首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr?) is an automated micro‐bioreactor system with miniature single‐use bioreactors with a 10–15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in‐line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr? resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr? was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr? system as a high throughput system for cell culture process development. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:718–727, 2014  相似文献   

2.
Glycoengineering enabled the production of proteins with human N-linked glycans by Pichia pastoris. This study used a glycoengineered P. pastoris strain which is capable of producing humanized glycoprotein with terminal galactose for monoclonal antibody production. A design of experiments approach was used to optimize the process parameters. Followed by further optimization of the specific methanol feed rate, induction duration, and the initial induction biomass, the resulting process yielded up to 1.6 g/L of monoclonal antibody. This process was also scaled-up to 1,200-L scale, and the process profiles, productivity, and product quality were comparable with 30-L scale. The successful scale-up demonstrated that this glycoengineered P. pastoris fermentation process is a robust and commercially viable process.  相似文献   

3.
Temperature shifts to lower culture temperatures are frequently employed in the manufacturing of protein therapeutics in mammalian cells to improve productivity, viability, or quality attributes. The direction and extent to which a temperature shift affects productivity and quality may vary depending on the expression host and characteristics of the expressed protein. We demonstrated here that two Chinese hamster ovary (CHO) clones expressing different human monoclonal antibodies responded differently to a temperature shift despite sharing a common parental CHO cell line. Within a single CHO line, we observed a nonlinear response to temperature shift. A moderate shift to 35°C significantly decreased final titer relative to the unshifted control while a larger shift to 32°C significantly increased final titer by 25%. Therefore, we proposed a systematic empirical approach to assess the utility of a temperature shift for faster implementation during process development. By testing multiple shift parameters, we identified optimum shift conditions in shake flasks and successfully translated findings to benchtop bioreactors and 1,000-L bioreactor scale. Significant differences in final antibody titer and charge variants were observed with temperature shift increments as small as Δ1.5°C. Acidic charge variants decreased monotonically with decreasing shift temperature in both cell lines; however, final antibody titer required simultaneous optimization of shift day and temperature. Overall, we were able to show that a systematic approach to identify temperature shift parameters at small scales is useful to optimize protein production and quality for efficient and confident translation to large-scale production.  相似文献   

4.
Production of recombinant protein therapeutics in cultivated mammalian cells   总被引:30,自引:0,他引:30  
Wurm FM 《Nature biotechnology》2004,22(11):1393-1398
Cultivated mammalian cells have become the dominant system for the production of recombinant proteins for clinical applications because of their capacity for proper protein folding, assembly and post-translational modification. Thus, the quality and efficacy of a protein can be superior when expressed in mammalian cells versus other hosts such as bacteria, plants and yeast. Recently, the productivity of mammalian cells cultivated in bioreactors has reached the gram per liter range in a number of cases, a more than 100-fold yield improvement over titers seen for similar processes in the mid-1980s. This increase in volumetric productivity has resulted mainly from improvements in media composition and process control. Opportunities still exist for improving mammalian cell systems through further advancements in production systems as well as through vector and host cell engineering.  相似文献   

5.
Mycoplasma contamination events in biomanufacturing facilities can result in loss of production and costly cleanups. Mycoplasma may survive in mammalian cell cultures with only subtle changes to the culture and may penetrate the 0.2 µm filters often used in the primary clarification of harvested cell culture fluid. Culture cell-based and indicator cell-based assays that are used to detect mycoplasma are highly sensitive but can take up to 28 days to complete and cannot be used for real-time decision making during the biomanufacturing process. To support real-time measurements of mycoplasma contamination, there is a push to explore nucleic acid testing. However, cell-based methods measure growth or colony forming units and nucleic acid testing measures genome copy number; this has led to ambiguity regarding how to compare the sensitivity of the methods. In addition, the high risk of conducting experiments wherein one deliberately spikes mycoplasma into bioreactors has dissuaded commercial groups from performing studies to explore the multiple variables associated with the upstream effects of a mycoplasma contamination in a manufacturing setting. Here we studied the ability of Mycoplasma arginini to persist in a single-use, perfusion rocking bioreactor system containing a Chinese hamster ovary (CHO) DG44 cell line expressing a model monoclonal immunoglobulin G1 (IgG1) antibody. We examined M. arginini growth and detection by culture methods, as well as the effects of M. arginini on mammalian cell health, metabolism, and productivity. We compared process parameters and controls normally measured in bioreactors including dissolved oxygen, gas mix, and base addition to maintain pH, to examine parameter changes as potential indicators of contamination. Our work showed that M. arginini affects CHO cell growth profile, viability, nutrient consumption, oxygen use, and waste production at varying timepoints after M. arginini introduction to the culture. Importantly, how the M. arginini contamination impacts the CHO cells is influenced by the concentration of CHO cells and rate of perfusion at the time of M. arginini spike. Careful evaluation of dissolved oxygen, pH control parameters, ammonia, and arginine over time may be used to indicate mycoplasma contamination in CHO cell cultures in a bioreactor before a read-out from a traditional method.  相似文献   

6.
7.
Therapeutic monoclonal antibodies, a highly successful class of biological drugs, are conventionally manufactured in mammalian cell lines. A recent approach to increase the therapeutic effectiveness of monoclonal antibodies has been to combine two or more of them; however this increases the complexity of development and manufacture. To address this issue a method to efficiently express multiple monoclonal antibodies from a single cell has been developed and we describe here the generation of stable cell clones that express high levels of a human monoclonal antibody mixture. PER.C6® cells were transfected with a combination of plasmids containing genes encoding three different antibodies. Clones that express the three corresponding antibody specificities were identified, subcloned, and passaged in the absence of antibiotic selection pressure. At several time points, batch production runs were analyzed for stable growth and IgG production characteristics. The majority (11/12) of subclones analyzed expressed all three antibody specificities in constant ratios with total IgG productivity ranging between 15 and 20 pg/cell/day under suboptimal culture conditions after up to 67 population doublings. The growth and IgG production characteristics of the stable clones reported here resemble those of single monoclonal antibody cell lines from conventional clone generation programs. We conclude that the methodology described here is applicable to the generation of stable PER.C6® clones for industrial scale production of mixtures of antibodies. Biotechnol. Bioeng. 2010;106: 741–750. © 2010 Wiley Periodicals, Inc.  相似文献   

8.
During a small‐scale cell culture process producing a monoclonal antibody, a larger than expected difference was observed in the charge variants profile of the harvested cell culture fluid (HCCF) between the 2 L and larger scales (e.g., 400 L and 12 kL). Small‐scale studies performed at the 2 L scale consistently showed an increase in acidic species when compared with the material made at larger scale. Since the 2 L bioreactors were made of clear transparent glass while the larger scale reactors are made of stainless steel, the effect of ambient laboratory light on cell culture process in 2 L bioreactors as well as handling the HCCF was carefully evaluated. Photoreactions in the 2 L glass bioreactors including light mediated increase in acidic variants in HCCF and formulation buffers were identified and carefully analyzed. While the acidic variants comprised of a mixture of sialylated, reduced disulfide, crosslinked (nonreducible), glycated, and deamidated forms, an increase in the nonreducible forms, deamidation and Met oxidation was predominantly observed under light stress. The monoclonal antibody produced in glass bioreactors that were protected from light behaved similar to the one produced in the larger scale. Our data clearly indicate that care should be taken when glass bioreactors are used in cell culture studies during monoclonal antibody production. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:562–570, 2014  相似文献   

9.
Monoclonal antibodies (mAbs) have become vitally important to modern medicine and are currently one of the major biopharmaceutical products in development. However, the high clinical dose requirements of mAbs demand a greater biomanufacturing capacity, leading to the development of new technologies for their large‐scale production, with mammalian cell culture dominating the scenario. Although some companies have tried to meet these demands by creating bioreactors of increased capacity, the optimization of cell culture productivity in normal bioreactors appears as a better strategy. This review describes the main technological progresses made with this intent, presenting the advantages and limitations of each production system, as well as suggestions for improvements. New and upgraded bioreactors have emerged both for adherent and suspension cell culture, with disposable reactors attracting increased interest in the last years. Furthermore, the strategies and technologies used to control culture parameters are in constant evolution, aiming at the on‐line multiparameter monitoring and considering now parameters not seen as relevant for process optimization in the past. All progresses being made have as primary goal the development of highly productive and economic mAb manufacturing processes that will allow the rapid introduction of the product in the biopharmaceutical market at more accessible prices. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

10.
Cytochrome b(558) is the catalytic core of the phagocyte NADPH oxidase that mediates the production of bactericidal reactive oxygen species. Cytochrome b(558) is formed by two subunits gp91-phox and p22-phox (1/1), non-covalently associated. Its activation depends on the interaction with cytosolic regulatory proteins (p67-phox, p47-phox, p40-phox and Rac) leading to an electron transfer from NADPH to molecular oxygen and to the release of superoxide anions. Several studies have suggested that the activation process was linked to a change in cytochrome b(558) conformation. Recently, we confirmed this hypothesis by isolating cytochrome b(558) in a constitutively active form. To characterize active and inactive cytochrome b(558) conformations, we produced four novel monoclonal antibodies (7A2, 13B6, 15B12 and 8G11) raised against a mixture of cytochrome b(558) purified from both resting and stimulated neutrophils. The four antibodies labeled gp91-phox and bound to both native and denatured cytochrome b(558). Interestingly, they were specific of extracellular domains of the protein. Phage display mapping combined to the study of recombinant gp91-phox truncated forms allowed the identification of epitope regions. These antibodies were then employed to investigate the NADPH oxidase activation process. In particular, they were shown to inhibit almost completely the NADPH oxidase activity reconstituted in vitro with membrane and cytosol. Moreover, flow cytometry analysis and confocal microscopy performed on stimulated neutrophils pointed out the capacity of the monoclonal antibody 13B6 to bind preferentially to the active form of cytochrome b(558). All these data suggested that the four novel antibodies are potentially powerful tools to detect the expression of cytochrome b(558) in intact cells and to analyze its membrane topology. Moreover, the antibody 13B6 may be conformationally sensitive and used as a probe for identifying the active NADPH oxidase complex in vivo.  相似文献   

11.
The proposed role of the mammalian cell entry protein 1A (Mce1A) of Mycobacterium tuberculosis is to facilitate invasion of host cells. The structure of Mce1A was modelled on the basis of the crystal structure of Colicin N of Escherichia coli by fold prediction and threading. Mce1A, as the model predicts, is an alpha/beta protein consisting of two major (alpha and beta) domains, connected by a long alpha helix. The model further revealed that the protein contains 12 helices, 9 strands, and 1 turn. The final model of Mce1A was verified through the program VERIFY 3D and more than 90% of the residues were in the favourable region. A mouse monoclonal antibody, TB1-5 76C, is directed to an epitope within a 60-mer peptide that has been shown to promote uptake of bacteria in mammalian cells. We show here that the epitope could be narrowed down to a core of 4 amino acids, TPKD. Upstream flanking residues, KRR also contributed to binding. Mce2A does not promote uptake in mammalian cells and sequence comparison of Mce1A and Mce2A indicates that the epitope mediates uptake. The epitope was located at the surface of the Mce1A model at the distal beta strand-loop region in the beta domain. The localization of this epitope in the model confirms its potential role in promoting uptake of M. tuberculosis in host cells.  相似文献   

12.
Specific monoclonal antibody (MoAb) to 28.5 kDa tegumental antigen (TA) was used to localize this antigen in the tissues of metacercariae, newly excysted juvenile (NEJ), 1, 3, 5, and 7-week-old juveniles of Fasciola gigantica by using indirect immunofluorescence, immunoperoxidase and immunogold techniques. Both indirect immunofluorescence and immunoperoxidase detections showed that this antigen was concentrated in the tegument particularly in its outer rim, tegumental cells and their processes as well as epithelial linings of the oral sucker. Unlike adult F. gigantica, it was not detected in spermatogenic cells in the testes, cells of Mehlis’gland, oocytes within the ovary, and ovum within the egg of parasites. At the ultrastructural level, the immunogold labeling showed deposit of gold particles specifically in G2 tegumental granules and on the surface membrane. Thus, this 28.5 kDa antigen is expressed in the tegument and associated structures of juvenile parasites, and it could be a major component of the G2 granules which are shown to fuse with the surface membrane and contribute material to replace the casted-off membrane. This process is the replenishment and turnover of the surface membrane to prevent the attachment of the host immune effector cells.  相似文献   

13.
《MABS-AUSTIN》2013,5(8):1502-1514
ABSTRACT

Although process intensification by continuous operation has been successfully applied in the chemical industry, the biopharmaceutical industry primarily uses fed-batch, rather than continuous or perfusion methods, to produce stable monoclonal antibodies (mAbs) from Chinese hamster ovary (CHO) cells. Conventional fed-batch bioreactors may start with an inoculation viable cell density (VCD) of ~0.5 × 106 cells/mL. Increasing the inoculation VCD in the fed-batch production bioreactor (referred to as N stage bioreactor) to 2–10 × 106 cells/mL by introducing perfusion operation or process intensification at the seed step (N-1 step) prior to the production bioreactor has recently been used because it increases manufacturing output by shortening cell culture production duration. In this study, we report that increasing the inoculation VCD significantly improved the final titer in fed-batch production within the same 14-day duration for 3 mAbs produced by 3 CHO GS cell lines. We also report that other non-perfusion methods at the N-1 step using either fed batch or batch mode with enriched culture medium can similarly achieve high N-1 final VCD of 22–34 × 106 cells/mL. These non-perfusion N-1 seeds supported inoculation of subsequent production fed-batch production bioreactors at increased inoculation VCD of 3–6 × 106 cells/mL, where these achieved titer and product quality attributes comparable to those inoculated using the perfusion N-1 seeds demonstrated in both 5-L bioreactors, as well as scaled up to 500-L and 1000-L N-stage bioreactors. To operate the N-1 step using batch mode, enrichment of the basal medium was critical at both the N-1 and subsequent intensified fed-batch production steps. The non-perfusion N-1 methodologies reported here are much simpler alternatives in operation for process development, process characterization, and large-scale commercial manufacturing compared to perfusion N-1 seeds that require perfusion equipment, as well as preparation and storage vessels to accommodate large volumes of perfusion media. Although only 3 stable mAbs produced by CHO cell cultures are used in this study, the basic principles of the non-perfusion N-1 seed strategies for shortening seed train and production culture duration or improving titer should be applicable to other protein production by different mammalian cells and other hosts at any scale biologics facilities.  相似文献   

14.
Three tank type bioreactors of very simple design were compared to a commercially available laboratory-scale bioreactor, designed especially for mammalian cell culture, for their ability to support hybridoma growth and antibody production under batch culture conditions. The comparison reveals quite similar numbers for maximum viable cell densities and IgG production, despite large differences in vessel and agitator geometry and aeration mode. Furthermore, some data indicate that the hydrodynamic stress level in the growth vessels may influence the specific production rate of the cells and thus the overall productivity of the reactors.  相似文献   

15.
目的:通过上游工艺中补料培养基优化以降低单克隆抗体生产中的宿主细胞蛋白(HCP)水平。方法:本文在3 L反应器的工艺开发过程中考察了不同的商品化补料培养基和细胞接种密度对HCP水平的影响,筛选出最优条件后,进行了补料工艺的优化和金属离子的添加试验,最后将优化后的工艺放大至200 L中试规模。结果:在小试阶段发现Cellvento 4Feed可以显著降低HCP,同时CuSO4可以进一步促进HCP降低的水平,最终将工艺放大至200 L中试进行生产并取得了相似的结果,验证了工艺的稳定性和可放大性,中试规模的HCP水平相比最初的工艺降低了65%左右。结论:补料培养基优化可以有效降低细胞对HCP的比生产速率,使收获液中整体的HCP水平显著下降。  相似文献   

16.
A continuous centrifugal bioreactor (CCBR), developed to study the growth and productivity of dense suspensions cultures, has been applied to both fermentation and mammalian cell cultivation processes. With this approach, high-density nonflocculent cultures are maintained in a tapered fluidized bed by balancing the drag forces on the cells due to following substrate with the centrifugal forces. The Sysyem was first used to produce ethanol by fermentation with Saccharomyces cerevisiae; then with H21A1 mouse hybridoma cells secreting monoclonal antibody (MoAb), lgM. Results of this research show the feasibility of using the CCBR for both production of secreted products and as a research tool for studying cell metabolism and production kinetics. Media recycle may be used to modify the behavior of the system form a plug flow apparatus to a continuous stirred reactor (CSTR).  相似文献   

17.
A new method for real-time monitoring of the oxygen uptake rate (OUR) in bioreactors, based on dissolved oxygen (DO) measurement at two points, has been developed and tested extensively. The method has several distinct advantages over known techniques.It enables the continuous and undisturbed monitoring of OUR, which is conventionally impossible without gas analyzers. The technique does not require knowledge of k(L)a. It provides smooth, robust, and reliable signal. The monitoring scheme is applicable to both microbial and mammalian cell bioprocesses of laboratory or industrial scale. The method was successfully used in the cultivation of NSO-derived murine myeloma cell line producing monoclonal antibody. It was found that while the OUR increased with the cell density, the specific OUR decreased to approximately one-half at cell concentrations of 16 x 10(6) cells/mL, indicating gradual reduction of cell respiration activity. Apart from the laboratory scale cultivation, the method was applied to industrial scale perfusion culture, as well as to processes using other cell lines. (c) 1994 John Wiley & Sons, Inc.  相似文献   

18.
The concept of design space has been taking root as a foundation of in‐process control strategies for biopharmaceutical manufacturing processes. During mapping of the process design space, the multidimensional combination of operational variables is studied to quantify the impact on process performance in terms of productivity and product quality. An efficient methodology to map the design space for a monoclonal antibody cell culture process is described. A failure modes and effects analysis (FMEA) was used as the basis for the process characterization exercise. This was followed by an integrated study of the inoculum stage of the process which includes progressive shake flask and seed bioreactor steps. The operating conditions for the seed bioreactor were studied in an integrated fashion with the production bioreactor using a two stage design of experiments (DOE) methodology to enable optimization of operating conditions. A two level Resolution IV design was followed by a central composite design (CCD). These experiments enabled identification of the edge of failure and classification of the operational parameters as non‐key, key or critical. In addition, the models generated from the data provide further insight into balancing productivity of the cell culture process with product quality considerations. Finally, process and product‐related impurity clearance was evaluated by studies linking the upstream process with downstream purification. Production bioreactor parameters that directly influence antibody charge variants and glycosylation in CHO systems were identified. Biotechnol. Bioeng. 2010;106: 894–905. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
Alternating tangential flow filtration (ATF) has become one of the primary methods for cell retention and clarification in perfusion bioreactors. However, membrane fouling can cause product sieving losses that limit the performance of these systems. This study used scanning electron microscopy and energy dispersive X-ray spectroscopy to identify the nature and location of foulants on 0.2 μm polyethersulfone hollow fiber membranes after use in industrial Chinese hamster ovary cell perfusion bioreactors for monoclonal antibody production. Membrane fouling was dominated by proteinaceous material, primarily host cell proteins along with some monoclonal antibody. Fouling occurred primarily on the lumen surface with much less protein trapped within the depth of the fiber. Protein deposition was also most pronounced near the inlet/exit of the hollow fibers, which are the regions with the greatest flux (and transmembrane pressure) during the cyclical operation of the ATF. These results provide important insights into the underlying phenomena governing the fouling behavior of ATF systems for continuous bioprocessing.  相似文献   

20.
Insect cells (IC) and particularly lepidopteran cells are an attractive alternative to mammalian cells for biomanufacturing. Insect cell culture, coupled with the lytic expression capacity of baculovirus expression vector systems (BEVS), constitutes a powerful platform, IC-BEVS, for the abundant and versatile formation of heterologous gene products, including proteins, vaccines and vectors for gene therapy. Such products can be manufactured on a large scale thanks to the development of efficient and scaleable production processes involving the integration of a cell growth stage and a stage of cell infection with the recombinant baculovirus vector. Insect cells can produce multimeric proteins functionally equivalent to the natural ones and engineered vectors can be used for efficient expression. Insect cells can be cultivated easily in serum- and protein-free media. A growing number of companies are currently developing an interest in producing therapeutics using IC-BEVS, and many products are today in clinical trials and on the market for veterinary and human applications. This review summarizes current knowledge on insect cell metabolism, culture conditions and applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号