seed fly herbivory arguably decreases plant fitness, we found an unexpected positive relationship between damage and fitness. A negative relationship between fitness and damage may be masked in this system through strong positive indirect correlations between patterns of damage and levels of pollinator visitation. Finally, we found significant genetic variation in flowering date, plant height, and cucurbitacin production. Resistance to seed flies may evolve in this population, but largely as a non-adaptive correlated response to selection on overall plant vigor. Phytochemicals may play a more important role in defense in years with high seed fly attack, or when pollen-limitation is less severe.Co-ordinating editor: J. Tuomi  相似文献   

3.
Selection gradient analysis examines the strength and direction of phenotypic selection as well as the curvature of fitness functions, allowing predictions on and insights into the process of evolution in natural populations. However, traditional linear and quadratic selection analyses are not capable of detecting other features of fitness functions, such as asymmetry or thresholds, which may be relevant for understanding key aspects of selection on many traits. In these cases, additional analyses are needed to test specific hypotheses about fitness functions. In this study we used several approaches to analyze selection on a major life-history trait—flowering time—in the annual plant Brassica rapa subjected to experimentally abbreviated and lengthened growing seasons. We used a model that incorporated a tradeoff between the time allocated to growth versus the time allocated to reproduction in order to predict fitness function shape. The model predicted that optimal flowering time shifts to earlier and later dates as the growing season contracts and expands. It also showed the flowering time fitness function to be asymmetrical: reproductive output increases modestly between the earliest and the optimal flowering date, but then falls sharply with later dates, truncating in a ‘tail of zeros’. Our experimental results strongly supported selection for early flowering in short season and selection for late flowering in long season conditions. We also found support for the predicted asymmetry of the flowering time fitness function, including a ‘tail of zeros’ at later flowering dates. The form of the fitness function revealed here has implications for interpreting estimates of selection on flowering time in natural populations and for refining predictions on evolutionary response to climate change. More generally, this study illustrates the value of diverse statistical approaches to understanding mechanisms of natural selection.  相似文献   

4.
Habitat fragmentation is considered to be one of the major threats to biological diversity worldwide. To date, however, its consequences have mainly been studied in an ecological context, while little is known about its effects on evolutionary processes. In this study we examined whether habitat fragmentation affects selection on plant phenotypic traits via changes in plant-pollinator interactions, using the self-incompatible perennial herb Phyteuma spicatum. Specifically, we hypothesized that limited pollination service in small or low-density populations leads to increased selection for traits that attract pollinators. We recorded mean seed production per capsule and per plant as a measure of pollination intensity and assessed selection gradients (i.e., trait-fitness relationships) in 16 natural populations of varying size and density over 2 years. Mean seed production was not related to population size or density, except for a marginal significant effect of density on the mean number of seeds per capsule in 1 year. Linear selection for flowering time and synchrony was consistent across populations; relative fitness was higher in earlier flowering plants and in plants flowering synchronously with others. Selection on inflorescence size, however, varied among populations, and linear selection gradients for inflorescence size were negatively related to plant population size and density in 1 year. Selection for increased inflorescence size decreased with increasing population size and density. Contrary to our expectation this appeared not to be related to changes in pollination intensity (mean seed production was not related to population size or density in this year), but was rather likely linked to differences in some other component of the abiotic or biotic environment. In summary, our results show that habitat fragmentation may influence selection on plant phenotypic traits, thereby highlighting potential evolutionary consequences of human-induced environmental change.  相似文献   

5.
Variation among the leaves, flowers or fruit produced by a plant is often regarded as a nuisance to the experimenter and an impediment to selection. Here, we suggest that within‐plant variation can drive selection on other plant‐level traits. We examine within‐plant variation in floral sex allocation and in fruit set and predict that such variation generates variation in male success among plants, thereby driving selection on flowering time. We tested this prediction in a simulation model estimating selection on flowering time through male fitness when floral sex allocation and/or fruit set vary directionally among flowers on plants. We parameterized the model through a quantitative literature survey of within‐plant change in sex allocation. As predicted, within‐plant variation in floral sex allocation and in fruit set probability can generate selection on flowering time through male fitness. Declining fruit set from first to last flowers on plants, as occurs in many species, selected for early flowering onset through male fitness. This result was robust to self‐incompatibility and to varying returns on male versus female investment. Selection caused by declining fruit set was strong enough to reverse the selection for late flowering that can be caused by intrafloral protandry. Our model provides testable predictions regarding selection on flowering time through male fitness. The model also establishes the intriguing possibility that within‐plant variation may influence selection on other traits, regardless of whether that variation is under selection itself.  相似文献   

6.
苏晓磊  曾波  乔普  阿依巧丽  黄文军 《生态学报》2010,30(10):2585-2592
开花物候及繁殖分配是植物适应环境的重要因素,为了解长期冬季水淹对三峡库区耐淹物种秋华柳(Salix variegata Franch.)繁殖的影响,研究了长期冬季水淹条件下秋华柳的开花物候和繁殖分配情况。实验在2006年11月份设置了如下处理:对照,完全水淹(植株置于水中,顶部距水面2m)30,60,90,120d和150d。结果表明:(1)对照及各水淹处理的秋华柳花期都较长,在7-11月份持续开花,个体开花进程(开花振幅曲线)呈单峰曲线。(2)冬季水淹对秋华柳群体及个体的开花物候有显著影响。水淹时间越长,始花期越晚,花期持续时间越短(P0.05)。(3)长期冬季水淹下,秋华柳显著降低了繁殖分配比例和全株生物量及单株花序数(P0.05)。(4)开花物候指数与繁殖分配的相关分析表明:始花时间越晚的个体,花期持续时间越短。花期持续时间越短的个体花序数越少,致使繁殖分配越小。总的来说,冬季水淹下,秋华柳通过推迟开花日期、缩短花期持续时间使繁殖分配比例降低,将更多的资源分配到生存力上,是秋华柳对长期冬季水淹的一种适应。同时,在长期冬季水淹后,秋华柳仍保持一定的开花繁殖能力,是其在应用于三峡水库消落区植被构建后产生后代延续种群的前提条件。  相似文献   

7.
8.
This study explores the effects of emergence time and reproductive phenology on seed number, seed size, and seedling survival in a population of the alpine buttercup, Ranunculus adoneus. Phenology in this snow bowl population is structured by snow depth. Plants in late melting interior portions of the bowl emerged and flowered 3 to 4 wk after those in early melting zones at the bowl perimeter during the summers of 1988 and 1989. Flowering time differences of buttercups across the bowl were consistent from one year to the next. In 1988, late flowering plants tended to set fewer seeds than early flowering ones; in 1989 no decrease in seed number accompanied flowering date. Path analysis showed that equal fecundity in early and late emerging portions of the bowl population during 1989 resulted from balancing spatial and temporal constraints on seed production. Spatial aspects of habitat quality improved toward the interior of the bowl, but temporal regimes deteriorated in these late melting sites. In both 1988 and 1989 seed size declined with delays in flowering. Path analysis of 1989 data showed that because of reduced time for seed growth, plants in late melting portions of the bowl set smaller seeds than those in earlier melting zones. Differences in seed size due to parental phenology are likely to influence fitness in snow buttercups. Under natural conditions, seedlings from large seeds (>;0.65 mg) have sixfold higher survival than do those from smaller seeds (<;0.65 mg). We conclude that seedling recruitment may be infrequent in late-melting portions of the snow bowl due to delayed parental phenology.  相似文献   

9.
I measured phenotypic selection of floral traits through both male and female functions of the hermaphroditic flowers of Ipomopsis aggregata (Pursh) V. Grant subsp. aggregata (Polemoniaceae). Fluorescent powdered dyes were used to track movement of pollen by hummingbirds and to measure pollen delivery to individual plants as well as pollen receipt. A phenotypic selection analysis revealed that selection due to male-male competition during pollination was capable of delaying flowering date and widening corolla tubes by 0.22 and 0.24 standard-deviation units, respectively, in a single generation. Several floral traits were highly correlated with each other. Multivariate selection analysis suggested that selection through male function directly favored late flowering as well as a sexual expression characterized by a short pistillate phase and long corollas. Selection intensities through male and female functions were of similar overall magnitude during the pollination stage of the life cycle, but different traits were favored, and selection sometimes acted in opposing directions. In 1985, selection through female function favored increased time spent in the pistillate phase and exserted stigmas (unlike selection through male function). As a result, individual plants varied greatly in functional gender. Plants that had exserted stigmas and narrow corollas and that spent a disproportionately long time in the pistillate phase achieved greater pollination success as females, while plants with the opposite traits achieved greater success as males. Moreover, female pollination success tended to increase, and male pollination success to decrease, with time spent in the pistillate phase, supporting a critical assumption of sex-allocation theory. Selection in the populations studied fluctuated from year to year and was highly sex-specific.  相似文献   

10.
Floral traits have largely been attributed to phenotypic selection in plant–pollinator interactions. However, the strength of this link has rarely been ascertained with real pollinators. We conducted pollinator observations and estimated selection through female fitness on flowering phenology and floral traits between two Primula secundiflora populations. We quantified pollinator‐mediated selection by subtracting estimates of selection gradients of plants receiving supplemental hand pollination from those of plants receiving open pollination. There was net directional selection for an earlier flowering start date at populations where the dominant pollinators were syrphid flies, and flowering phenology was also subjected to stabilized quadratic selection. However, a later flowering start date was significantly selected at populations where the dominant pollinators were legitimate (normal pollination through the corolla tube entrance) and illegitimate bumblebees (abnormal pollination through nectar robbing hole which located at the corolla tube), and flowering phenology was subjected to disruptive quadratic selection. Wider corolla tube entrance diameter was selected at both populations. Furthermore, the strength of net directional selection on flowering start date and corolla tube entrance diameter was stronger at the population where the dominant pollinators were syrphid flies. Pollinator‐mediated selection explained most of the between‐population variations in the net directional selection on flowering phenology and corolla tube entrance diameter. Our results suggested the important influence of pollinator‐mediated selection on floral evolution. Variations in pollinator assemblages not only resulted in variation in the direction of selection but also the strength of selection on floral traits.  相似文献   

11.
1.  Habitat fragmentation can affect pollinator and plant population structure in terms of species composition, abundance, area covered and density of flowering plants. This, in turn, may affect pollinator visitation frequency, pollen deposition, seed set and plant fitness.
2.  A reduction in the quantity of flower visits can be coupled with a reduction in the quality of pollination service and hence the plants' overall reproductive success and long-term survival. Understanding the relationship between plant population size and/or isolation and pollination limitation is of fundamental importance for plant conservation.
3.  We examined flower visitation and seed set of 10 different plant species from five European countries to investigate the general effects of plant populations size and density, both within (patch level) and between populations (population level), on seed set and pollination limitation.
4.  We found evidence that the effects of area and density of flowering plant assemblages were generally more pronounced at the patch level than at the population level. We also found that patch and population level together influenced flower visitation and seed set, and the latter increased with increasing patch area and density, but this effect was only apparent in small populations.
5.   Synthesis. By using an extensive pan-European data set on flower visitation and seed set we have identified a general pattern in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects. This can guide efforts to conserve plant–pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats.  相似文献   

12.
D. Pilson 《Oecologia》2000,122(1):72-82
Plant fitness is strongly affected by flowering phenology, and there are several ecological factors that are thought to shape the distribution of flowering times. One relatively underexamined factor is the timing and intensity of attack by herbivores that feed on flowers or developing seeds. This study tests the hypothesis that herbivores that feed on developing seeds of wild sunflower, Helianthus annuus (Asteraceae), impose selection on flowering phenology. First, the study population was found to contain genetic variation for mean date of flowering, so this trait could evolve if natural selection were operating. Next, the phenological pattern of abundance of five seed-feeding herbivores was documented. Damage by three herbivores, Haplorhynchites aeneus (Cucurlionidae), the head-clipping weevil, Homoeosoma electellum (Lepidoptera: Pyralidae), the sunflower moth, and Suleima helianthana (Lepidoptera: Tortricidae), the sunflower bud moth, was highest early in the flowering season, and declined as the season progressed. Damage by one herbivore, the seed fly Gymnocarena diffusa (Diptera: Tephrididae), was lowest early in the flowering season and increased as the season progressed. Finally, damage by two seed weevils, Smicronyx fulvus and S. sordidus (Curculionidae), whose damage was not distinguished, was constant through the flowering period. Third, damage by Haplorhynchites, Homoeosoma, and Suleima was found to be detrimental to plant fitness, suggesting that plants that flower when these herbivores are not abundant should have higher fitness. Finally, two phenotypic selection analyses were performed. The first included damage by Homoeosoma and Suleima, as well as flowering date, leaf area, and inflorescence diameter, as characters predicting plant fitness. In this analysis directional selection was found to act to decrease damage by the two herbivores, but did not act on flowering date. The second selection analysis was identical except that damage by the two herbivores was not included. In this analysis significant directional selection was found to favor later-flowering plants. Comparison of these two analyses suggests that all selection on flowering phenology is attributable to damage by Homoeosoma and Suleima: plants that flower later avoid damage by these two herbivores. While other influences on flowering phenology, such as pollination, mate availability, and seasonality, have been well documented, this study is one of few to demonstrate natural selection on flowering phenology that is a direct consequence of insect attack. Received: 17 November 1998 / Accepted: 18 July 1999  相似文献   

13.
In this paper, we examine how ecological costs of resistance might be manifested through plant relationships with pollinators. If defensive compounds are incorporated into floral structures or if they are sufficiently costly that fewer rewards are offered to pollinators, pollinators may discriminate against more defended plants. Here we consider whether directional selection for increased resistance to herbivores could be constrained by opposing selection through pollinator discrimination against more defended plants. We used artificial selection to create two populations of Brassica rapa plants that had high and low myrosinase concentrations and, consequently, high and low resistance to flea beetle herbivores. We measured changes in floral characters of plants in both damaged and undamaged states from these populations with different resistances to flea beetle attack. We also measured pollinator visitation to plants, including numbers of pollinators and measures of visit quality (numbers of flowers visited and time spent per flower). Damage from herbivores resulted in reduced petal size, as did selection for high resistance to herbivores later in the plant lifetime. In addition, floral display (number of open flowers) was also altered by an interaction between these two effects. Changes in floral traits translated into overall greater use of low-resistance, undamaged plants based on total amount of time pollinators spent foraging on plants. Total numbers of pollinators attracted to plants did not differ among treatments; however, pollinators spent significantly more time per flower on plants from the low-resistance population and tended to visit more flowers on these plants as well. Previous work by other investigators on the same pollinator taxa has shown that longer visit times are associated with greater male and female plant fitness. Because initial numbers of pollinators did not differ between selection regimes, palatability and/or amount of rewards offered by high- and low-resistance populations are likely to be responsible for these patterns. During periods of pollinator limitation, less defended plants may have a selective advantage and pollinator preferences may mediate directional selection imposed by herbivores. In addition, if pollinator preferences limit seed set in highly defended plants, then lower seed set previously attributed to allocation costs of defense may also reflect greater pollinator limitation in these plants relative to less defended plants.  相似文献   

14.
Charles L. Aker 《Oecologia》1982,54(2):243-252
Summary A field investigation of the mutualistic interaction between a monocarpic perennial plant, Yucca whipplei, and its host-specific pollinator and seed predator, Tegeticula maculata (Lepidoptera: Prodoxidae), was conducted to determine how the resource utilization pattern and population dynamics of the pollinator have influenced the evolution of the flowering and fruiting pattern of the plant. Although the temporal pattern of emergence of pollinators results in a relatively close tracking of flower abundance within a season, the ratio of pollinators to open flowers does vary significantly within a season, as well as between seasons. At any point in time during the flowering season, the population of adult yucca moths is distributed evenly among the available flowers, so that the number of pollinators on an inflorescence is directly proportional to the number of open flowers available. The relative isolation of individual flowering plants appears to have little effect on the distribution of pollinators among inflorescences. The number of fruits initiated on a plant is directly proportional to the number of flowers produced, and is also partially determined by the time of flowering. Yucca whipplei always produces many more flowers than fruits. Most flowers are not fertilized, and the plants also generally abort and abscise immature fruits after flowering. Fruit production of at least some plants, however, appeared limited by pollination. It is also expected that in some years the relative abundance of pollinators will be low enough that most plants will be pollinator-limited. It is suggested that the pattern of flowering and fruiting of this species has evolved in response to the unpredictability of pollinator availability, both within and between seasons. Resource uncertainty and selection acting on the male component of fitness may also be involved.  相似文献   

15.
Akiyama R  Ågren J 《PloS one》2012,7(1):e30015

Background

The effect of herbivory on plant fitness varies widely. Understanding the causes of this variation is of considerable interest because of its implications for plant population dynamics and trait evolution. We experimentally defoliated the annual herb Arabidopsis thaliana in a natural population in Sweden to test the hypotheses that (a) plant fitness decreases with increasing damage, (b) tolerance to defoliation is lower before flowering than during flowering, and (c) defoliation before flowering reduces number of seeds more strongly than defoliation during flowering, but the opposite is true for effects on seed size.

Methodology/Principal Findings

In a first experiment, between 0 and 75% of the leaf area was removed in May from plants that flowered or were about to start flowering. In a second experiment, 0, 25%, or 50% of the leaf area was removed from plants on one of two occasions, in mid April when plants were either in the vegetative rosette or bolting stage, or in mid May when plants were flowering. In the first experiment, seed production was negatively related to leaf area removed, and at the highest damage level, also mean seed size was reduced. In the second experiment, removal of 50% of the leaf area reduced seed production by 60% among plants defoliated early in the season at the vegetative rosettes, and by 22% among plants defoliated early in the season at the bolting stage, but did not reduce seed output of plants defoliated one month later. No seasonal shift in the effect of defoliation on seed size was detected.

Conclusions/Significance

The results show that leaf damage may reduce the fitness of A. thaliana, and suggest that in this population leaf herbivores feeding on plants before flowering should exert stronger selection on defence traits than those feeding on plants during flowering, given similar damage levels.  相似文献   

16.
Summary The effects of nutrition on the timing of reproductive initiation of a short-day annual plant Xanthium canadense (cocklebur) were examined with the following hypotheses in mind: If the plant always follows an optimal growth schedule, low-nutrient plants will initiate reproductive growth earlier than high-nutrient plants. On the other hand, if the plant flowers in response to photoperiodic stimuli, both plants will initiate reproductive growth on the same day. The sand-culture experiment showed that high-nutrient plants flowered earlier than the low-nutrient plants, leading to rejection of the first hypothesis. The predicted optimal flowering time is 2 days later than the actual flowering time in high-nutrient plants and 10 days earlier in low-nutrient plants. These deviations from the optimal times reduced the reproductive yield by 0.1% and 2.3%, respectively. The ratio of the final reproductive yield to the vegetative mass at flower initiation was 1.10 in high-nutrient plants and 0.63 in low-nutrient plants. Since the expected ratio for the optimal growth schedule is 1.0, high-nutrient plants followed the opitmal growth schedule more closely than the low-nutrient plants. Cocklebur is a fast-growing annual which is common in relatively nutrient-rich environments. This study suggests that cocklebur adapts itself to such environments through its photoperiodic response.  相似文献   

17.
Many factors may affect reproduction of animal-pollinated species. In this study, the effects of pollen limitation, attractive traits (flower number, plant height and flower width) and flowering phenological traits (flowering onset, duration and synchrony) on female reproduction, as well as the patterns of variation in fruit and seed production within plants, were investigated in Paeonia ostii “Feng Dan” over two flowering seasons (2018 and 2019). Fruit set was very high (90%), and pollen supplementation did not increase fruit and seed production in either year, indicating no pollen limitation. Fruit set, ovule number per fruit and mean individual seed weight per fruit were not affected by any of the six attractive and phenological traits in either year, whereas seed number per fruit was related to the three attractive traits in one or both years. Seed number per plant was positively affected by the three attractive traits and best explained by flower number in both years, but the effect of each of the three phenological traits on seed number per plant differed between years. Within plants, the fruit set, ovule number, seed set and seed number per fruit declined from early- to late-opening flowers, presumably because of resource preemption, but the mean individual seed weight did not vary across the flowering sequence. Our study shows that attractive traits of Paeonia ostii “Feng Dan” are more important than flowering phenological traits in the prediction of total seed production per plant.  相似文献   

18.
There is mounting evidence that plants are responding to anthropogenic climate change with shifts in flowering phenologies. We conducted a three-generation artificial selection experiment on flowering time in Campanulastrum americanum, an autotetraploid herb, to determine the potential for adaptive evolution of this trait as well as possible costs associated with enhanced or delayed flowering. Divergent selection for earlier and later flowering resulted in a 25-day difference in flowering time. Experiment-wide heritability was 0.31 and 0.23 for the initiation of flowering in early and late lines, respectively. Selection for earlier flowering resulted in significant correlated responses in other traits including smaller size, fewer branches, smaller floral displays, longer fruit maturation times, fewer seeds per fruit and slower seed germination. Results suggest that although flowering time shows the potential to adapt to a changing climate, phenological shifts may be associated with reduced plant fitness possibly hindering evolutionary change.  相似文献   

19.
The increasing levels of ultraviolet-B (UV-B) radiation reaching the earth's surface caused by ozone destruction have prompted many studies of UV-B effects on plants. Most of these studies have focused on physiological and growth responses of plants to increased UV-B, but these measures may not be closely related to future survival of plant populations. We examined the effects of two different levels of increased UV-B on total female fitness, including seed number and quality, in rapid-cycling strains of Brassica nigra and B. rapa (Brassicaceae). We also measured the effects of UV-B on fitness components, particularly those related to pollination success. Two separate experiments, examining two different levels of UV-B, were performed. Sixty plants of each species were grown under control and enhanced levels of UV-B for a total of 480 plants (60 plantsx2 speciesx2 UV-B levelsx2 experiments). Increased UV-B was generally detrimental to growth and flowering in both species; however, total seed production was actually greater at higher UV-B doses in three of four dose/plant species combinations examined. UV-B had little effect on pollination success or offspring quality in either species. Therefore, in spite of the detrimental effects of UV-B on growth and flowering that we found, there is little evidence that fitness of these plant species would suffer with increasing UV-B, and we caution against using solely physiological or growth measurements to infer effects of UV-B on plant population fitness.  相似文献   

20.
The optimal timing of the seasonal switch from somatic growth to reproduction can depend on an individual's condition at reproduction, the quality of the environment in which it will reproduce, or both. In annual plants, vegetative size (a function of age at flowering) affects resources available for seed production, whereas exposure to mutualists, antagonists, and abiotic stresses in the environment (functions of Julian date of flowering) influences success in converting resources into offspring. The inherent tight correlation between age, size, and environment obscures their independent fitness contributions. We isolated the fitness effects of these factors by experimentally manipulating the correlation between age at flowering and date of flowering in Brassica rapa. We staggered the planting dates of families with differing ages at flowering to produce experimental populations in which age at flowering and date of flowering were positively, negatively, or uncorrelated. In all populations, plants with an early date of flowering produced more seed than those flowering late, regardless of age or size at flowering onset. The temporal environment was thus the principal driver of selection on flowering time, but its importance relative to that of age and size varied with the presence/absence of herbivores and seed predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号