首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glycogen synthase kinase-3 (GSK-3) is regulated by various extracellular ligands and phosphorylates many substrates, thereby regulating cellular functions. Using yeast two-hybrid screening, we found that GSK-3beta binds to AKAP220, which is known to act as an A-kinase anchoring protein. GSK-3beta formed a complex with AKAP220 in intact cells at the endogenous level. Cyclic AMP-dependent protein kinase (PKA) and type 1 protein phosphatase (PP1) were also detected in this complex, suggesting that AKAP220, GSK-3beta, PKA, and PP1 form a quaternary complex. It has been reported that PKA phosphorylates GSK-3beta, thereby decreasing its activity. When COS cells were treated with dibutyryl cyclic AMP to activate PKA, the activity of GSK-3beta bound to AKAP220 decreased more markedly than the total GSK-3beta activity. Calyculin A, a protein phosphatase inhibitor, also inhibited the activity of GSK-3beta bound to AKAP220 more strongly than the total GSK-3beta activity. These results suggest that PKA and PP1 regulate the activity of GSK-3beta efficiently by forming a complex with AKAP220.  相似文献   

2.
Glycogen synthase kinase-3beta (GSK-3beta) is a multifunctional enzyme involved in a variety of biological events including development, glucose metabolism and cell death. Its activity is inhibited by phosphorylation of the Ser9 residue and up-regulated by Tyr216 phosphorylation. Activated GSK-3beta increases phosphorylation of tau protein and induces cell death in a variety of cultured neurons, whereas phosphorylation of phosphatidylinositol-3 (PI-3) kinase-dependent protein kinase B (Akt), which inhibits GSK-3beta activity, is one of the best characterized cell survival signaling pathways. In the present study, the cholinergic immunotoxin 192 IgG-saporin was used to address the potential role of GSK-3beta in the degeneration of basal forebrain cholinergic neurons, which are preferentially vulnerable in Alzheimer's disease (AD) brain. GSK-3beta co-localized with a subset of forebrain cholinergic neurons and loss of these neurons was accompanied by a transient decrease in PI-3 kinase, phospho-Ser473Akt and phospho-Ser9GSK-3beta levels, as well as an increase in phospho-tau levels, in the basal forebrain and hippocampus. Total Akt, GSK-3beta, tau and phospho-Tyr216GSK-3beta levels were not significantly altered in these brain regions in animals treated with 192 IgG-saporin. Systemic administration of the GSK-3beta inhibitor LiCl did not significantly affect cholinergic marker or phospho-Ser9GSK-3beta levels in control rats but did preclude 192-IgG saporin-induced alterations in PI-3 kinase/phospho-Akt, phospho-Ser9GSK-3beta and phospho-tau levels, and also partly protected cholinergic neurons against the immunotoxin. These results provide the first evidence that increased GSK-3beta activity, via decreased Ser9 phosphorylation, can mediate, at least in part, 192-IgG saporin-induced in vivo degeneration of forebrain cholinergic neurons by enhancing tau phosphorylation. The partial protection of these neurons following inhibition of GSK-3beta kinase activity suggests a possible therapeutic role for GSK-3beta inhibitors in attenuating the loss of basal forebrain cholinergic neurons observed in AD.  相似文献   

3.
Serum and glucocorticoid-inducible kinase-like kinase (SGKL) has been identified as a new integrator that decodes lipid signals produced by the activation of phosphoinositide 3-kinase (PI3K). SGKL is activated via its lipid-binding domain (phox homology domain) in response to PI3K signaling. However, downstream targets of SGKL as well as the role of SGKL as a mediator in PI3K signaling in human tissues remain to be established. In this study, we identified human glycogen synthase kinase 3 beta (GSK-3beta) as a specific interacting partner with SGKL in a yeast two-hybrid screening of human brain cDNA library. The association between these two proteins is confirmed independently in human embryonic kidney (HEK293) cells by co-immunoprecipitation. Furthermore, the kinase activity of wild-type SGKL was required for the in vitro phosphorylation of a GSK-3 crosstide fusion protein at serine-21/9 as demonstrated with a Phospho-GSK-3alpha/beta (Ser21/9) specific antibody. The present results provide strong evidences that SGKL could utilize GSK-3beta as a direct downstream target by phosphorylating GSK-3beta at serine-9.  相似文献   

4.
5.
The goal of this study was to determine whether the intracellular distribution of the proapoptotic enzyme glycogen synthase kinase-3 beta (GSK-3 beta) is dynamically regulated by conditions that activate apoptotic signaling cascades. In untreated human neuroblastoma SH-SY5Y cells, GSK-3 beta was predominantly cytosolic, although a low level was also detected in the nucleus. The nuclear level of GSK-3 beta was rapidly increased after exposure of cells to serum-free media, heat shock, or staurosporine. Although each of these conditions caused changes in the serine 9 and/or tyrosine phosphorylation of GSK-3 beta, neither of these modifications was correlated with nuclear accumulation of GSK-3 beta. Heat shock and staurosporine treatments increased nuclear GSK-3 beta prior to activation of caspase-9 and caspase-3, and this nuclear accumulation of GSK-3 beta was unaltered by pretreatment with a general caspase inhibitor. The GSK-3 beta inhibitor lithium did not alter heat shock-induced nuclear accumulation of GSK-3 beta but increased the nuclear level of cyclin D1, indicating that cyclin D1 is a substrate of nuclear GSK-3 beta. Thus, the intracellular distribution of GSK-3 beta is dynamically regulated by signaling cascades, and apoptotic stimuli cause increased nuclear levels of GSK-3 beta, which facilitates interactions with nuclear substrates.  相似文献   

6.
Thienylhalomethylketones, whose chemical, biological, and pharmaceutical data are here reported, are the first irreversible inhibitors of GSK-3β described to date. Their inhibitory activity is likely related to the cysteine residue present in the ATP-binding site, which is proposed as a relevant residue for modulation of GSK-3 activity. The good cell permeability of the compounds allows them to be used in different cell models. Overall, the results presented here support the potential use of halomethylketones as pharmacological tools for the study of GSK-3β functions and suggest a new mechanism for GSK-3β inhibition that may be considered for further drug design.  相似文献   

7.
Overexpression of DeltaNp63 has been observed in a number of human cancers, suggesting a role for DeltaNp63 in carcinogenesis. In the present study, we show that inhibition of glycogen synthase kinase-3beta (GSK-3beta) by lithium chloride (LiCl) elicited a stimulatory effect on DeltaNp63 promoter activity in HEK 293T cells. Exposure to LiCl induced DeltaNp63 promoter activation as well as DeltaNp63 protein expression in the cells. The effect of GSK-3beta on DeltaNp63 expression was further confirmed by the use of two highly specific GSK-3beta inhibitors, SB216763 and SB415286. Further study showed the presence of a putative beta-catenin responsive element (beta-catenin-RE) in the DeltaNp63 promoter region, and the stimulation of DeltaNp63 promoter activity by GSK-3beta inhibitor is markedly abolished by mutation or deletion of the putative beta-catenin-RE. Data are also presented to show that beta-catenin acts together with Lef-1 to influence DeltaNp63 promoter activity and protein expression.  相似文献   

8.
Glycogen synthase kinase-3beta (GSK-3beta) has been described as a proline-directed kinase which phosphorylates tau protein at several sites that are elevated in Alzheimer paired helical filaments. However, it has been claimed that GSK-3beta can also phosphorylate the non-proline-directed KXGS motifs in the presence of heparin, including Ser262 in the repeat domain of tau, which could induce the detachment of tau from microtubules. We have analyzed the activity of recombinant GSK-3beta and of GSK-3beta preparations purified from tissue, using two-dimensional phosphopeptide mapping, immunoblotting with phosphorylation-sensitive antibodies, and phosphopeptide sequencing. The most prominent phosphorylation sites on tau are Ser396 and Ser404 (PHF-1 epitope), Ser46 and Thr50 in the first insert, followed by a less efficient phosphorylation of other Alzheimer phosphoepitopes (antibodies AT-8, AT-270, etc). We also show that the non-proline-directed activity at KXGS motifs is not due to GSK-3beta itself, but to kinase contaminations in common GSK-3beta preparations from tissues which are activated upon addition of heparin.  相似文献   

9.
Glycogen synthase kinase-3 (GSK-3beta) has been emerging as a key therapeutic target for type-2 diabetics, Alzheimer's disease, cancer, and chronic inflammation. For the purpose of finding biologically active and novel compounds and providing new idea for drug-design, we performed virtual screening using commercially available database. Three-dimensional common feature pharmacophore model was developed by using HipHop program provided in Catalyst software and it was used as a query for screening database. Recursive partitioning (RP) model was developed as a filtering system, which was able to classify active and inactive compounds. Eventually, a sequential virtual screening procedure (SQSP) was conducted by applying the common feature pharmacophore and RP model in succession to discover novel potent GSK-3beta inhibitors. The final 56 hit compounds were carefully selected considering predicted docking mode in crystal structures. Subsequent enzyme assay for human GSK-3beta protein confirmed that three compounds of these hit compounds exhibit micromolar inhibitory activity. Here, we report novel hit compounds and their binding mode in the active site of GSK-3beta crystal structure.  相似文献   

10.
Substrate recognition and specificity are essential for the reliability and fidelity of protein kinase function. GSK-3 has a unique substrate specificity that requires prior phosphorylation of its substrates. However, how the enzyme selects its phosphorylated substrates is unknown. Here, we combined in silico modeling with mutagenesis and biological studies to identify GSK-3-substrate interaction sites located within its binding cleft. Protein-protein docking of GSK-3beta and the phosphorylated cAMP responsive element binding protein (pCREB) (using the available experimentally determined structures), identified Phe67, Gln89, and Asn95 of GSK-3beta as putative binding sites interacting with the CREB phosphorylation motif. Mutations of these residues to alanine impaired GSK-3beta phosphorylation of several substrates, without abrogating its autocatalytic activity. Subsequently, expression of the GSK-3beta mutants in cells resulted in decreased phosphorylation of substrates CREB, IRS-1, and beta-catenin, and prevented their suppression of glycogen synthase activity as compared with cells expressing the wild-type GSK-3beta. Our studies provide important additional understanding of how GSK-3beta recognizes its substrates: In addition to prior phosphorylation typically required in GSK-3 substrates, substrate recognition involves interactions with GSK-3beta residues: Phe67, Gln89, and Asn95, which confer a common basis for substrate binding and selectivity, yet allow for substrate diversity.  相似文献   

11.
12.
Twomey C  McCarthy JV 《FEBS letters》2006,580(17):4015-4020
Previously we described presenilin-1 (PS1) as a GSK-3beta substrate [Kirschenbaum, F., Hsu, S.C., Cordell, B. and McCarthy, J.V. (2001) Substitution of a glycogen synthase kinase-3beta phosphorylation site in presenilin 1 separates presenilin function from beta-catenin signalling. J. Biol. Chem. 276, 7366-7375; Kirschenbaum, F., Hsu, S.C., Cordell, B. and McCarthy, J.V. (2001) Glycogen synthase kinase-3beta regulates presenilin 1 C-terminal fragment levels. J. Biol. Chem. 276, 30701-30707], though it has not been determined whether PS1 is a primed or unprimed GSK-3beta substrate. A means of separating GSK-3beta activity toward primed and unprimed substrates was identified in the GSK-3beta-R96A phosphate binding pocket mutant [Frame, S., Cohen, P. and Biondi, R.M. (2001) A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell 7, 1321-1327], which is unable to phosphorylate primed but retains the ability to phosphorylate unprimed GSK-3beta substrates. By using wild type GSK-3beta, GSK-3beta-R96A, and a pharmacological modulator of GSK-3beta activity, we demonstrate that PS1 is an unprimed GSK-3beta substrate. These findings have important implications for regulation of PS1 function and the pathogenesis of Alzheimer's disease.  相似文献   

13.
14.
Glycogen synthase kinase-3 (GSK-3) mediates epidermal growth factor, insulin and Wnt signals to various downstream events such as glycogen metabolism, gene expression, proliferation and differentiation. We have isolated here a GSK-3beta-interacting protein from a rat brain cDNA library using a yeast two-hybrid method. This protein consists of 832 amino acids and possesses Regulators of G protein Signaling (RGS) and dishevelled (Dsh) homologous domains in its N- and C-terminal regions, respectively. The predicted amino acid sequence of this GSK-3beta-interacting protein shows 94% identity with mouse Axin, which recently has been identified as a negative regulator of the Wnt signaling pathway; therefore, we termed this protein rAxin (rat Axin). rAxin interacted directly with, and was phosphorylated by, GSK-3beta. rAxin also interacted directly with the armadillo repeats of beta-catenin. The binding site of rAxin for GSK-3beta was distinct from the beta-catenin-binding site, and these three proteins formed a ternary complex. Furthermore, rAxin promoted GSK-3beta-dependent phosphorylation of beta-catenin. These results suggest that rAxin negatively regulates the Wnt signaling pathway by interacting with GSK-3beta and beta-catenin and mediating the signal from GSK-3beta to beta-catenin.  相似文献   

15.
16.
17.
UV irradiation has been reported to induce p21(WAF1/CIP1) protein degradation through a ubiquitin-proteasome pathway, but the underlying biochemical mechanism remains to be elucidated. Here, we show that ser-114 phosphorylation of p21 protein by glycogen synthase kinase 3beta (GSK-3beta) is required for its degradation in response to UV irradiation and that GSK-3beta activation is a downstream event in the ATR signaling pathway triggered by UV. UV transiently increased GSK-3beta activity, and this increase could be blocked by caffeine or by ATR small interfering RNA, indicating ATR-dependent activation of GSK-3beta. ser-114, located within the putative GSK-3beta target sequence, was phosphorylated by GSK-3beta upon UV exposure. The nonphosphorylatable S114A mutant of p21 was protected from UV-induced destabilization. Degradation of p21 protein by UV irradiation was independent of p53 status and prevented by proteasome inhibitors. In contrast to the previous report, the proteasomal degradation of p21 appeared to be ubiquitination independent. These data show that GSK-3beta is activated by UV irradiation through the ATR signaling pathway and phosphorylates p21 at ser-114 for its degradation by the proteasome. To our knowledge, this is the first demonstration of GSK-3beta as the missing link between UV-induced ATR activation and p21 degradation.  相似文献   

18.
19.
Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase member that activates the c-Jun N-terminal kinase (JNK) pathway. Aberrant activation of MLK3 has been implicated in neurodegenerative diseases. Similarly, glycogen synthase kinase (GSK)-3beta has also been shown to activate JNK and contribute to neuronal apoptosis. Here, we show a functional interaction between MLK3 and GSK-3beta during nerve growth factor (NGF) withdrawal-induced cell death in PC-12 cells. The protein kinase activities of GSK-3beta, MLK3, and JNK were increased upon NGF withdrawal, which paralleled increased cell death in NGF-deprived PC-12 cells. NGF withdrawal-induced cell death and MLK3 activation were blocked by a GSK-3beta-selective inhibitor, kenpaullone. However, the MLK family inhibitor, CEP-11004, although preventing PC-12 cell death, failed to inhibit GSK-3beta activation, indicating that induction of GSK-3beta lies upstream of MLK3. In GSK-3beta-deficient murine embryonic fibroblasts, ultraviolet light was unable to activate MLK3 kinase activity, a defect that was restored upon ectopic expression of GSK-3beta. The activation of MLK3 by GSK-3beta occurred via phosphorylation of MLK3 on two amino acid residues, Ser(789) and Ser(793), that are located within the C-terminal regulatory domain of MLK3. Furthermore, the cell death induced by GSK-3beta was mediated by MLK3 in a manner dependent on its phosphorylation of the specific residues within the C-terminal domain by GSK-3beta. Taken together, our data provide a direct link between GSK-3beta and MLK3 activation in a neuronal cell death pathway and identify MLK3 as a direct downstream target of GSK-3beta. Inhibition of GSK-3 is thus a potential therapeutic strategy for neurodegenerative diseases caused by trophic factor deprivation.  相似文献   

20.
Inhibitor 2 (I-2) is a ubiquitous regulator of type 1 protein phosphatase (PP1). Previous in vitro studies suggested that its inhibitory activity towards PP1 is regulated by phosphorylation at Thr72 by glycogen synthase kinase-3beta (GSK-3beta), and at Ser86, Ser120, and Ser121 by casein kinase 2 (CK2). Here we report that GSK-3beta expressed in COS-7 cells phosphorylates wild-type I-2 but not an I-2 mutant carrying a T to A substitution at residue 72, showing that GSK-3beta phosphorylates I-2 at T72 in vivo as well. Co-immunoprecipitation study demonstrated that HA-GSK-3beta and I-2-FLAG co-exist in a same complex in the intact cells, but they do not bind directly. It is noteworthy that co-expression of Myc-PP1C significantly increased co-precipitation of HA-GSK-3beta with I-2-FLAG, showing a complex formation of HA-GSK-3beta/Myc-PP1C / I-2-FLAG in vivo. Further studies using a GSK-3beta kinase-dead mutant and LiCl, an inhibitor of GSK-3beta, showed that the enzyme activity of GSK-3beta is required for co-precipitation. IP-Western study using several I-2 mutants substituted at phosphorylation sites (T72, S86, S120, and S121) suggested that phosphorylation of I-2 by CK2 is also involved in enhancement of association between GSK-3beta and I-2 in vivo. This study is the first demonstration that GSK-3beta associates with PP1C/I-2 complex and phosphorylates I-2 at T72 in the intact cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号