首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Calpain-mediated proteolysis of talin regulates adhesion dynamics   总被引:1,自引:0,他引:1  
Dynamic regulation of adhesion complexes is required for cell migration and has therefore emerged as a key issue in the study of cell motility. Recent progress has been made in defining some of the molecular mechanisms by which adhesion disassembly is regulated, including the contributions of adhesion adaptor proteins and tyrosine kinases. However, little is known about the potential contribution of proteolytic mechanisms to the regulation of adhesion complex dynamics. Here, we show that proteolysis of talin by the intracellular calcium-dependent protease calpain is critical for focal adhesion disassembly. We have generated a single point mutation in talin that renders it resistant to proteolysis by calpain. Quantification of adhesion assembly and disassembly rates demonstrates that calpain-mediated talin proteolysis is a rate-limiting step during adhesion turnover. Furthermore, we demonstrate that disassembly of other adhesion components, including paxillin, vinculin and zyxin, is also dependent on the ability of calpain to cleave talin, suggesting a general role for talin proteolysis in regulating adhesion turnover. Together, these findings identify calpain-mediated proteolysis of talin as a mechanism by which adhesion dynamics are regulated.  相似文献   

2.
Talin is a 225,000-Dalton protein we have purified from smooth muscle. In chick embryo fibroblasts talin is found in adhesion plaques (focal contacts), areas where the cell is closely apposed to the substratum. In comparison with other cytoskeletal proteins, we found talin to be unusually susceptible to proteolysis and have identified a 190,000-Dalton proteolytic fragment of talin in the immunoblots of many tissues. These observations raised the possibility that the cleavage of talin to this fragment has physiological relevance. One system that we have investigated in which significant proteolysis occurs is platelets. During platelet activation several high-molecular-weight proteins are cleaved to lower-molecular-weight forms. Here we demonstrate that talin is closely related to one of these platelet high-molecular-weight proteins, P235. The purification of talin is comparable to that developed for P235, and the two proteins have similar biophysical properties. In addition, antibodies raised against chicken gizzard talin recognize P235 in purified form as well as in crude platelet extracts. The platelet protein also resembles smooth-muscle talin in its susceptibility to endogenous proteolysis: P235 is rapidly cleaved to a 190-200 kD polypeptide by a calcium-activated protease found in platelet extracts. Moreover, partial proteolysis of P235 and talin with chymotrypsin, elastase, or trypsin also generates remarkably similar one-dimensional peptide maps. Because of their similar biophysical properties, immunological crossreactivity, and similar one-dimensional partial peptide maps, we conclude that P235 is the platelet form of talin.  相似文献   

3.
Chemical agents which activate specific kinases were employed to disrupt the stress fiber and focal adhesion organization of cells spread on a substratum. The phorbol ester 12-O-tetradecanoylphorbol-13-acetate, an activator of protein kinase C, promoted a rapid loss of stress fibers and focal adhesions from African green monkey kidney (BSC-1) cells. This was paralleled by an increase in the level of talin phosphorylation suggesting that this may play a role in the removal of talin from focal adhesions. Similar morphological changes were produced in the rat embryo fibroblast line (REF 52) by dibutyryl-cAMP, which stimulates protein kinase A. In contrast, however, the phosphorylation of talin was reduced in REF 52 cells when treated with dibutyryl cAMP. In untreated cells we found that the levels of vinculin phosphorylation were very low relative to the levels of talin phosphorylation and did not change following drug treatment in either cell line. Although limited proteolytic cleavage of cytoskeletal proteins represents a potential mechanism for focal adhesion disruption, we observed no proteolysis of talin or vinculin in response to either drug treatment.  相似文献   

4.
Talin is a high molecular weight phosphoprotein that is localized at adhesion plaques. We have found that talin phosphorylation increases 3.0-fold upon exposure of chicken embryo fibroblasts to the tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate. Talin isolated from tumor promoter-treated cells is phosphorylated on serine and threonine residues. Vinculin, a 130 kDa talin-binding protein, also exhibits increased phosphorylation in vivo in response to tumor promoter, but to a lesser degree than does talin. Because tumor-promoting phorbol esters augment protein kinase C activity, we have compared the ability of purified protein kinase C to phosphorylate talin and vinculin in vitro. Both talin and vinculin were found to be substrates for protein kinase C; however, talin was phosphorylated to a greater extent than was vinculin. Cleavage of protein kinase C-phosphorylated talin by the calcium-dependent protease (Type II) revealed that while both the resulting 190-200 and 46 kDa proteolytic peptides were phosphorylated, the majority of label was contained within the 46-kDa fragment. Although incubation of chicken embryo fibroblasts with tumor-promoting phorbol ester induces a dramatic increase in talin phosphorylation, we detected no change in the organization of stress fibers and focal contacts in these cells. Exposure of the cells to tumor promoter did, however, result in a loss of actin and talin-rich cell surface elaborations that resemble focal contact precursor structures.  相似文献   

5.
Tyrosine phosphorylation of membrane-associated proteins is involved at two distinct sites of contact between cells and the extracellular matrix: adhesion plaques (cell adhesion and de-adhesion) and invadopodia (invasion into the extracellular matrix). Adhesion plaques from chicken embryonic fibroblasts or from cells transformed by Rous sarcoma virus contain low levels of tyrosine-phosphorylated proteins (YPPs) which were below the level of detection in 0.5-microns thin, frozen sections. In contrast, intense localization of YPPs was observed at invadopodia of transformed cells at sites of degradation and invasion into the fibronectin-coated gelatin substratum, but not in membrane extensions free of contact with the extracellular matrix. Local extracellular matrix degradation and formation of invadopodia were blocked by genistein, an inhibitor of tyrosine-specific kinases, but cells remained attached to the substratum and retained their free-membrane extensions. Invadopodia reduced or lost YPP labeling after treatment of the cells with genistein, but adhesion plaques retained YPP labeling. The plasma membrane contact fractions of normal and transformed cells have been isolated form cells grown on gelatin cross-linked substratum using a novel fractionation scheme, and analyzed by immunoblotting. Four major YPPs (150, 130, 81, and 77 kD) characterize invadopodial membranes in contact with the matrix, and are probably responsible for the intense YPP labeling associated with invadopodia extending into sites of matrix degradation. YPP150 may be an invadopodal-specific YPP since it is approximately 3.6-fold enriched in the invasive contact fraction relative to the cell body fraction and is not observed in normal contacts. YPP130 is enriched in transformed cell contacts but may also be present in normal contacts. The two major YPPs of normal contacts (130 and 71 kD) are much lower in abundance than the major tyrosine-phosphorylated bands associated with invadopodial membranes, and likely represent major adhesion plaque YPPs. YPP150, paxillin, and tensin appear to be enriched in the cell contact fractions containing adhesion plaques and invadopodia relative to the cell body fraction, but are also present in the soluble supernate fraction. However, vinculin, talin, and alpha-actinin that are localized at invadopodia, are equally concentrated in cell bodies and cell contacts as is the membrane-adhesion receptor beta 1 integrin. Thus, tyrosine phosphorylation of the membrane-bound proteins may contribute to the cytoskeletal and plasma membrane events leading to the formation and function of invadopodia that contact and proteolytically degrade the extracellular matrix; we have identified several candidate YPPs that may participate in the regulation of these processes.  相似文献   

6.
Rous sarcoma virus-transformed BHK cells (RSV/B4-BHK) adhere to a fibronectin-coated substratum primarily at specific dot-shaped sites. Such sites contain actin and vinculin and represent close contacts with the substratum as revealed by interference reflection microscopy. Only a few adhesion plaques and actin filament bundles can be detected in these cells as compared to untransformed parental fibroblasts. In thin sections examined with transmission electron microscopy (TEM) these adhesion sites correspond to short protrusions of the ventral cell surface that contact the substratum at their apical portion. These structures, which may represent cellular feet, are therefore called podosomes. By screening a number of different transformed fibroblasts plated on a fibronectin-coated substratum we find that podosomes are common to mammalian and avian cell lines transformed either by Rous sarcoma virus (RSV) or by Fujinami avian sarcoma virus (FSV), whose oncogenes encode specific tyrosine kinases. Using antibodies reacting with phosphotyrosine in immunofluorescence experiments, we show that phosphotyrosine-containing molecules are concentrated in podosomes. Podosomes are not detected in fibroblasts transformed by other retroviruses (Snyder-Theilen sarcoma virus, Abelson leukemia virus and Kirsten sarcoma virus) or by DNA tumor viruses (polyoma, SV40), indicating that podosome-mediated adhesion in transformed fibroblasts is related to the peculiar properties of some oncoproteins and possibly to their tropism for adhesion systems. Podosomes and adhesion plaques, although similar in cytoskeletal protein composition, have different mechanisms and kinetics of formation. Assembly of podosomes, in fact (i) does not require fetal calf serum (FCS) in the adhesion medium, that is necessary for the organization of adhesion plaques; (ii) does not require protein synthesis; and (iii) is insensitive to the ionophore monensin, that prevents adhesion plaque formation. Moreover, during attachment to fibronectin-coated dishes, podosomes appear in the initial phase (60 min) of attachment, while adhesion plaques require a minimum of 180 min. In conclusion podosomes of RSV- and FSV-transformed fibroblasts represent a phenotypic variant of adhesion structures.  相似文献   

7.
Focal adhesion plaques were severely affected in human embryonic fibroblasts permeabilized with digitonin and incubated in buffer containing the human immunodeficiency virus type 1 protease (HIV-1 PR). A mutant HIV-1 PR (3271 HIV-1 PR) had no effect on focal adhesion plaques. Similar effects were seen with cells microinjected with either HIV-1 PR or 3271 HIV-1 PR. Immunoblots of the human embryonic fibroblasts demonstrated that a number of focal adhesion plaque proteins were specifically cleaved by HIV-1 PR. These included fimbrin, focal adhesion plaque kinase (FAK), talin, and, to a lesser extent, filamin, spectrin and fibronectin. Proteins detected by antibodies to beta 4 integrin and alpha 3 integrin were also cleaved by the HIV-1 PR. Control experiments demonstrated that the effect and protein cleavages described are due to action of the HIV-1 PR and not to the action of endogenous host cell proteases.  相似文献   

8.
The dynamic turnover of integrin-mediated adhesions is important for cell migration. Paxillin is an adaptor protein that localizes to focal adhesions and has been implicated in cell motility. We previously reported that calpain-mediated proteolysis of talin1 and focal adhesion kinase mediates adhesion disassembly in motile cells. To determine whether calpain-mediated paxillin proteolysis regulates focal adhesion dynamics and cell motility, we mapped the preferred calpain proteolytic site in paxillin. The cleavage site is between the paxillin LD1 and LD2 motifs and generates a C-terminal fragment that is similar in size to the alternative product paxillin delta. The calpain-generated proteolytic fragment, like paxillin delta, functions as a paxillin antagonist and impairs focal adhesion disassembly and migration. We generated mutant paxillin with a point mutation (S95G) that renders it partially resistant to calpain proteolysis. Paxillin-deficient cells that express paxillin S95G display increased turnover of zyxin-containing adhesions using time-lapse microscopy and also show increased migration. Moreover, cancer-associated somatic mutations in paxillin are common in the N-terminal region between the LD1 and LD2 motifs and confer partial calpain resistance. Taken together, these findings suggest a novel role for calpain-mediated proteolysis of paxillin as a negative regulator of focal adhesion dynamics and migration that may function to limit cancer cell invasion.  相似文献   

9.
The focal contact forms beneath F-actin-rich ribs, or cytoplasmic precursors, present in the lamellipodia of fibroblasts. The basal part of the precursor is retained at the contact as the initial adhesion plaque. We have examined the distribution of talin in the lamellipodia and adhesion plaques of chicken embryo fibroblasts relative to the process of focal contact formation. Motility of single cells was recorded with differential interference contrast or interference reflection microscopy before fixation and fluorescent staining for talin, F-actin, and vinculin. Talin is present along the extreme edge of the lamellipodium, where it is further concentrated into a series of nodes. The nodes of talin are present at the tips of both larger and finer F-actin-rich ribs and at small structural nodes at the edge of the lamellipodium. We suggest that the talin in the nodes functions, via a cross-linking activity, in the convergence of actin filaments at the membrane during development of the ribs. Talin accumulates de novo in the adhesion plaque, independent of that at the tip of the precursor, in response to contact with the substrate. This second accumulation of talin at the focal contact starts before vinculin, consistent with a sequential binding of talin at the membrane and of vinculin to talin. The results imply that talin functions independently at two steps during formation of the focal contact: the development of the F-actin-rich precursor of the contact; and development of the contact-associated adhesion plaque, both involving organization of F-actin at the membrane.  相似文献   

10.
Calcium-dependent proteases: an enzyme system active at cellular membranes?   总被引:8,自引:0,他引:8  
Proteases having a neutral pH optimum and an absolute requirement for calcium ion are found in virtually all mammalian cells. Association of calcium-dependent proteases and a specific inhibitor protein with biological membranes seems to be an important regulatory feature of this proteolytic system, and it is likely that membranes are preferred sites for calcium-dependent protease action. Several recent hypotheses for the physiological function of calcium-dependent proteolysis are consistent with a membrane-associated protease action. Calcium-dependent proteases may participate in cell membrane fusion: the proteolysis of membrane proteins, which is required for the efficient fusion of erythrocytes, may be catalyzed by these enzymes. There is also evidence for the involvement of calcium-dependent proteolysis in postsynaptic membrane remodeling in the hippocampus after long-term potentiation. Although the relationship of the proteolysis to synaptic function is not known, it could have important physiological or pathophysiological consequences. Finally, it has recently been suggested that calcium-dependent proteolysis may be a physiologically significant mechanism for activating membrane-associated protein kinase C after exposure of some cell types to phorbol esters or other mitogens. Further pursuit of these hypotheses may reveal a novel role for intracellular calcium-regulated proteolysis in membrane-associated cell functions.  相似文献   

11.
12.
Fibronectin is a large, adhesive glycoprotein which is found in a number of locations, most notably on cell surfaces, in extracellular matrixes, and in blood. Fibronectin has been detected in all vertebrates tested and in many invertebrates. Its presence in sponges is significant because this suggests that fibronectin may have appeared very early in evolution, possibly with the most primitive multicellular organisms. Cellular and plasma fibronectins have many striking similarities. However, the locations of the polypcptide chain differences between these two proteins indicate that plasma fibronectin cannot be derived from cellular fibronectin by means of simple post-translational proteolysis. Instead, these different types of fibronectin may be products of different genes or of differentially spliced messenger RNA molecules. Amniotic fluid fibronectin is possibly a third form of the protein. Cellular and plasma fibronectins are composed of at least six protcaseresistant domains which contain specific binding sites for actin, gelatin, heparin, Staphylococcus aureus, transglutarninase, fibrin, DNA, and a cell surface receptor. The relative locations of these domains have been mapped in the primary structure of fibronectin. The cell surface receptor for fibronectin has not been positively identified, but may be a glycoprotein, a glycolipid, or a complex of the two. Although cell-substratum adhesion is mediated by fibronectin, the locations of the areas of closest approach of the cell to the substratum (the adhesion plaques) and fibronectin are not coincident under conditions of active cell growth. Under conditions of cell growth arrest in low scrum concentrations, some fibronectin may become localized at the adhesion plaques. Models describing the domain structure of fibronectin and the molecular organization of the adhesion plaque area are presented.  相似文献   

13.
Vinculin in relation to stress fibers in spread platelets.   总被引:4,自引:0,他引:4  
To investigate the function of vinculin in blood platelets, we studied its localization in relation to other cytoskeletal proteins as well as its state of phosphorylation in platelets allowed to spread on fibrinogen-coated surfaces. By 5 minutes after loading the platelets onto the surfaces the 47 and 20 kDa polypeptides became phosphorylated, indicating activation. By 30 minutes, platelets formed small, typical bundles of fibers which stained brilliantly with rhodamine phalloidin. Myosin and tropomyosin, detected with specific antibodies, were localized in periodic arrays along these bundles. By indirect immunofluorescence, a discrete patch of vinculin was observed at each end of every actin-containing bundle. Vinculin phosphorylation was not detected in immunoprecipitates protected against phosphatases. Interference reflection images showed that regions of close binding to the substratum (adhesion plaques) closely matched the vinculin staining sites. Talin appeared diffusely localized. It could be shown to be present in the plaques when platelets were stabilized with ZnCl2 by the method of Geiger and then sonicated to remove some of the surface membrane. Localizations of vinculin and myosin were unaltered by this treatment. Talin phosphorylation or proteolysis could not account for vinculin translocation. We conclude that platelets, in response to an appropriate physiological surface, form typical actin bundles with vinculin at the termination of each bundle, in close relation to adhesion plaques. The signal for this translocation does not appear to depend on phosphorylation of vinculin or on phosphorylation or proteolysis of talin. Our findings support the conclusion that in platelets, as in nucleated cells, vinculin serves as at least part of the connection between bundled actin fibers and the extracellular matrix. Such a connection seems required for platelets' known ability to exert tension on surfaces.  相似文献   

14.
Talin is a large scaffolding molecule that plays a major role in integrin-dependent cell-matrix adhesion. A role for talin in cell-cell attachment through cadherin has never been demonstrated, however. Here, we identify a novel calpain-dependent proteolytic cleavage of talin that results in the release of a 70-kD C-terminal fragment, which serves as a substrate of posttranslational arginylation. The intracellular levels of this fragment closely correlated with the formation of cell-cell adhesions, and this fragment localized to cadherin-containing cell-cell contacts. Moreover, reintroduction of this fragment rescued the cell-cell adhesion defects in arginyltransferase (Ate1) knockout cells, which normally have a very low level of this fragment. Arginylation of this fragment further enhanced its ability to rescue cell-cell adhesion formation. In addition, arginylation facilitated its turnover, suggesting a dual role of arginylation in its intracellular regulation. Thus, our work identifies a novel proteolytic product of talin that is regulated by arginylation and a new role of talin in cadherin-dependent cell-cell adhesion.  相似文献   

15.
Purification of a 190 kDa protein from smooth muscle: relationship to talin   总被引:3,自引:0,他引:3  
Several studies of vinculin-binding proteins have described a 190 kDa protein in chicken gizzard smooth muscle which binds radioiodinated vinculin. We have purified and studied the 190 kDa protein from chicken gizzard smooth muscle. By indirect immunofluorescence, an antiserum raised against the 190 kDa protein stains adhesion plaques (focal contacts), ruffling membranes, and fibrillar streaks on the dorsal and ventral surfaces of fibroblasts. Both the binding to vinculin and the location of the protein in fibroblasts are properties shared with talin, a 215 kDa protein in smooth muscle and fibroblasts. Because antisera against talin and the 190 kDa cross-react the relationship of these two proteins has been investigated further. Upon prolonged storage at 4 degrees C, purified talin degrades into a 190 kDa fragment. A 190 kDa fragment is also generated from talin by the Staphylococcus aureus V-8 proteinase and by trypsin. Comparison of partial peptide maps of talin and the 190 kDa protein reveal that the proteins are very similar and when the 190 kDa fragment of talin is compared with the purified 190 kDa protein by partial proteolytic digestion no differences are found in the pattern of peptides generated. In addition, the amount of 190 kDa protein detected in muscle tissues excised from chick embryos can be drastically reduced if proteinase inhibitors are added to the tissue homogenates. We conclude that the purified 190 kDa dalton protein is a proteolytic fragment of talin. Although markedly reduced by proteinase inhibitors, detection of the 190 kDa protein is not completely abolished, suggesting that some talin may already be cleaved within living cells.  相似文献   

16.
Wu M  Yu Z  Fan J  Caron A  Whiteway M  Shen SH 《FEBS letters》2006,580(13):3246-3256
Calpains are a family of calcium-dependent cysteine proteases involved in a variety of cellular functions. Two isoforms, m-calpain and mu-calpain, have been implicated in cell migration. However, since conventional inhibitors used for the studies of the functions of these enzymes lack specificity, the individual physiological function and biochemical mechanism of these two isoforms, especially mu-calpain, are not clear. In contrast, RNA interference has the potential to allow a sequence-specific destruction of target RNA for functional assay of gene of interest. In the present study, we found that small interfering RNAs-mediated knockdown of mu-calpain expression in MCF-7 cells that do not express m-Calpain led to a reduction of cell migration. This isoform-specific function of mu-calpain was further confirmed by the rescue experiment as overexpression of mu-calpain but not m-calpain could restore the cell migration rate. Knockdown of mu-calpain also altered cell morphology with increased filopodial projections and a highly elongated tail that seemed to prevent cell spreading and migration with reduced rear detachment ability. Furthermore, knockdown of mu-calpain decreased the proteolytic products of filamin and talin, which were specifically rescued by overexpression of mu-calpain but not m-calpain, suggesting that their proteolysis could be one of the key mechanisms by which mu-calpain regulates cell migration.  相似文献   

17.
《The Journal of cell biology》1989,109(6):3333-3346
Talin is a high molecular weight protein localized at adhesion plaques in fibroblasts. It binds vinculin and integrin and appears to participate in generating a transmembrane connection between the extracellular matrix and the cytoskeleton. We have recently shown that talin is an abundant protein in platelets, cells highly specialized for regulated adhesion. Although talin constitutes greater than 3% of the total protein in intact human platelets, its location within the cells had not been defined. In the work reported here, we have investigated the distribution of talin in resting and activated human platelets by immunofluorescence and immunoelectron microscopy. We have found that talin undergoes an activation-dependent change in its subcellular location. In resting platelets, which are nonadhesive, talin is uniformly distributed throughout the cytoplasm. In contrast, in thrombin- and glass-activated, substratum-adherent platelets, talin is concentrated at the cytoplasmic face of the plasma membrane. This dramatic, regulated redistribution of talin raises the possibility that talin plays a role in the controlled development of platelet adhesion.  相似文献   

18.
Cell migration is a dynamic process that involves the continuous formation, maturation, and turnover of matrix-cell adhesion sites. New (nascent) adhesions form at the protruding cell edge in a tension-independent manner and are comprised of integrin receptors, signaling, and cytoskeletal-associated proteins. Integrins recruit focal adhesion kinase (FAK) and the cytoskeletal protein talin to nascent adhesions. Canonical models support a role for talin in mediating FAK localization and activation at adhesions. Here, alternatively, we show that FAK promotes talin recruitment to nascent adhesions occurring independently of talin binding to β1 integrins. The direct binding site for talin on FAK was identified, and a point mutation in FAK (E1015A) prevented talin association and talin localization to nascent adhesions but did not alter integrin-mediated FAK recruitment and activation at adhesions. Moreover, FAK E1015A inhibited cell motility and proteolytic talin cleavage needed for efficient adhesion dynamics. These results support an alternative linkage for FAK-talin interactions within nascent adhesions essential for the control of cell migration.  相似文献   

19.
The localization of talin and vinculin in chicken embryo fibroblasts (CEF) during transformation was studied by immunoelectron microscopy. CEF cells were infected with a temperature-sensitive mutant of Rous sarcoma virus. After 16 h at 42 degrees C, transformation was induced by incubation at 37 degrees C for different intervals up to 3 h. Cells were cleaved by "wet cleaving" as reported previously by us (R. Brands and C.A. Feltkamp, 1988, Exp. Cell Res. 176, 309) and labeled with affinity-purified polyclonal antibodies to talin or vinculin, or monoclonal anti-vinculin. We observed a rapid reduction of vinculin in adhesion plaques within 15 min and a much slower dissociation of talin. This was found using single-labeling procedures and also within the same cell using double labeling. Seemingly intact microfilament bundles were observed associated with adhesion plaques that contained relatively little vinculin. These observations show that an early event in src-induced transformation is the release of vinculin from adhesion plaques. Furthermore, since adhesion plaques with attached filament bundles can exist at least transiently with very little or no vinculin present, it seems likely that vinculin is not, or not the only protein, linking actin filaments to adhesion plaques.  相似文献   

20.
Vinculin regulates cell adhesion by strengthening contacts between extracellular matrix and the cytoskeleton. Binding of the integrin ligand, talin, to the head domain of vinculin and F-actin to its tail domain is a potential mechanism for this function, but vinculin is autoinhibited by intramolecular interactions between its head and tail domain and must be activated to bind talin and actin. Because autoinhibition of vinculin occurs by synergism between two head and tail interfaces, one hypothesis is that activation could occur by two ligands that coordinately disrupt both interfaces. To test this idea we use a fluorescence resonance energy transfer probe that reports directly on activation of vinculin. Neither talin rod, VBS3 (a talin peptide that mimics a postulated activated state of talin), nor F-actin alone can activate vinculin. But in the presence of F-actin either talin rod or VBS3 induces dose-dependent activation of vinculin. The activation data are supported by solution phase binding studies, which show that talin rod or VBS3 fails to bind vinculin, whereas the same two ligands bind tightly to vinculin head domain (K(d) approximately 100 nM). These data strongly support a combinatorial mechanism of vinculin activation; moreover, they are inconsistent with a model in which talin or activated talin is sufficient to activate vinculin. Combinatorial activation implies that at cell adhesion sites vinculin is a coincidence detector awaiting simultaneous signals from talin and actin polymerization to unleash its scaffolding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号