首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA mediated formation of a phosphorothioate diester bond   总被引:7,自引:0,他引:7  
Previous results showed that multimeric, tandemly sequence-repeated forms of satellite tobacco ringspot virus RNA of the encapsidated polarity (STobRV (+)RNA) autolytically process at a specific phosphodiester bond, the junction. Substituting a phosphorothioate diester bond for the STobRV (+)RNA junction drastically slowed autolytic processing. Here we show that for the complementary STobRV (-)RNA, in contrast, replacing sets of phosphodiester bonds with phosphorothioate diester bonds, even at the junction, did not greatly slow autolytic processing or spontaneous ligation, the usual reactions of the unmodified RNA. In the ligation reaction STobRV (-)RNA directed the formation of an ApG phosphorothioate diester bond.  相似文献   

2.
Autolytic processing of a phosphorothioate diester bond.   总被引:12,自引:11,他引:1       下载免费PDF全文
A small satellite RNA of tobacco ringspot virus replicates in tissues infected with tobacco ringspot virus and accumulates in virus capsids, forming virus-like particles. Previous research showed that multimeric forms of this satellite RNA have tandem repeats of the "monomeric" satellite RNA sequence of 359 or 360 nucleotide residues. The multimeric RNAs undergo autolytic processing at a specific CpA phosphodiester bond, the junction, to generate the monomeric RNA. We substituted phosphorothioate diester bonds for various sets of phosphodiester bonds, in dimeric and truncated forms of the satellite RNA. The degree of reduction in autolytic cleavage varied both with the sites of substitution and the size of the RNA molecules. Analyses of a product of the autolysis reaction suggest that one phosphorothioate diester bond most strongly interferes with processing, the one introduced at the CpA junction during its synthesis from adenosine-5'-0-(1-thiotriphosphate). However, extensive introduction of phosphorothioate diester bonds elsewhere in the molecule also decreased processing, possibly by altering conformation.  相似文献   

3.
4.
The nucleotide sequence of the satellite of arabis mosaic virus was determined using the satellite RNA encapsidated in virions. The 300-nucleotide long sequence showed extensive homology (50%) with that of the 359-nucleotide satellite RNA of tobacco ringspot virus, which occurs both in a linear and a circular form. This homology also revealed the presence of conceived sequences believed to mediate self-cleavage of the latter as well as other viral satellite RNAs. A circular form of the arabis mosaic virus satellite can be isolated from infected tissues and partially converts to the linear form upon elution from denaturing gels.  相似文献   

5.
The catalytic domain in the minus strand of the satellite RNA of tobacco ringspot virus (sTobRV(-)) assumes a hairpin-like secondary structure. This ribozyme catalyzes a cross-ligation reaction between substrate RNAs of different lengths. We constructed ribozymes to probe the activities of ligation and RNA fragment exchange.  相似文献   

6.
Chicory yellow mottle virus, ringspot strain (CYMV-RS), supports the replication of a low molecular weight RNA (0.17 × 106 daltons) associated with CYMV-T (type stain).
Competition hybridization experiments revealed lack or nucleotide sequence homology between 0.17 × 106 mol. wt. RNA (Sat RNA) and CYMV-RS genomic RNAs, and partial homology (33 %) with CYMV-T genomic RNAs. However, such apparent partial homology can be due to contamination of CYMV-T genomic RNAs with a multimeric form of Sat RNA having a similar molecular weight. On this account the hypothesis that CYMV-T Sat RNA is a true satellite RNA becomes tenable.  相似文献   

7.
Abstract Hairpin ribozymes occur naturally only in the satellite RNAs of tobacco ringspot virus (TRsV), chicory yellow mottle virus (CYMoV) and arabis mosaic virus (ArMV). The catalytic centre of the predominantly studied sTRsV hairpin ribozyme, and of sArMV is organised around a four-way helical junction. We show here that sCYMoV features a five-way helical junction instead. Mutational analysis indicates that the fifth stem does not influence kinetic parameters of the sCYMoV hairpin ribozyme in vitro reactions, and therefore seems an appendix to that junction in the other ribozymes. We report further that all three ribozymes feature a three-way helical junction outside the catalytic core in stem A, with Watson-Crick complementarity to loop nucleotides in stem B. Kinetic analyses of cleavage and ligation reactions of several variants of the sTRsV and sCYMoV hairpin ribozymes in vitro show that the presence of this junction interferes with their reactions, particularly the ligation. We provide evidence that this is not due to a presumed interaction of the afore-mentioned elements in stems A and B. The evolutionary survival of this cis-inhibiting element seems rather to be caused by the coincidence of its position with that of the hammerhead ribozyme in the other RNA polarity.  相似文献   

8.
Oligoribonucleotides with specific sequences derived from the satellite RNA of tobacco ringspot virus undergo autolytic cleavage at the CpA phosphodiester that is the junction between unit sequences of multimeric satellite RNA. Buzayan et al. (Nucleic Acids Res., 16, 4009-4023 (1988)) showed that an oligoribonucleotide with 97 satellite RNA-derived nucleotide residues self-cleaved with greatly reduced efficiency when it was synthesized in vitro from adenosine-5'-O-(1-thiotriphosphate) (abbreviated rATP alpha S) and three rNTPs. No other substitution of one rNTP by the corresponding rNTP alpha S had this effect, suggesting that a phosphorothioate CpA junction inhibits self-cleavage. Here, we replaced the usual CpA junction of a small self-cleaving oligoribonucleotide with a CpU junction. Self-cleavage of this molecule was reduced not only by rUTP alpha S-substitution, as expected, but also by partial and complete rATP alpha S-substitution. By analysis of the locations of rAMPS residues in cleavage products derived from partially rATP alpha S-substituted oligoribonucleotides, we identified A26 as the residue contributing the non-junction phosphorothioate diester that most strongly inhibited self-cleavage. Manganese ions strongly stimulated the self-cleavage of the rATP alpha S-substituted, CpU-junction oligoribonucleotide but was less effective when the junction was CpA.  相似文献   

9.
Both polarities of the satellite RNA of tobacco ringspot virus occur in infected cells in multimeric forms which are capable of autolytic processing, using different sequences and structures [Feldstein, P.A., et al., Proc. Nat. Acad. Sci. USA (1990) 87 (in press)]. These transesterification reactions generate a 2',3'-cyclophosphate and a 5'-hydroxyl as the two new end groups. Cleavage is at a CpA for the (+) polarity RNA and at an ApG for the (-) polarity RNA. We enzymically synthesized oligoribonucleotides with processing capability and with specific 35S-labeled phosphorothioate diesters in the Rp configuration. After processing had occurred, the terminal nucleoside-2',3'-cyclophosphorothioate diester residues were recovered from the appropriate product by digestion with nuclease and phosphatase. Comparisons with specially prepared endo- and exoisomer reference compounds by thin layer chromatography and autoradiography revealed that the [35S]cytidine- and [35S]adenosine-2',3'-cyclophosphorothioate both were endo-isomers. The results are consistent with transesterification occurring by an inline SN2(P) attack of the 2'-hydroxyl group in the autolytic processing reactions of both polarities of the satellite RNA.  相似文献   

10.
Structure and function of the hairpin ribozyme   总被引:18,自引:0,他引:18  
The hairpin ribozyme belongs to the family of small catalytic RNAs that cleave RNA substrates in a reversible reaction that generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. The hairpin catalytic motif was discovered in the negative strand of the tobacco ringspot virus satellite RNA, where hairpin ribozyme-mediated self-cleavage and ligation reactions participate in processing RNA replication intermediates. The self-cleaving hairpin, hammerhead, hepatitis delta and Neurospora VS RNAs each adopt unique structures and exploit distinct kinetic and catalytic mechanisms despite catalyzing the same chemical reactions. Mechanistic studies of hairpin ribozyme reactions provided early evidence that, like protein enzymes, RNA enzymes are able to exploit a variety of catalytic strategies. In contrast to the hammerhead and Tetrahymena ribozyme reactions, hairpin-mediated cleavage and ligation proceed through a catalytic mechanism that does not require direct coordination of metal cations to phosphate or water oxygens. The hairpin ribozyme is a better ligase than it is a nuclease while the hammerhead reaction favors cleavage over ligation of bound products by nearly 200-fold. Recent structure-function studies have begun to yield insights into the molecular bases of these unique features of the hairpin ribozyme.  相似文献   

11.
A J Zaug  J R Kent  T R Cech 《Biochemistry》1985,24(22):6211-6218
During self-splicing of the Tetrahymena rRNA precursor, the intervening sequence (IVS) is excised as a unique linear molecule and subsequently cyclized. Cyclization involves formation of a phosphodiester bond between the 3' end and nucleotide 16 of the linear RNA, with release of an oligonucleotide containing the first 15 nucleotides. We find that the rate of cyclization is independent of pH in the range 4.7-9.0. A minor site of cyclization at nucleotide 20 is characterized. Cyclization to this site becomes more prominent at higher pHs, although under all conditions examined it is minor compared to cyclization at nucleotide 16. The circular IVS RNAs are unstable, undergoing hydrolysis at the phosphodiester bond that was formed during cyclization. We find that the rate of site-specific hydrolysis is first order with respect to hydroxide ion concentration, with a rate constant 10(3)-10(4)-fold greater than that of hydrolysis of strained cyclic phosphate esters. On the basis of these results, we propose that circular IVS RNA hydrolysis involves direct attack of OH- on the phosphate at the ligation junction, that particular phosphate being made particularly reactive by the folding of the RNA molecule. Cyclization, on the other hand, appears to occur by direct attack of the 3'-terminal hydroxyl group of the linear IVS RNA without prior deprotonation.  相似文献   

12.
To seek patterns of nucleotide usage in the three types of circular subviral RNA pathogens, trimer frequencies and nearest-neighbor biases were studied in 12 plant viroid sequences; five sequences of circular plant viral satellite RNAs; and the sequence of RNA from the human hepatitis delta agent. The viroids and RNA of the delta agent contain tracts of polypurines and polypyrimidines which make up substantial portions of their genomes. Such tracts are not common in the virusoids or in the satellite RNA of tobacco ringspot virus. Viroids, the delta hepatitis agent, and the circular satellite RNAs of certain plant viruses have several features in common: all have circular genomic RNA and replicate through an RNA to RNA rolling circle replication cycle. However, virusoids and related satellite RNAs are directly or indirectly dependent on their helper viruses for replication, while the delta agent and viroids are not. The difference in the pattern of nucleotide usage between the plant viral satellite RNAs on the one hand, and viroids and delta RNA on the other, may relate to this difference in replication strategy.  相似文献   

13.
14.
The less abundant polarity of the satellite RNA of tobacco ringspot virus, designated sTobRV(-)RNA, contains a ribozyme and its substrate. We demonstrate that the ribozyme can catalyze the ligation of substrate cleavage products and that oligoribonucleotides, termed 'mini-monomers' and containing little more than covalently attached ribozyme and substrate cleavage products, circularized spontaneously, efficiently and reversibly. The kinetics of ligation and cleavage of one such mini-monomer was consistent with a simple unimolecular reaction at some temperatures. Evidence suggests that the circular ligation product includes a 5 bp stem that is connected to a 4 bp stem by a bulge loop. Reduction of the bulge loop to one nt is expected to place the 4 and 5 bp helices in a nearly coaxial, rather than an angled or parallel, orientation. Such molecules did not circularize in a unimolecular reaction but did when incubated with second, trans-acting oligoribonucleotides that had either the original or a substituted 4 bp helix. These results suggest that a bulge loop that is too small prevents formation of geometry essential for unimolecular ligation. We suggest the term 'paperclip' to represent the arrangement of RNA strands in the region of sTobRV(-)RNA that participates in the cleavage and ligation reactions.  相似文献   

15.
Turnip yellow mosaic virus (TYMV) is a spherical plant virus that has a single 6.3 kb positive strand RNA as a genome. In this study, RNA1 sequence of Flock house virus (FHV) was inserted into the TYMV genome to test whether TYMV can accommodate and express another viral entity. In the resulting construct, designated TY-FHV, the FHV RNA1 sequence was expressed as a TYMV subgenomic RNA. Northern analysis of the Nicotiana benthamiana leaves agroinfiltrated with the TY-FHV showed that both genomic and subgenomic FHV RNAs were abundantly produced. This indicates that the FHV RNA1 sequence was correctly expressed and translated to produce a functional FHV replicase. Although these FHV RNAs were not encapsidated, the FHV RNA having a TYMV CP sequence at the 3’-end was efficiently encapsidated. When an eGFP gene was inserted into the B2 ORF of the FHV sequence, a fusion protein of B2-eGFP was produced as expected. [BMB Reports 2014; 47(6): 330-335]  相似文献   

16.
The replication properties of linker insertion-deletion mutants of tobacco ringspot virus satellite RNA have been studied by amplification in plants infected with the helper virus. Sequence analysis of the cDNAs corresponding to the replicated forms shows that only one of the original mutated molecules replicates unaltered, and in general new variants accumulate. Depending on the location of the original mutation three types of sequence modifications were observed: (i) deletion of the mutated region followed by sequence duplication, (ii) sequence duplication and deletion outside of the mutated region and (iii) limited rearrangements at the site of mutation. The mutant that replicates without sequence changes accumulates linear multimeric forms suggesting that self-cleavage is affected although the sequence alteration does not involve the hammerhead catalytic domain. Alternative RNA conformations are likely to play a role in the origin of this phenotype and in the formation of sequence duplications. These results demonstrate the great structural flexibility of this satellite RNA.  相似文献   

17.
The negative strand of the satellite RNA of tobacco ringspot virus (sTobRV(-)) contains a hairpin catalytic domain that shows self-cleavage and self-ligation activities in the presence of magnesium ions. We describe here that the minimal catalytic domain can catalyze a cross-ligation reaction between two kinds of substrates in trans. The cross-ligated product increased when the reaction temperature was decreased during the reaction from 37 degrees C to 4 degrees C. A two-stranded hairpin ribozyme, divided into two fragments between G45 and U46 in a hairpin loop, showed higher ligation activity than the nondivided ribozyme. The two stranded ribozyme also catalyzed an exchange reaction of the 3'-portion of the cleavage site.  相似文献   

18.
A newly discovered group of spherical plant viruses contains a bipartite genome consisting of a single-strand linear RNA molecule (RNA 1, Mr 1.5 x 10(6) ), and a single-strand, covalently closed circular viroid-like RNA molecule (RNA 2, Mr approximately 125,000). The nucleotide sequences of the RNA 2 of two of these, velvet tobacco mottle virus and solanum nodiflorum mottle virus, have been determined. RNA 2 of solanum nodiflorum mottle virus consists of 377 residues whereas that of velvet tobacco mottle virus consists of two approximately equimolar species, one of 366 residues and the other, with a single nucleotide deletion, of 365 residues. There is 92-95% sequence homology between the RNA 2 species of the two viruses. The predicted secondary structures possess extensive intramolecular base pairing to give rod-like structures similar to those of viroids. The structural similarities between the RNAs 2 of velvet tobacco mottle virus and solanum nodiflorum mottle virus and viroids may reflect functional similarities.  相似文献   

19.
Brome mosaic virus (BMV) packages its genomic and subgenomic RNAs into three separate viral particles. BMV purified from barley, wheat, and tobacco have distinct relative abundances of the encapsidated RNAs. We seek to identify the basis for the host-dependent differences in viral RNA encapsidation. Sequencing of the viral RNAs revealed recombination events in the 3′ untranslated region of RNA1 of BMV purified from barley and wheat, but not from tobacco. However, the relative amounts of the BMV RNAs that accumulated in barley and wheat are similar and RNA accumulation is not sufficient to account for the difference in RNA encapsidation. Virions purified from barley and wheat were found to differ in their isoelectric points, resistance to proteolysis, and contacts between the capsid residues and the RNA. Mass spectrometric analyses revealed that virions from the three hosts had different post-translational modifications that should impact the physiochemical properties of the virions. Another major source of variation in RNA encapsidation was due to the purification of BMV particles to homogeneity. Highly enriched BMV present in lysates had a surprising range of sizes, buoyant densities, and distinct relative amounts of encapsidated RNAs. These results show that the encapsidated BMV RNAs reflect a combination of host effects on the physiochemical properties of the viral capsids and the enrichment of a subset of virions. The previously unexpected heterogeneity in BMV should influence the timing of the infection and also the host innate immune responses.  相似文献   

20.
B J Saville  R A Collins 《Cell》1990,61(4):685-696
We describe a novel DNA and RNA found in the mitochondria of the Varkud-1c natural isolate of Neurospora. The majority of the RNA, termed VSRNA, is an 881 nucleotide single-stranded circular molecule complementary to one strand of a low copy, double-stranded circular DNA, VSDNA. VSRNA combines some features of the human hepatitis delta virus, group I introns, retroelements, and plant viral satellite RNAs. VSRNA synthesized in vitro performs a self-cleavage reaction whose products terminate with a 5' hydroxyl and a 2',3' cyclic phosphate. This reaction may be involved in the natural processing pathway of multimeric VSRNA in vivo. VSRNA lacks a hammer-head structure or substantial sequence similarity to any other self-cleaving RNA, suggesting that the RNA structure involved in cleavage may be different from those in previously characterized catalytic RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号