首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIM: The present study aims to establish that cholinephosphotransferase (CPT), the terminal enzyme for the de novo biosynthesis of phosphatidylcholine (PC), can be used as a biomarker for breast cancer in an animal model. MAIN METHODS: Breast cancer was induced by intragastric administration of dimethylbenz(a)anthracene (DMBA) in rats. The activity and expression of CPT were compared between normal breast tissues and breast tumors. To establish possible mechanistic model, we looked into other enzymes of PC biosynthesis as well as c-fos protein expression and DNA binding. KEY FINDINGS: CPT enzyme activity and its expression were significantly higher in breast cancer tissues relative to normal breast tissues. Corresponding to the increase in the CPT activity and its expression, c-fos activity and its expression were also increased in breast tumors. SIGNIFICANCE: The present study suggests that increased CPT activity and expression is associated with DMBA-induced breast cancer development.  相似文献   

2.
Estrone sulfate (E1S) is concentrated in high levels in human breast cancer tissue. The values are particularly high in postmenopausal women and many times those circulating in the plasma. Also, the tissular concentration of this conjugate are significantly higher in tumoural tissue than in the area of the breast considered as normal. The enzyme which hydrolyzes E1S: sulfatase, as well as the enzyme which biosynthesises this conjugate: sulfotransferase, are present in significant concentrations in breast cancer tissue. Consequently, E1S is a balance between the activities of the two enzymes. As breast cancer tissue has all the enzymes necessary for the synthesis of estradiol (E2), and the formation of E2 from E1S ‘via sulfatase’ is the main pathway, it was very attractive to explore inhibitory agents of this enzyme. It was observed that different substances including antiestrogens (4-hydroxytamoxifen, ICI 164,384) and various progestins (promegestone, nomegestrol acetate, medrogestone) as well as Org OD14 (tibolone) can block the sulfatase activity. In addition, it was demonstrated that different progestins (medrogestone, nomegestrol acetate, TX-525) and org OD14 can stimulate the sulfotransferase activity for the formation of the biologically inactive E1S. It is concluded that the inhibition of sulfatase and the stimulation of sulfotransferase activity can open interesting possibilities to explore these effects in patients with breast cancer.  相似文献   

3.
4.
5.
Aromatase and cyclooxygenases: enzymes in breast cancer   总被引:8,自引:0,他引:8  
Aromatase (estrogen synthase) is the cytochrome P450 enzyme complex that converts C19 androgens to C18 estrogens. Aromatase activity has been demonstrated in breast tissue in vitro, and expression of aromatase is highest in or near breast tumor sites. Thus, local regulation of aromatase by both endogenous factors as well as exogenous medicinal agents will influence the levels of estrogen available for breast cancer growth. The prostaglandin PGE2 increases intracellular cAMP levels and stimulates estrogen biosynthesis, and previous studies in our laboratories have shown a strong linear association between aromatase (CYP19) expression and expression of the cyclooxygenases (COX-1 and COX-2) in breast cancer specimens. To further investigate the pathways regulating COX and CYP19 gene expression, studies were performed in normal breast stromal cells, in breast cancer cells from patients, and in breast cancer cell lines using selective pharmacological agents. Enhanced COX enzyme levels results in increased production of prostaglandins, such as PGE2. This prostaglandin increased aromatase activity in breast stromal cells, and studies with selective agonists and antagonists showed that this regulation of signaling pathways occurs through the EP1 and EP2 receptor subtypes. COX-2 gene expression was enhanced in breast cancer cell lines by ligands for the various peroxisome proliferator-activated receptors (PPARs), and differential regulation was observed between hormone-dependent and -independent breast cancer cells. Thus, the regulation of both enzymes in breast cancer involves complex paracrine interactions, resulting in significant consequences on the pathogenesis of breast cancer.  相似文献   

6.
There is a well-established role for reactive oxygen and nitrogen species, chronic inflammation and immune response in the pathogenesis of breast cancer. Complex interactions between breast cancer cells and surrounding blood vessels are prerequisites for cancer growth and invasion. Reports in the literature concerning the systemic response to, and the effect of, common breast cancer therapy on NF-kappaB and antioxidative defence enzyme expression and activity under clinical conditions are scarce. We determined these parameters in whole blood cell lysate from 16 women with breast cancer before and after combined (cyclophosphamide, doxorubicin, 5-fluorouracil; CAF) therapy and compared the results with 16 healthy women. Significantly higher levels of NF-kappaB and Mn-SOD (both their protein level and their activity) were found in breast cancer patients before and after CAF therapy, in comparison with healthy women. In parallel measurements, no change in the level or activity of catalase (CAT) was detected. According to our findings, it appears that breast cancer creates conditions that increase the level of hydrogen peroxide in the circulating cells and that the applied CAF therapy fails to compensate, therefore creating systemic conditions that favour survival and invasion of breast cancer cells.  相似文献   

7.
Arylamine N-acetyltransferase 1 is a phase II metabolizing enzyme that has been associated with certain breast cancer subtypes. While it has been linked to breast cancer risk because of its role in the metabolic activation and detoxification of carcinogens, recent studies have suggested it may be important in cell growth and survival. To address the possible importance of NAT1 in breast cancer, we have used a novel small molecule inhibitor (Rhod-o-hp) of the enzyme to examine growth and invasion of the breast adenocarcinoma line MDA-MB-231. The inhibitor significantly reduced cell growth by increasing the percent of cells in G2/M phase of the cell cycle. Rhod-o-hp also reduced the ability of the MDA-MB-231 cells to grow in soft agar. Using an in vitro invasion assay, the inhibitor significantly reduced the invasiveness of the cells. To test whether this effect was due to inhibition of NAT1, the enzyme was knocked down using a lentivirus-based shRNA approach and invasion potential was significantly reduced. Taken together, the results of this study demonstrate that NAT1 activity may be important in breast cancer growth and metastasis. The study suggests that NAT1 is a novel target for breast cancer treatment.  相似文献   

8.
Selective estrogen receptor (ER) modulators are highly successful breast cancer therapies, but they are not effective in patients with ER negative and selective estrogen receptor modulator (SERM)-resistant tumors. Understanding the mechanisms of estrogen-stimulated proliferation may provide a route to design estrogen-independent therapies that would be effective in these patients. In this study, metabolic flux analysis was used to determine the intracellular fluxes that are significantly affected by estradiol stimulation in MCF-7 breast cancer cells. Intracellular fluxes were calculated from nuclear magnetic resonance (NMR)-generated isotope enrichment data and extracellular metabolite fluxes, using a specific flux analysis algorithm. The metabolic pathway model used by the algorithm includes glycolysis, the tricarboxylic acid cycle (TCA cycle), the pentose phosphate pathway, glutamine catabolism, pyruvate carboxylase, and malic enzyme. The pathway model also incorporates mitochondrial compartmentalization and reversible trans-mitochondrial membrane reactions to more accurately describe the role of mitochondria in cancer cell proliferation. Flux results indicate that estradiol significantly increases carbon flow through the pentose phosphate pathway and increases glutamine consumption. In addition, intra-mitochondrial malic enzyme was found to be inactive and the malate-aspartate shuttle (MAS) was only minimally active. The inactivity of these enzymes indicates that glutamine is not oxidized within mitochondria, but is consumed primarily to provide biosynthetic precursors. The excretion of glutamine carbons from the mitochondria has the secondary effect of limiting nicotinamide adenine dinucleotide (NADH) recycle, resulting in NADH buildup in the cytosol and the excretion of lactate. The observed dependence of breast cancer cells on pentose phosphate pathway activity and glutamine consumption for estradiol-stimulated biosynthesis suggests that these pathways may be targets for estrogen-independent breast cancer therapies.  相似文献   

9.
Ren J  Wu X  He W  Shao J  Cheng B  Huang T 《DNA and cell biology》2011,30(2):111-116
Lysyl oxidase (LOX) is an extracellular enzyme critical for the cross-linking of collagens and elastin. The LOX gene has also been shown to inhibit the transforming activity of Ras oncogene signaling. Recently, a single-nucleotide polymorphism (SNP) of LOX G473A (rs1800449) has been demonstrated to be associated with increased risk of breast cancer in African American women. In this hospital-based case-control study, the association of LOX polymorphism with breast cancer susceptibility in Chinese Han population was investigated. In total, 238 female patients with breast cancer and 234 age-matched healthy controls recruited were genotyped. We found a significant difference in the frequency of the LOX G473A genotype between the breast cancer and control groups. Individuals with GA genotype showed a 2.79-fold (95% confidence interval?=?1.87-4.16) increased risk of breast cancer compared with subjects carrying GG genotype (p?相似文献   

10.
Jordan VC  Brodie AM 《Steroids》2007,72(1):7-25
This article describes the origins and evolution of "antiestrogenic" medicines for the treatment and prevention of breast cancer. Developing drugs that target the estrogen receptor (ER) either directly (tamoxifen) or indirectly (aromatase inhibitors) has improved the prognosis of breast cancer and significantly advanced healthcare. The development of the principles for treatment and the success of the concept, in practice, has become a model for molecular medicine and presaged the current testing of numerous targeted therapies for all forms of cancer. The translational research with tamoxifen to target the ER with the appropriate duration (5 years) of adjuvant therapy has contributed to the falling national death rates from breast cancer. Additionally, exploration of the endocrine pharmacology of tamoxifen and related nonsteroidal antiestrogen (e.g. keoxifene now known as raloxifene) resulted in the laboratory recognition of selective ER modulation and the translation of the concept to use raloxifene for the prevention of osteoporosis and breast cancer. However, the extensive evaluation of tamoxifen treatment revealed small but significant side effects such as endometrial cancer, blood clots and the development of acquired resistance. The solution was to develop drugs that targeted the aromatase enzyme specifically to prevent the conversion of androstenedione to estrone and subsequently estradiol. The successful translational research with the suicide inhibitor 4-hydroxyandrostenedione (known as formestane) pioneered the development of a range of oral aromatase inhibitors that are either suicide inhibitors (exemestane) or competitive inhibitors (letrozole and anastrozole) of the aromatase enzyme. Treatment with aromatase inhibitors is proving effective and is associated with reduction in the incidence of endometrial cancer and blood clots when compared with tamoxifen and there is also limited cross resistance so treatment can be sequential. Current clinical trials are addressing the value of aromatase inhibitors as chemopreventive agents for postmenopausal women.  相似文献   

11.
12.
In postmenopausal breast cancer tissue, steroid sulfatase (STS) activity is high and much estrone sulfate also exists; these facts reveal that estrone sulfate may be involved in the growth of breast cancer as an estrogen source. Steroid sulfatase is an enzyme, which catalyzes hydrolysis from estrone sulfate to estrone, and the development of steroid sulfatase inhibitors is expected as novel therapeutic drugs for postmenopausal breast cancer. We have developed a novel compound 2',4'-dicyanobiphenyl-4-O-sulfamate (TZS-8478), which has potent steroid sulfatase-inhibitory activity and exhibits no estrogenicity in vitro and in vivo. To elucidate its usefulness as a therapeutic drug for postmenopausal breast cancer, we examined the breast cancer cell proliferation- and breast tumor growth-inhibitory activity of TZS-8478 in postmenopausal breast cancer model rats. TZS-8478 dose-dependently suppressed the estrone sulfate-stimulated proliferation of MCF-7 cells. Regarding nitrosomethylurea (NMU)-induced postmenopausal breast cancer models, furthermore, TZS-8478 (0.5 mg/kg per day) markedly inhibited the estrone sulfate-stimulated growth of breast tumors similarly to estrone sulfate-depletion. TZS-8478 completely inhibited steroid sulfatase activity in tumor, uterus and liver, and also markedly lowered plasma concentrations of estrone and estradiol. The above mentioned results suggested that TZS-8478 may be useful as a therapeutic drug for estrogen-dependent postmenopausal breast cancer.  相似文献   

13.
Breast cancer is the most common malignancy in women and a significant cause of morbidity and mortality. Sub-types of breast cancer defined by the expression of steroid hormones and Her2/Neu oncogene have distinct prognosis and undergo different therapies. Besides differing in their phenotype, sub-types of breast cancer display various molecular lesions that participate in their pathogenesis. BRCA1 is one of the common hereditary cancer predisposition genes and encodes for an ubiquitin ligase. Ubiquitin ligases or E3 enzymes participate together with ubiquitin activating enzyme and ubiquitin conjugating enzymes in the attachment of ubiquitin (ubiquitination) in target proteins. Ubiquitination is a post-translational modification regulating multiple cell functions. It also plays important roles in carcinogenesis in general and in breast carcinogenesis in particular. Ubiquitin conjugating enzymes are a central component of the ubiquitination machinery and are often perturbed in breast cancer. This paper will discuss ubiquitin and ubiquitin-like proteins conjugating enzymes participating in breast cancer pathogenesis, their relationships with other proteins of the ubiquitination machinery and their role in phenotype of breast cancer sub-types.  相似文献   

14.
Oxidative stress is considered to be implicated in the pathophysiology of breast cancers. In this study we investigated the level of oxidative stress and antioxidant (AO) status in the blood of breast cancer patients of different ages. The level of lipid hydroperoxides (LP) was measured in blood plasma and the activities of copper, zinc superoxide dismutase (CuZnSOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) enzymes, as well as the level of total glutathione (GSH) and CuZnSOD protein were measured in blood cells of breast cancer patients and age-matched healthy subjects. Our results showed that breast carcinoma is related to increase of lipid peroxidation in plasma with concomitant decrease of AO defense capacity in blood cells, which becomes more pronounced during aging of the patients. Suppression of CuZnSOD activity related to breast cancer is most likely caused by decreased de novo synthesis of this enzyme. Similar patterns of suppression in CuZnSOD and CAT activities related to aging were recorded both in controls and patients. Age-related decrease in CuZnSOD activity seems not to be caused by altered protein levels of this enzyme. Suppression of AO enzymes associated with breast cancer and aging is most likely the cause of increased levels of reactive oxygen species (ROS). Our results indicate significant role of oxidative-induced injury in the breast carcinogenesis, particularly during the later stages of aging. Overall, our data support the importance of endogenous AOs in the etiology of breast cancer across all levels of predicted risk.  相似文献   

15.
Human breast cancer cell lines have been shown to possess high affinity receptors for 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and their growth is inhibited by this steroid. The present study examines the effect of 1,25(OH)2D3 on the activity of glucose-6-phosphate dehydrogenase (G6PD) in cells of a human breast cancer cell line MCF-7. G6PD, an enzyme which controls the hexose monophosphate shunt, is elevated and sensitive to 17 beta-estradiol in breast tumors. G6PD activity was stimulated by 1,25(OH)2D3 in a dose-dependent manner at very low concentrations of steroid (10(-10)-10(-12) M). 1,25(OH)2D3 increased maximum velocity without modifying the affinity constant of the enzyme for glucose-6-phosphate.  相似文献   

16.
Tumor cell derived matrix metalloproteinases are a family of enzymes associated with the tumor invasion and metastasis. Extracellular matrix metalloproteinases inducer (EMMPRIN) stimulates synthesis of gelatinase A (MMP-2) in peritoneal fibroblasts. In the present study the role of MMP-2 and EMMPRIN in the progression of breast cancer has been investigated. Gelatinase-A and EMMPRIN were analyzed in benign as well as in stage II and stage III breast cancer tissue samples by gelatin zymography assay, immunoprecipation analysis and Western blot analysis with a monoclonal primary antibody specific for EMMPRIN. Our results showed over expression of EMMPRIN in advanced stages of breast cancer tissues compared with benign tumor tissue samples. The expression of MMP-2, the active and latent forms of the enzyme increased with tumor progression from Stage II to Stage III of breast cancer and it was not expressed in benign tissues. The expression MMP-2 correlates with tumor progression. This observation obviously indicates that EMMPRIN and MMP-2 are the major determinants of malignancy in cancers.  相似文献   

17.
The evaluation of estrogens (estrone, estradiol, and their sulfates) in the breast tissue of post-menopausal patients with breast cancer indicates high levels, particularly of estrone sulfate (E1 S) which is 15–25 times higher than in the plasma. Breast cancer tissue contains the enzymes necessary for local synthesis of estradiol and it was demonstrated that, despite the presence of the sulfatase and its messenger in hormone-dependent and hormone-independent breast cancer cells, this enzyme operates particularly in hormone-dependent cells. Different progestins: Nomegestrol acetate, Promegestone, progesterone, as well as Danazol, can block the conversion of E1 S to E2 very strongly in hormone-dependent breast cancer cells. The last step in the formation of estradiol is the conversion of E1 to this estrogen by the action of 17β-hydroxysteroid dehydrogenase. This activity is preferentially in the reductive direction (formation of E2) in hormone-dependent cells, but oxidative (E2 → E1) in hormone-independent cells. Using intact hormone-dependent cells it was observed that Nomegestrol acetate can block the conversion of E1 to E2. It is concluded, firstly, that in addition to ER mutants other factors are involved in the transformation of hormone-dependent breast cancer to hormone-independent, this concerns the enzymatic activity in the formation of E2; it is suggested that stimulatory or repressive factor(s) involved in the enzyme activity are implicated as the cancer evolves to hormone-independence; secondly, different drugs can block the conversion of E1 S to E2. Clinical trials of these “anti-enzyme” substances in breast cancer patients could be the next step to investigate new therapeutic possibilities for this disease.  相似文献   

18.
Deubiquitinases (DUBs) have important biological functions, but their roles in breast cancer metastasis are not completely clear. In this study, through screening a series of DUBs related to breast cancer distant metastasis-free survival (DMFS) in the Kaplan-Meier Plotter database, we identified ubiquitin-specific protease 12 (USP12) as a key deubiquitinating enzyme for breast cancer metastasis. We confirmed this via an orthotopic mouse lung metastasis model. We revealed that the DMFS of breast cancer patients with high USP12 was worse than that of others. Knockdown of USP12 decreased the lung metastasis ability of 4T1 cells, while USP12 overexpression increased the lung metastasis ability of these cells in vivo. Furthermore, our results showed that the supernatant from USP12-overexpressing breast cancer cells could promote angiogenesis according to human umbilical vein endothelial cell (HUVEC) migration and tube formation assays. Subsequently, we identified midkine (MDK) as one of its substrates. USP12 could directly interact with MDK, decrease its polyubiquitination and increase its protein stability in cells. Overexpression of MDK rescued the loss of angiogenesis ability mediated by knockdown of USP12 in breast cancer cells in vitro and in vivo. There was a strong positive relationship between USP12 and MDK protein expression in clinical breast cancer samples. Consistent with the pattern for USP12, high MDK expression predicted lower DMFS and overall survival (OS) in breast cancer. Collectively, our study identified that USP12 is responsible for deubiquitinating and stabilizing MDK and leads to metastasis by promoting angiogenesis. Therefore, the USP12–MDK axis could serve as a potential target for the therapeutic treatment of breast cancer metastasis.Subject terms: Breast cancer, Breast cancer  相似文献   

19.
Estrogens, responsible for the growth of hormone-dependant breast cancer are biosynthesized from androgens involving aromatase enzyme in the last rate limiting step. Inhibition of aromatase is an efficient approach for the prevention and treatment of breast cancer. Novel 4-phenylthia derivatives (2, 3 and 7) have been synthesized as aromatase inhibitors. The synthesized compounds (2, 3 and 7) exhibited noticeable enzyme inhibiting activity. Kinetics study of these compounds (2, 3, and 7) showed negligible inhibition of the enzyme under conditions conducive for irreversible inhibition of the enzyme. Introduction of unsaturation at C-4, C-1 & 4 or C-4 & 6 (compounds 5, 9 and 11) was observed to not be an effective strategy for entrancing aromatase inhibiting activity in 17-oxo-16β-carbonitrile derivatives. The D-seco derivatives (13-15 and 17) having unsaturation at C-4, C-1 & 4 or C-4 & 6 along with carbonitrile function in ring-D showed complete loss of aromatase inhibiting activity.  相似文献   

20.
Methylenetetrahydrofolate reductase (MTHFR) is an enzyme (EC 1.5.1.20), that reduces 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a carbon donor for the homocysteine to methionine conversion. MTHFR is a key enzyme that regulates folate metabolism which has an important role in DNA synthesis, DNA repair and methylation. The association between MTHFR C677T polymorphism and breast cancer has been investigated in several previous studies. Some researchers have shown an association between C677T polymorphism and breast cancer, but not all researchers found this association however. This study was designed to investigate, in the Turkish population, the association of MTHFR C677T polymorphism and breast cancer. Forty women patients with breast cancer and 68 healthy women were included in the study. MTHFR gene polymorphism was determined by the PCR-RFLP method. SPSS 10.0 for windows was used to determine statistical significance. No differences were observed in the distribution of MTHFR genotypes or allele frequencies in the cases versus the controls. It was found that the frequencies of MTHFR polymorphism were 55%, 40%, 5% for CC, CT, TT genotype in patients and 56%, 38%, 6% in healthy controls respectively. Furthermore, association was observed among family history, metastatic risk and MTHFR genotypes in patients. Our data fail to support a relationship between MTHFR C677T and the risk for breast cancer. It may be that there are ethnic differences in terms of this relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号