首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility of artificially inducing activation of MII buffalo oocytes may allow us to evaluate indirectly the quality of oocytes after in vitro maturation. The aim of this work was to compare buffalo embryo development after IVF and after chemical activation by two different agents. A further goal was to evaluate the effects of aging of oocytes on post-parthenogenetic and post-fertilization development. In Experiment 1 cumulus-oocyte complexes (COCs) were recovered from abattoir-derived ovaries and matured in vitro. After IVM the COCs were either fertilized in vitro (positive control) or activated with ethanol and ionomycin, both followed by immediate exposure to 6-diethylaminopurine (6-DMAP) for 4 h. In vitro culture (IVC) was carried out up to the blastocyst stage. In Experiment 2 COCs were matured in vitro for 18, 21, 24, 27 and 30 h before activation was triggered with ethanol, followed by 6-DMAP. In Experiment 3 COCs were fertilized in vitro at 18, 21, 24, 27 and 30 h post-maturation. Ethanol activation gave better results than the IVF control group, with higher cleavage rate (71.4 +/- 7.8 versus 55.8 +/- 5.8, respectively; P < 0.05) and a higher proportion of oocytes developing into morulae-blastocysts (32.6 +/- 6.5 versus 22.9 +/- 7.5, respectively; P < 0.05). Within the activation groups, ethanol supported the highest development in terms of cleavage (71.4 +/- 7.8 versus 59.4 +/- 10.7; P < 0.05) and morulae-blastocysts rate (32.6 +/- 6.5 versus 25.7 +/- 8.3; n.s.). It was also demonstrated that aging negatively affects post-parthenogenetic and post-fertilization development.  相似文献   

2.
The energy metabolism of preimplantation embryos can be used to predict viability and postimplantation development. Although preimplantation development and mean blastocyst cell numbers of goat in vitro-fertilized (IVF) embryos and chemically activated parthenogenotes are comparable, mammalian parthenogenotes are not viable, with most dying shortly after implantation. The objective of this study was to compare glucose and pyruvate metabolism of IVF goat blastocysts with that of parthenogenetic blastocysts developing from chemically activated oocytes. Embryos derived from IVF and parthenogenotes produced by exposing oocytes to either ionomycin or ethanol followed by 6-dimethylaminopurine (6-DMAP) were cultured in G1.2/G2.2 sequential culture media. Metabolism was determined for individual blastocysts using [5-3H]glucose and [2-14C]pyruvate to determine glycolytic and Kreb's cycle activity, respectively. Data were analyzed by ANOVA. A significantly higher percentage of activated oocytes underwent cleavage and developed to the blastocyst stage compared to IVF oocytes (p < 0.05). There was no significant difference in glucose or pyruvate metabolism between IVF and parthenogenetically activated blastocysts. Mean glucose metabolism through glycolysis was 154.9 +/- 29.1, 130.3 +/- 17.1, and 129 +/- 16.5 pmol/embryo/3 h for IVF, ethanol-activated, and ionomycin-activated blastocysts, respectively. Mean pyruvate metabolism through the Kreb's cycle was 28.1 +/- 8.0, 15.8 +/- 4.2, and 24.4 +/- 4.4 in pmol/embryo/3 h for IVF, ethanol-activated, and ionomycin-activated blastocysts, respectively. Our results suggest that known differences in postimplantation development observed in IVF versus parthenogenetic embryos cannot be attributed to differences in pyruvate or glucose metabolism in the preimplantation blastocysts. Thus, these activation protocols result in embryos capable of appropriate regulation of key metabolic enzymes.  相似文献   

3.
Parthenogenetic activation of the oocyte represents an important step in the somatic cloning. The aim of the present study was to evaluate the effectiveness (in term of in vitro development) of different methods of parthenogenetic activation of dromedary oocytes. Selected cumulus-oocytes-complexes (n=1264) collected by follicular aspiration from ovaries obtained postmortem were matured in vitro (IVM) for 30 h then divided randomly into seven groups and submitted to artificial activation. Two groups were preactivated with 25 microM of calcium ionophore (CaI) for 20 min then incubated for 4h with either 2mM 6-dimethylaminopurine (6-DMAP) (group 1, n=202) or with 10 microg/mL cycloheximide (CHX) (group 2, n=194). Group 3 (n=172) and group 4 (n=184), oocytes were pretreated with 5 microM ionomycin (Iono) for 5 min then incubated with either 2mM 6-DMAP or 10 microg/mL cycloheximide for 4h, respectively. Group 5 (n=161) and group 6 (n=155) oocytes were preactivated with electrical stimulation (ES) then activated with either 2mM 6-DMAP or 10 microg/mL cycloheximide for 4h, respectively. Group 7 (n=196) oocytes were submitted to in vitro fertilization (IVF) and served as a control. All groups containing oocytes were cultured in vitro following activation or IVF, at 38.5 degrees C under 5% CO(2) in air with >95% humidity. The in vitro development rates of dromedary oocytes exposed to 6-DMAP after CaI (61%), ES (74%) and the IVF group (71%) were similar and significantly greater (P<0.05) than other treatments (10% for group 2, 47% for group 3, 27% for group 4 and 41% for group 6). The blastocyst developmental rate was better (P<0.05) in parthenotes following activation with Iono/6-DMAP (21%) compared to activation with Iono/CHX (12%). However, all were less than that achieved in the IVF group (35%). We conclude that parthenogenetic activation of camel oocytes with 6-DMAP is more effective than activation with CHX for all pre-treatments tested (CaI, Iono or ES). The viability of activated (n=15) or IVF (n=10) hatched-dromedary embryos was examined by transfer to synchronized recipients. An embryonic vesicle was seen by ultrasonography at 15 days post transfer in four females (CaI/6-DMAP: 1/5; 20%, IVF: 3/10; 30%). The only pseudopregnancy obtained with an activated embryo resorbed at 25 days. One of the females receiving the IVF produced embryos aborted at 2 months and the other two females carried to term and gave birth to healthy calves (one female and one male). This study shows that artificial activation of dromedary oocytes with CaI/6-DMAP or ES/6-DMAP is more effective than other treatments in terms of in vitro embryo development. This provides efficient activation conditions which may lead to the development of the somatic cell nuclear transfer procedure in dromedary.  相似文献   

4.
The aim of this study was to evaluate embryo development of prepubertal goat oocytes fertilised by ICSI according to their diameter. Three experiments were carried out to achieve this objective. In all experiments, oocytes were matured in TCM199 supplemented with hormones, cysteamine and serum for 27 h at 38.5 degrees C. In Experiment 1, we studied the nuclear stage of goat zygotes produced by conventional ICSI and IVF using 20 nM ionomycin plus 10 microM heparin as sperm treatment. A group of Sham-injected oocytes was used as control. Results showed differences in the percentage of 2 PN (zygotes with male and female pronuclei) between ICSI, IVF and Sham (40.9, 26.6 and 3.0%, respectively; P<0.05). In Experiment 2, we evaluated the embryo development of prepubertal goat oocytes produced by ICSI and IVF after 192 h of culture in SOF medium. The percentage of morulae plus blastocysts obtained was higher in the ICSI than in the IVF group (13.4 and 5.1%, respectively; P<0.05). In Experiment 3, IVM-oocytes were classified in four groups depending on their diameter (Group A: <110 microm; Group B: 110-125 microm; Group C: 125-135 microm; Group D: >135 microm), fertilised by ICSI and cultured for 192 h. Results showed a positive correlation between oocyte diameter and embryo development (morulae+blastocysts: Group A: 0%; Group B: 6.2%; Group C: 46.4% and Group D: 33.3%). In conclusion, sperm treatment with ionomycin plus heparin using the conventional ICSI protocol improved fertilisation rates in comparison to IVF. Oocytes smaller than 125 microm were unable to develop up to blastocyst stage.  相似文献   

5.
The protocol of ionomycin followed by 6-dimethylaminopurine (6-DMAP) is commonly used for activation of oocytes and reconstituted embryos. Since numerous abnormalities and impaired development were observed when oocytes were activated with 6-DMAP, this protocol needs optimization. Effects of concentration and treatment duration of both drugs on activation and development of goat oocytes were examined in this study. The best oocyte activation (87-95%), assessed by pronuclear formation, was obtained when oocytes matured in vitro for 27 hr were treated with 0.625-20 microM ionomycin for 1 min before 6-hr incubation in 2 mM 6-DMAP. Progressional reduction of time for 6-DMAP-exposure showed that the duration of 6-DMAP treatment can be reduced to 1 hr from the second up to the fourth hour after ionomycin, to produce activation rates greater than 85%. Activation rates of oocytes in vitro matured for 27, 30, and 33 hr were higher (P < 0.05) than that of oocytes matured for 24 hr when treated with ionomycin plus 1-hr (the third hour) 6-DMAP, but a 4-hr incubation in 6-DMAP enhanced activation of the 24-hr oocytes. Goat activated oocytes began pronuclear formation at 3 hr and completed it by 5-hr post ionomycin. An extended incubation in 6-DMAP (a) impaired the development of goat parthenotes, (b) quickened both the release from metaphase arrest and the pronuclear formation, and (c) inhibited the chromosome movement at anaphase II (A-II) and telophase II (T-II), leading to the formation of one pronucleus without extrusion of PB2. In conclusion, duration, concentration, and timing of ionomycin and 6-DMAP treatment had marked effects on goat oocyte activation, and to obtain better activation and development, goat oocytes matured in vitro for 27 hr should be activated by 1 min exposure to 2.5 microM ionomycin followed by 2 mM 6-DMAP treatment for the third hour.  相似文献   

6.
The present study was conducted to examine the effect of oxygen tension during in vitro culture (IVC) of porcine oocytes/embryos on their development and quality using two different culture systems. Porcine cumulus oocyte complexes (COCs) were matured (IVM) and fertilized (IVF) in vitro, and subsequently cultured for 6 days in a simple and economical portable incubator or a standard CO(2) incubator. While the same temperature (38.5 degrees C) and CO(2) concentration (5%) were used in the both systems, the portable incubator was operated in a negative air pressure (- 300 mmHg) to create an O(2) level at 8-10% (low O(2) concentration), or in a positive air pressure (high O(2) concentration). To compare the two culture systems, IVM and IVF of COCs and subsequent IVC of in vitro produced (IVP) embryos were carried out in the portable incubator with a low O(2) concentration (Group I) or in the standard incubator with a high O(2) concentration (Group II). To assess the effect of O(2) concentration on IVC of IVP embryos, some oocytes that had been cultured in the standard incubator for IVM and IVF were subsequently cultured in the portable incubator with a low O(2) concentration (Group III) or a high O(2) concentration (Group IV). The occurrence of DNA fragmentation in the blastocysts produced under different culture conditions was examined by TUNEL staining to assess embryo quality. The rates of oocytes that reached MII and were penetrated by spermatozoa following IVF did not differ between the two incubation systems. In contrast, the proportions of development to blastocysts and the mean cell number of blastocysts in Group I were higher than those in Group II and Group IV. The index of DNA-fragmented nucleus in the blastocysts of Group I was significantly lower than that in the blastocysts of Group II. Therefore, low oxygen tension during IVM, IVF and IVC enhanced the subsequent development of IVP embryos to the blastocyst stage and improved their quality.  相似文献   

7.
Cheng WM  Sun XL  An L  Zhu SE  Li XH  Li Y  Tian JH 《Animal biotechnology》2007,18(2):131-141
The aim of this study was to investigate the effect of electrical pulse, ethanol, and ionomycin combined with cycloheximide (CHX), cytochalasin B (CB), and 6-dimethylaminopurine (6-DMAP) on parthenogenetic developmental competence of in vitro matured porcine oocytes. In experiment 1, oocytes were treated with direct current electrical pulse (DC pulse) and then incubated in the NCSU-23 medium supplemented with CHX, 6-DMAP, CB + CHX, and CB + 6-DMAP for 6 h, respectively. The rate of blastocyst development in DC pulse + CB + 6-DMAP group was significantly higher than those in other groups (42.4% vs 23.9% approximately 35.8%; P < 0.05); however, there were no differences in both of the cleavage rate and the cell number of blastocysts among four groups. In experiment 2, oocytes were treated with NCSU-23 medium containing 20 muM ionomycin for 40 min and then incubated in the NCSU-23 medium supplemented with CHX, 6-DMAP, CB + CHX and CB + 6-DMAP for 6 h, respectively. The rates of cleavage and blastocyst development in ionomycin + 6-DMAP group were higher than those obtained in other groups (66.2% vs 46.3% approximately 57.3%; 22.3% vs 7.4% approximately 16.1%; P < 0.05). In experiment 3, the activation effects of ethanol combined with 6-DMAP, CHX, CB + 6-DMAP and CB + CHX were investigated. The rates of cleavage and blastocyst development in ethanol + CB + 6-DMAP group were significantly higher than those in other groups (55.5% vs 42% approximately 46.2%; 18.0% vs 7.1% approximately 11.9%; P < 0.05). In experiment 4, the optimal activation protocols in each group plus DC pulse + ionomycin + 6-DMAP were compared. The results showed the rates of cleavage in DC pulse + CB + 6-DMAP group and ionomycin + 6-DMAP were higher than those in ethanol + CB + 6-DMAP and DC pulse + ionomycin + 6-DMAP (73.8-74.4% vs 56.5-57.5%; P < 0.05), but the blastocyst development only in DC pulse + CB + 6-DMAP group was significantly higher than that in other groups (34.1% vs 13.4% approximately 22.3%; P < 0.05). Total cell number of blastocysts in the group of DC pulse + ionomycin + 6-DMAP was higher than that in other groups (34.1 vs 25.3-27.2; P < 0.05). In conclusion, DC pulse, ethanol, CB, and 6-DMAP all affected the parthenogenesis of porcine oocytes matured in vitro, but their combination of DC pulse + CB + 6-DMAP showed the best result in both of cleavage and blastocyst development.  相似文献   

8.
The objective of this study was to optimize the protocols for bovine oocytes activation through comparing the effectiveness of different treatments on the activation and subsequent development of oocytes and examining the effects of two combined activation treatments on the blastocyst apoptosis and ploidy. Cumulus-oocyte complexes (COCs) were recovered from abattoir-derived ovaries and matured in vitro. After maturation, cumulus-free oocytes were activated according to the experiment designs. Activated oocytes were cultured in vitro in modified synthetic oviductal fluid (mSOF) medium and assessed for pronuclear formation (15-16 h), cleavage (46-48 h) and development to the blastocyst stage. In Experiment 1, the matured oocytes were treated with single activation agents, including ionomycin (5 microM for 5 min), ethanol (7% for 7 min), calcium ionophore A23187 (5 microM for 5 min) or strontium (10mM for 5h). The pronuclear formation and cleavage rate were higher significantly in ionomycin (39.0 and 30.7%) and ethanol (41.5 and 28.1%) treatment alone compared to other treatments (9.7-25.2 and 11.3-23.7%, respectively, P<0.05). Very low blastocyst rates (3.9-5.3%) resulted which were not significantly different among treatments (P>0.05). For the combined activation treatment (Experiment 2), the same concentrations of ionomycin and ethanol as in Experiment 1 were used in combination with either 6-dimethylaminopurine (6-DMAP, 2.0 mM for 3 h) or cycloheximide (CHX)+cytochalasin B (CB, 10 microg/ml for 3 h). The pronuclear formation, cleavage rate, blastocyst rate and cell number of blastocyst were higher significantly (P<0.05) in ionomycin+6-DMAP treatment (67.1, 69.2, 28.0 and 91.3%, respectively) and ethanol+CHX+CB treatment (68.9, 70.2, 25.5 and 89.3%, respectively) compared to other treatments (11.7-58.1, 10.2-47.1, 1.5-24.2 and 34.2-62.7%, respectively). In Experiment 3, the parthenogenetic blastocysts produced by activation with ionomycin+6-DAMP and ethanol+CHX+CB and in vitro fertilized blastocysts (control group) were examined for apoptosis using a terminal deoxynucleotidyl transferase mediated deoxyuridine 5-triphosphate nick-end labeling (TUNEL) assay. The ethanol+CHX+CB treatment (7.0%) showed significantly lower blastocyst apoptosis index compared to ionomycin+6-DAMP treatment (9.1%, P<0.05). Furthermore, the chromosomal composition in the parthenotes embryos differed (P<0.05) among treatments. The percentage of haploid parthenotes was higher in ionomycin+6-DMAP treatment than ethanol+CHX+CB treatment. These results suggested that ethanol+CHX+CB treatment was more favorable protocol for parthenogenesis of bovine oocytes.  相似文献   

9.
This study investigated the effect of treatment with 6-dimethylaminopurine (6-DMAP) following fusion on in vitro development of porcine nuclear transfer (NT) embryos. Frozen thawed ear skin cells were transferred into the perivitelline space of enucleated oocytes. Reconstructed oocytes were fused and activated with electric pulse in 0.3 M mannitol supplemented with either 0.1 or 1.0 mM CaCl(2). In each calcium concentration, activated oocytes were divided into three groups. Two groups of them were exposed to either ionomycin (I + 6-DMAP or 6-DMAP alone. In experiment 2, fused NT embryos in 0.3 M mannitol containing 1.0 mM CaCl(2) were exposed to 6-DMAP either immediately or 20 min after fusion/activation. For 0.1 mM CaCl(2), oocytes activated with either I + 6-DMAP or 6-DMAP alone showed a higher (P < 0.05) developmental rate to the blastocyst stage than those activated with an electric pulse alone (26.7 and 22.5 vs. 12.5%). For 1.0 mM CaCl(2), oocytes activated with either I + 6-DMAP or 6-DMAP alone showed significantly higher (P < 0.05) developmental rate to the blastocyst stage (35.6 and 28.3 vs. 19.8%). Developmental rate to the blastocyst stage was (P < 0.05) increased in NT embryos activated with 6-DMAP 20 min after fusion. 6-DMAP made a higher and wider Ca(2+) transient compared to that induced by electric pulses (Fig. 3). The fluctuation lasted during the time that oocytes were cultured in 6-DMAP. Regardless of Ca(2+) concentration in fusion medium, activation with 6-DMAP following electric pulses supported more development of porcine NT embryos. Activation of NT embryos with 6-DMAP after fusion in the presence of 1.0 mM CaCl(2) could support better developmental rate to the blastocyst stage.  相似文献   

10.
The objective of this study was to compare the embryo development of prepubertal goat oocytes after ICSI and IVF procedures. Three experiments were carried out to achieve this objective. (1) An analysis of the efficiency of ICSI with or without chemical stimulation (5 microM ionomycin for 5 min and 2 mM 6-DMAP for 4 h). In this experiment, Sham and parthenogenetic oocyte groups were used as controls. (2) According to the results from experiment 1, we investigated the nuclear stage of zygotes obtained with ICSI and IVF, and their further embryo development. (3) We compared two embryo culture media (G1.3/G2.3 and TCM199 with granulosa cells) on the embryo development of zygotes obtained from ICSI and IVF procedures. Experiment 1 demonstrated that prepubertal goat oocytes needed additional chemical stimulation, after conventional ICSI, to form zygotes with male and female pronuclei (2PN). Experiment 2 showed that significantly higher percentages of -zygotes were found in ICSI-oocytes than IVF-oocytes (40.0 and 25.1%, respectively; P < 0.005). The percentage of embryos obtained and developed beyond the 8-cell stage was significantly higher for ICSI than for IVF and parthenogenetic embryos (22.8, 10.3 and 3.8%, respectively; P < 0.05). Experiment 3 showed that G1.3/G2.3 medium improved the embryo development of ICSI- and IVF-oocytes compared to co-culture with granulosa cells in TCM medium. The highest percentage of embryo development beyond 8-16 cells was found in ICSI-oocytes cultured in G1.3/G2.3 medium. However, a reduced number of morulae were found in this study.  相似文献   

11.
The objective of this study was to develop a simple and portable CO2 incubator using effervescent granules (EG) and to examine the effect of negative and positive air pressure for in vitro maturation (IVM), fertilization (IVF) and culture (IVC) of bovine oocytes. In experiment 1, cumulus-oocyte complexes (COCs) were matured (22 h), fertilized (5 h) and cultured (7 days) using 0.25, 0.5 or 1.0 g of EG per 0.6 l added to maintain an optimum level of CO2 (approximately 3, 6 or 12%, respectively) for in vitro production of embryos. Control oocytes, zygotes and embryos were cultured in a standard CO2 incubator. The blastocyst production rates observed on Days 7 to 9 after insemination were 20.5+/-4.2%, 18.5+/-3.9% and 28.7+/-5.1% for the 0.25 g EG, 0.5 g EG treatments and control, respectively. These rates were significantly higher (P < 0.05) than that of the 1.0 g EG treatment (8.7+/-2.6%). The number of cells in the inner cell mass (ICM) and trophectoderm (TE) produced from blastocysts using the control procedure were 40.8+/-2.9 and 81.2+/-5.3, respectively, and were higher (P < 0.05) compared to the 0.50 g EG (34.6+/-2.9 and 66.8+/-5.7) and 1.0 g EG treatments (33.4+/-3.4 and 67.2+/-7.3). In experiment 2, COCs were placed in a small box with 0.25 g of EG so that the effects on IVM, IVF and IVC of positive or negative air pressure could be compared. The blastocyst production rate observed in the negative air pressure treatment (29.6+/-4.6%) was higher (P < 0.01) than that of the positive air pressure treatment (6.2+/-1.5%) or the normal treatment pressure (P < 0.05; 18.7+/-4.2%) but did not differ from that of the control (30.7+/-4.4%). These results indicate that this simple type of incubator with negative air pressure can be successfully used for in vitro production of bovine embryos and could be used at the field level.  相似文献   

12.
Booth PJ  Holm P  Callesen H 《Theriogenology》2005,63(7):2040-2052
Reducing oxygen concentration from atmospheric levels during in vitro culture generally, but not invariably, improves embryonic development across a range of species. Since the few published reports of such an action in the pig are contradictory--perhaps a consequence of the derivation of the embryos prior to culture--a study was performed to examine the effect of O2 tension during culture on three different types of porcine embryos, namely: in vivo flushed embryos, and in vitro matured oocytes either fertilized in vitro or parthenogenetically activated. In vivo embryos (n=208) were flushed at the 2-8 cell stage. Cumulus oocyte complexes (COCs) destined for IVF or parthenogenetic activation were derived from 2 to 6 mm, post-pubertal ovarian follicles and matured for 48 h in TCM-199. Parthenogenones were generated by activating denuded oocytes (n=573) with 10 mM calcium ionophore, followed by 2 mM DMAP prior to culture. The IVF embryos (n=971) were produced by fertilizing COCs (day 0) with fresh ejaculated semen in modified tris-based medium for 6 h before cumulus removal. All embryos were cultured in BECM-3 containing 12 mg/mL fatty-acid-free BSA up to day 4, followed by BECM-3 supplemented with 10% calf serum until day 7. The gas environment for IVM/IVF was 5% CO2 in air, while that for IVC was either 5% CO2 in air or 5% O2, 5% CO2 and 90% N2. Low O2 tension increased both day 7 blastocyst rates (high versus low O2, respectively; 9.3+/-2.9%: 26/280; 23.9+/-4.2%: 71/293; P<0.001) and total cell numbers (39.3+/-2.9, n=24 versus 61.2+/-7.7, n=61; P=0.01) of parthenogenetically activated embryos. In contrast, such a treatment neither affected blastocyst rates (89.3+/-6.9 versus 87.8+/-7.5) nor cell numbers (87.4+/-4.5 versus 87.7+/-4.8) of in vivo flushed embryos. The effect of reduced O2 concentration on IVF embryos was intermediate, since only cell numbers were improved (69.8+/-3.5, range=17-204, n=49; 88.5+/-5.8, range=28-216; n=66; P<0.01), equivalent to that recorded in in vivo flushed embryos. However, blastocyst rates were unaffected (10.7+/-1.4%: 51/486; 12.9+/-2.2%: 67/485). The effect, when present, of reducing O2 concentration from 20 to 5% was beneficial for pig in vitro embryonic development. The responses are apparently dependent on firstly, the manner by which the embryonic cell cycle is activated and secondly, the derivation of the tissue prior to placement into culture, if the observed resilience of in vivo embryos is independent of treatment duration.  相似文献   

13.
The viability of SCNT embryos is poor, with an extremely low cloned piglet production rate. In the present work, we studied the effect of three activation protocols based on ionomycin treatment (5 microM ionomycin for 5 min and incubated in 2 mM 6-DMAP for 3.5 h) or electric stimuli (two square wave electrical DC pulses of 1.2 kV/cm for 30 micros) combined or not with 6-DMAP on parthenogenetic embryo development. Oocytes activated by ionomycin plus 6-DMAP showed lower cleavage (47.2 vs. 78.5-81.5; p < 0.05) and blastocyst rates (11.3 vs. 29.2-32.1; p < 0.05) than those activated by electrical and electrical plus 6-DMAP treatments. Also, we studied the effect of addition of serum to maturation medium (0% vs. 10%) on nuclear maturation and further parthenogenetic and SCNT embryo development. We observed in the parthenogenetic embryos that cleavage rates in the serum-free group were significantly higher than in the serum-supplemented group (81.8 vs. 69.6% respectively; p < 0.05), although these differences were not detected in blastocyst rates or blastocyst nuclei numbers. Regarding SCNT embryos, no significant differences were observed in cleavage or blastocyst rates between different experimental groups of SCNT embryos. In conclusion, electrical pulse followed or not by 6-DMAP was found to be an efficient procedure to artificially activate MII porcine oocytes. Moreover, the addition of serum to oocyte maturation media did not seem to improve parthenogenetic or SCNT porcine embryo development.  相似文献   

14.
The aim of the study was to determine whether the selection of immature oocytes by a combination of cumulus-oocyte-complexes (COCs) morphology and staining with brilliant cresyl blue (BCB) would be helpful in selecting developmentally competent oocytes, and thereby increase the efficiency of blastocyst production from ovarian oocytes of FSH-primed, adult goats. In a second experiment the interaction between oocyte quality and semen donor was assessed. In a third experiment the usefulness of Vero cells for co-culture with goat embryos was investigated. In the pool of morphologically normal COCs recovered from ovaries following slicing (21.9+/-11.0), the mean rate of COCs classified as BCB+ was 85.6%, and the BCB- was approximately 11%. Oocytes classified as grade 1 and BCB+ exhibited the highest developmental competence (P<0.001) after in vitro maturation and fertilization compared with oocytes of grade 1 BCB- and grade 2 BCB+ or BCB-. There were no significant differences in developmental competence in grade 2 oocytes, regardless of BCB coloration. No significant differences in embryo cleavage and blastocyst formation rates among three bucks were observed when morphologically normal, BCB+ oocytes were used. For all tested bucks, differences in embryo production efficiency were related only to the oocyte quality. Similar blastocyst rates were developed from embryos co-cultured with goat oviduct epithelial cells (34.3%) and with Vero cells (33.3%). These results show that the most important criterion for selection of COCs before maturation is the visual assessment of morphological features. Staining with BCB of COCs recovered from adult goats does not enhance efficiency of selection of developmentally competent oocytes for IVF.  相似文献   

15.
The effects of activation by 6-dimethylaminopurine (6-DMAP) and cycloheximide (CHX) on the development and chromosomal complement of sheep parthenogenetic and SCNT embryos were investigated. The results revealed that the blastocyst development of parthenogenetic embryos was significantly higher (P < 0.05) in 6-DMAP activated oocytes, compared to those activated with CHX (21.0 +/- 0.9 vs. 14.9 +/- 0.5, respectively). In contrast, the blastocyst frequencies did not significantly differ (P > 0.05) between the two activation treatment groups for SCNT embryos. The 6-DMAP or CHX treatment did not result in any significant difference in the blastocyst total cell number in either parthenote or SCNT embryos. The chromosomal analysis revealed that all the parthenogenetic embryos (100.0%) derived from 6-DMAP treatment, were chromosomally abnormal whereas in CHX-treated embryos, it was significantly lowered (93.6%, P < 0.05). Conversely, the proportions of chromosomally abnormal SCNT embryos did not significantly differ (P > 0.05) among the 6-DMAP and CHX- treated embryo groups (60.0% vs. 56.2%, respectively). This study demonstrated that oocyte activation agents such as DMAP and CHX have differing effects on meiotic or mitotic nuclei. The study also highlighted the feasibility of using bovine X and Y chromosome specific painting probes in sheep embryos.  相似文献   

16.
Bovine oocyte activation is one of the essential elements that determine the success of nuclear transfer and the subsequent development of cloned embryos. Three methods for oocyte activation, including 5 microM ionomycin (5 min, Group 1) alone, ionomycin+1.9 mM 6-dimethylaminopurine (DMAP, 3h, Group 2), and ionomycin+10 microg/ml cycloheximide (CHX, 3h, Group 3) were compared for the development of embryos produced by somatic nuclear transfer (SCNT) to parthenotes and IVF counterparts. At 19-h post-activation/insemination (hpa/hpi), 27.5% of oocytes in Group 2 cleaved and this rate was greater (P<0.05) than other groups (Group 1, 2.1%; Group 3, 3.0%). None of the oocytes in the IVF control group cleaved at 19-22 hpi. At 24 hpa, the rates of cleavage of oocytes in Group 2 (52.1%) were greater (P<0.05) than those in Groups 1 and 3 (7 and 38.3%, respectively). Only six oocytes (3.3%) in the IVF control group cleaved at 24 hpi. The overall cleavage rates of oocytes in Group 2 (85.5%) at 48 hpa were greater (P<0.05) than other treatments, but it did not show any difference when compared with the IVF control group (75.0%). The development rate to two-cell stage embryos of Group 2 was consistently greater at all observation points followed by Groups 3 and 1. Similar results were obtained in SCNT embryos, but the rates of cleavage at 48 hpi and blastocyst development in Group 2 (68.4 and 16.3%, respectively) did not differ from Group 3 (63.0 and 13.1%, respectively). The chromosomal composition in the parthenotes and SCNT embryos differed (P<0.05) among treatments. In Groups 1 and 3, greater percentages of haploid parthenotes (86 and 71%, respectively) were observed. In contrast, 84% of parthenotes in Group 2 had abnormal ploidy (44% polyploid and 40% mixoploid). In the case of SCNT embryos, Groups 1 and 3 had greater percentages of diploid chromosomal sets (77 and 70%, respectively), whereas 54% in Group 2 were polyploid or mixoploid. These results indicate that DMAP treatment after ionomycin greatly increases the developmental rates of parthenotes, but did not differ in blastocyst development compare with CHX treatment. However, DMAP treatment increased the time-dependent cleavage rate to two-cell stage embryos. Further, it greatly enhanced the incidence of chromosomal abnormalities in parthenotes and SCNT embryos. Hence, it is concluded that CHX combined with ionomycin is more desirable than DMAP for oocyte activation during nuclear transfer in cattle.  相似文献   

17.
Tseng JK  Tang PC  Ju JC 《Theriogenology》2006,66(5):1073-1082
The precise physiological causes that result in reduced development of oocytes after heat shock (HS) are not clear. In this study, apoptosis, heat shock protein70 (hsp70), and in vitro development of porcine oocytes were evaluated after HS. Porcine cumulus-oocyte complexes (COCs) were subjected to in vitro maturation for 42 h. The matured oocytes were then heated at 41.5 degrees C for 0 h (control, C0h), 1 h (HS1h), 2 h (HS2h), or 4 h (HS4h). An additional group of oocytes was cultured for 4 h without HS (control, C4h). In Experiment 1, expression of hsp70 was detected by Western-blotting and no difference between controls and HS groups was observed. In Experiment 2, apoptosis of matured oocytes after HS was examined by Annexin V-FITC and TUNEL. No significant TUNEL-positive signals were detected in the heated oocytes compared to the controls, but the intensity of Annexin V-FITC labeling among different groups increased with length of HS and in vitro culture (P<0.05). Oocytes were parthenogenetically activated by an electric pulse plus 6-DMAP (Experiment 3). Mean (+/-S.E.M.) embryonic development in HS2h (cleavage: 42+/-29%; blastocyst: 11+/-10%) and HS4h (cleavage: 36+/-28%; blastocyst: 11+/-8%) were decreased when compared to those in C0h (cleavage: 63+/-12%; blastocyst: 24+/-14%) and C4h (cleavage: 66+/-8%; blastocyst: 21+/-11%). Numbers of blastocysts with TUNEL-positive signals were similar among groups, but the signals increased before the eight-cell stage in HS groups (P<0.05). In conclusion, developmental competence of matured pig oocytes was compromised after heat shock, but it was not closely associated with the expression of oocyte hsp70. However, there may be a link between apoptosis and developmental competence of porcine oocytes.  相似文献   

18.
Wani NA 《Theriogenology》2008,69(5):591-602
Experiments were conducted to study the efficiency of sequential treatments of ionomycine and ethanol combined with phosphorylation inhibitor (6-dimethylaminopurine) or the specific maturation promoting factor inhibitor (roscovitine) in inducing artificial activation in dromedary M-II oocytes. Cumulus oocyte complexes (COCs), collected from slaughterhouse ovaries were cultured at 38.5 degrees C in an atmosphere of 5% CO2 in air for 24-48 h. In experiment 1, the COCs were either fertilized in vitro or activated with 5 microM ionomycine for 5 min or 7% ethanol for 7 min, both followed by exposure to 6-diethylaminopurine or roscovitine for 4h. After 14-15 h of in vitro culture, the oocytes were fixed and stained with 1% aceto-orcein to evaluate their nuclear status. In experiment 2, the oocytes were activated in the same manner as in experiment 1 but were cultured for 7 days to evaluate their post-parthenogenetic development. In experiment 3, oocytes were exposed to the ionomycine for 2, 3, 4 or 5 min to evaluate the better exposure time while as in experiment 4, the oocytes matured for 28-48 h were activated to see the effect of aging on post-parthenogenetic development. Higher proportion (P<0.01) of oocytes was activated in ionomycine/6-DMAP and ionomycine/roscovitine groups when compared with ethanol/6-DMAP, ethanol/roscovitine and in vitro fertilized groups. However, there was no difference (P>0.05) in the proportion of oocytes activated with ethanol when compared with in vitro fertilized group. No significant difference was seen on the proportion of morula on day 7 of culture, however the development to blastocyst stage was higher (P<0.01) in ionomycine/6-DMAP and ionomycine/roscovitine when compared with ethanol/6-DMAP and ethanol/roscovitine treated oocytes. A higher proportion of oocytes reached blastocyst stage when they were exposed to ionomycine for 3 min but they were not significantly different from the others (P>0.05). The proportion of blastocysts obtained was higher (P<0.05) in oocytes activated after 28 h of maturation when compared with oocytes activated after 32, 36, 40, 44 and 48 h of maturation. In conclusion, a protocol for chemical activation of dromedary camel oocytes with ionomycine/6-DMAP is demonstrated and optimized in the present study for further use in the development of assisted reproductive techniques in this species.  相似文献   

19.
Bormann CL  Ongeri EM  Krisher RL 《Theriogenology》2003,59(5-6):1373-1380
Only a small proportion of goat oocytes selected for in vitro oocyte maturation (IVM) can successfully complete cytoplasmic maturation and support embryonic development. To produce goat blastocysts more efficiently in vitro, it is necessary to identify factors required during oocyte maturation. The objective of this study was to determine the role of vitamins during maturation of caprine oocytes in semi-defined medium on subsequent developmental capacity in vitro. Cumulus oocyte complexes (COCs) collected from a local abattoir were matured in synthetic oviductal fluid (SOF) medium supplemented with BSA, LH, FSH, and EGF in the presence or absence of MEM vitamins for 24 h. The COCs were co-incubated with frozen-thawed sperm in Bracket and Oliphant fertilization medium for 18-22 h. Embryos were cultured in G1.2 medium for 72 h followed by culture in G2.2 medium for an additional 72 h. Addition of vitamins significantly increased (P<0.05) overall blastocyst development (16.4+/-1.2% versus 12.3+/-1.1%), and tended to increase (P<0.06) the percentage of cleaved embryos (61.4+/-3.0% versus 52.7+/-2.6%). Addition of MEM vitamins to SOF maturation medium significantly increased (P<0.05) mean blastocyst cell number compared with control medium (107.7+/-6.0 versus 85.1+/-6.3). Hatched blastocysts tended to have increased (P<0.06) cell numbers in the vitamin-treated group (150.5+/-8.4 versus 123.4+/-8.8). These results suggest that addition of vitamins during oocyte maturation is beneficial for subsequent blastocyst development and viability.  相似文献   

20.
Development of an effective activation protocol is of great importance for studying oocyte competence and embryo cloning. Experiments were designed to examine effects of intracellular calcium elevating agents such as calcium ionophore A23187 (CaA) and ethanol, or protein synthesis and phosphorylation inhibitors such as cycloheximide (CH) and 6-dimethylaminopurine (6-DMAP), or a sequential combination of these agents on both parthenogenetic development and protein patterns of newly matured bovine oocytes. Oocytes were matured for 24 hr in M-199 supplemented with follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol at 39°C in humidified air. They were then activated by various treatments and cultured in KSOM. Protein patterns at 15 hr after treatment were determined on 8–15% gradient SDS-PAGE and silver stained. Results demonstrated that none of the chemical agents—CaA, ethanol, 6-DMAP, or cycloheximide—could effectively induce parthenogenetic development of young bovine oocytes. When compared with the single treatments, sequentially combined treatments of CaA with 6-DMAP or with cycloheximide plus cytochalasin D (CD) significantly increased the rates of cleavage (78–82% versus 3–13%) and blastocyst development (31–40% versus 0%), which were comparable with those of IVF group (80% and 35%, respectively; P > 0.05). Supplementation with CD to the combined CaA and CH treatment improved rates of cleavage and blastocyst development versus without CD supplementation (31% versus 7%; P < 0.05). Fluorescent microscopy revealed that 95% (n = 40) of oocytes treated with CaA plus 6-DMAP had one pronucleus (PN) and one polar body (PB), while 88% (n = 40) in the CaA plus cycloheximide–treated group had one PN and two PBs and 85% (n = 40) in CaA plus cycloheximide and CD group had two PNs and one PB. Treatment by CaA alone resulted in 73% of oocytes (n = 40) arrested at a metaphase stage with two PBs (named as metaphase III or MIII). Protein patterns were similar for chemically activated and in vitro–fertilized (IVF) oocytes in that the 138- and 133-kDa proteins, whose functions are not yet known, were present in the metaphase-stage (MII 24 hr, MII 40 hr, and MIII) oocytes but were absent in PN-stage oocytes regardless of treatment. Therefore, these proteins seem to be metaphase-associated proteins. Taken together, we conclude that optimal parthenogenetic development of newly matured bovine oocytes can be obtained by calcium ionophore treatment followed by incubation in either 6-DMAP or cycloheximide plus cytochalasin D and that the reduction of the 138- and 133-kDa proteins might be necessary for the full activation of bovine oocytes. Mol. Reprod. Dev. 49:298–307, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号