首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated dolichol synthesis in yeast Pichia pastoris. Growth of these cells on methanol causes peroxisome proliferation and induction of peroxisomal enzymes. Twenty-four hours methanol treatment was sufficient for the appearance of longer-chain dolichols. Less specific oleic acid induction needed 48 h for the synthesis of longer dolichol family with typical one still present. Cells cultured in non-inducing conditions for 48 h did not reveal the presence of additional dolichol family. Peroxisomes purified from oleic acid treated cells synthesize in vitro polyprenols longer by two isoprene residues than those synthesized by microsomal fraction from glucose culture. These observations lead us to suggest that chain length of dolichols synthesized in yeast cell may depend on the carbon and energy source supply which mobilizes metabolic pathways localized to different cellular compartments.  相似文献   

2.
The yeast Saccharomyces cerevisiae strain W303 synthesizes in the early logarithmic phase of growth dolichols of 14-18 isoprene residues. The analysis of the polyisoprenoids present in the stationary phase revealed an additional family which proved to be also dolichols but of 19-24 isoprene residues, constituting 39% of the total dolichols. The transfer of early logarithmic phase cells to a starvation medium lacking glucose or nitrogen resulted in the synthesis of the longer chain dolichols. The additional family of dolichols represented 13.8% and 10.3% of total dolichols in the glucose and nitrogen deficient media, respectively. The level of dolichols in yeast cells increased with the age of the cultures. Since both families of dolichols are present in stationary phase cells we postulate that the longer chain dolichols may be responsible for the physico-chemical changes in cellular membranes allowing yeast cells to adapt to nutrient deficient conditions to maintain long-term viability.  相似文献   

3.
The PEX11 peroxisomal membrane proteins are the only factors known to promote peroxisome division in multiple species. It has been proposed that PEX11 proteins have a direct role in peroxisomal fatty acid oxidation, and that they only affect peroxisome abundance indirectly. Here we show that PEX11 proteins are unique in their ability to promote peroxisome division, and that PEX11 overexpression promotes peroxisome division in the absence of peroxisomal metabolic activity. We also observed that mouse cells lacking PEX11beta display reduced peroxisome abundance, even in the absence of peroxisomal metabolic substrates, and that PEX11beta(-/-) mice are partially deficient in two distinct peroxisomal metabolic pathways, ether lipid synthesis and very long chain fatty acid oxidation. Based on these and other observations, we propose that PEX11 proteins act directly in peroxisome division, and that their loss has indirect effects on peroxisome metabolism.  相似文献   

4.
Two procedures for quantitative determination of dolichol were studied and these were applied to analyze tissue and subcellular distribution. In the first procedure the dolichols were oxidized with Cr2O3 and reduced with NaB3H4. The radioactivity in the individual dolichols was measured using reversed-phase thin-layer chromatography. In the second procedure, dolichols were analyzed by high-pressure liquid chromatography. For determination of dolichyl phosphates the lipid extract was subjected to acid and alkaline hydrolysis, and after hydrolysis with acid phosphatase the distribution was determined by high-pressure liquid chromatography. Recovery was monitored by the addition of dolichol D15 and D23 phosphate to the homogenate. Rat spleen had the highest dolichol content (114 micrograms/g) followed by lower content in rat liver and brain. The distribution pattern was similar in all organs, with 18 and 19 isoprene residues as dominating components. Human organs contain considerably higher concentrations of dolichol, with the 19 and 20 isoprene residues as the main components. In rat liver, outer mitochondrial and Golgi membranes, lysosomes and plasma membranes contain considerable amounts of dolichol. A drastic increase in dolichol content was observed in rat liver hyperplastic nodules while human liver cirrhosis and hepatocarcinoma showed a marked decrease in dolichol. In the latter case, the distribution pattern was also changed. Of the total amount of dolichol present in the tissues, 2% was phosphorylated in human liver, 10% in human testis and 18% in rat liver. In rat liver mitochondria and in microsomes 4 and 31%, respectively, of the polyprenols were in activated form. The results demonstrated that dolichyl phosphate and dolichol concentrations were regulated by different mechanisms and that the two forms possessed an independent distribution.  相似文献   

5.
Peroxisomes are versatile organelles essential for diverse developmental processes. One such process is the meiotic development of Podospora anserina. In this fungus, absence of the docking peroxin PEX13, the RING-finger complex peroxins, or the PTS2 co-receptor PEX20 blocks sexual development before meiocyte formation. However, this defect is not seen in the absence of the receptors PEX5 and PEX7, or of the docking peroxins PEX14 and PEX14/17. Here we describe the function of the remaining uncharacterized P. anserina peroxins predictably involved in peroxisome matrix protein import. We show that PEX8, as well as the peroxins potentially mediating receptor monoubiquitination (PEX4 and PEX22) and membrane dislocation (PEX1, PEX6 and PEX26) are indeed implicated in peroxisome matrix protein import in this fungus. However, we observed that elimination of PEX4 and PEX22 affects to different extent the import of distinct PEX5 cargoes, suggesting differential ubiquitination-complex requirements for the import of distinct proteins. In addition, we found that elimination of PEX1, PEX6 or PEX26 results in loss of peroxisomes, suggesting that these peroxins restrain peroxisome removal in specific physiological conditions. Finally, we demonstrate that all analyzed peroxins are required for meiocyte formation, and that PEX20 function in this process depends on its potential monoubiquitination target cysteine. Our results suggest that meiotic induction relies on a peroxisome import pathway, which is not dependent on PEX5 or PEX7 but that is driven by an additional cycling receptor. These findings uncover a collection of peroxins implicated in modulating peroxisome activity to facilitate a critical developmental cell fate decision.  相似文献   

6.
Dolichols, linear isoprenoids essential in the biosynthesis of N-glycosylated glycoproteins, are abundant in testicular tissue. This study investigated the distribution of dolichols among testicular cell and subcellular fractions. In addition, the accumulation of dolichol within the rat testis as a function of age was investigated. Dolichol content expressed either as total dolichol/testicle or as dolichol/mg protein exhibited a marked and continuous increase between 14 and 60 days of age. The 4-, 6-, 9-, and 12-mo-old animals exhibited only minor increases in testicular dolichol content. Mean value for retired breeders was 279 ng dolichol/mg protein. Although previous studies have suggested that dolichol synthesis occurs primarily within the spermatogenic cell, elutriation-purified spermatogenic cell fractions showed very low concentrations of dolichol. Pachytene spermatocyte and round spermatid fractions contained 25.8 and 36.5 ng dolichol/mg protein, respectively. Washed epididymal sperm also had a very low dolichol content (18.8 ng dolichol/mg protein). Recovery studies during elutriation purification of spermatogenic cells showed that the majority of dolichol was contained within the Sertoli-rich tubular fragments. Microsomal fractions isolated from whole testis exhibited a small enrichment (1.6-fold) in dolichol content, whereas Golgi apparatus fractions exhibited a large (12-fold) enrichment over that of the initial homogenate. These studies suggest that, although dolichols may be synthesized within the spermatogenic cell, they accumulate within the Sertoli cell.  相似文献   

7.
The arrangement of isoprene units in pig liver dolichol-18, -19 and -20 was determined by 1H- and 13C-n.m.r. spectroscopies. The alignment of trans and cis isoprene units was found to be in the order: dimethylallyl unit, two trans units, a sequence of 14-16 cis units, and a saturated isoprene unit terminated with a hydroxyl group, which verified the presumed chemical structure of dolichol. The absence of geometric isomers was confirmed. A slight amount of impurity was detected in each reversed-phase h.p.l.c. fraction of dolichol obtained by a conventional method. Detailed assignments of the 13C-n.m.r. spectrum were given for these dolichols by using model compounds and INEPT (insensitive nuclei enhanced by polarization transfer) measurement. The chemical structure of synthetic dolichol-19, which was prepared by the addition of a saturated isoprene unit to the polyprenol-18 isolated from Ginkgo biloba, was confirmed to be identical with that of pig liver dolichol-19.  相似文献   

8.
Dolichyl monophosphate (Dol-P) is a polyisoprenoid glycosyl carrier lipid essential for the assembly of a variety of glycoconjugates in the endoplasmic reticulum of eukaryotic cells. In yeast, dolichols with chain lengths of 14--17 isoprene units are predominant, whereas in mammalian cells they contain 19--22 isoprene units. In this biosynthetic pathway, t,t-farnesyl pyrophosphate is elongated to the appropriate long chain polyprenyl pyrophosphate by the sequential addition of cis-isoprene units donated by isopentenyl pyrophosphate with t,t,c-geranylgeranyl pyrophosphate being the initial intermediate formed. The condensation steps are catalyzed by cis-isoprenyltransferase (cis-IPTase). Genes encoding cis-IPTase activity have been identified in Micrococcus luteus, Escherichia coli, Arabidopsis thaliana, and Saccharomyces cerevisiae (RER2). Yeast cells deleted for the RER2 locus display a severe growth defect, but are still viable, possibly due to the activity of an homologous locus, SRT1. The dolichol and Dol-P content of exponentially growing revertants of RER2 deleted cells (Delta rer2) and of cells overexpressing SRT1 have been determined by HPLC analysis. Dolichols and Dol-Ps with 19--22 isoprene units, unusually long for yeast, were found, and shown to be utilized for the biosynthesis of lipid intermediates involved in protein N-glycosylation. In addition, cis-IPTase activity in microsomes from Delta rer2 cells overexpressing SRT1 was 7- to 17-fold higher than in microsomes from Delta rer2 cells. These results establish that yeast contains at least two cis-IPTases, and indicate that the chain length of dolichols is determined primarily by the enzyme catalyzing the chain elongation stage of the biosynthetic process.  相似文献   

9.
The process of peroxisome biogenesis involves several PEX genes that encode the machinery required to assemble the organelle. Among the corresponding peroxins the interaction between PEX3 and PEX19 is essential for early peroxisome biogenesis. However, the intracellular site of this protein interaction is still unclear. To address this question by fluorescence resonance energy transfer (FRET) analysis, we engineered the enhanced yellow fluorescent protein (EYFP) to the C-terminus of PEX3 and the enhanced cyan fluorescent protein (ECFP) to the N-terminus of PEX19. Functionality of the fusion proteins was shown by transfection of human PEX3- and PEX19-deficient fibroblasts from Zellweger patients with tagged versions of PEX3 and PEX19. This led to reformation of import-competent peroxisomes in both cell lines previously lacking detectable peroxisomal membrane structures. The interaction of PEX3-EYFP with ECFP-PEX19 in a PEX3-deficient cell line during peroxisome biogenesis was visualized by FRET imaging. Although PEX19 was predominantly localized to the cytoplasma, the peroxisome was identified to be the main intracellular site of the PEX3-PEX19 interaction. Results were confirmed and quantified by donor fluorescence photobleaching experiments. PEX3 deletion proteins lacking the N-terminal peroxisomal targeting sequence (PEX3 34-373-EYFP) or the PEX19-binding domain located in the C-terminal half of the protein (PEX3 1-140-EYFP) did not show the characteristic peroxisomal localization of PEX3, but were mislocalized to the cytoplasm (PEX3 34-373-EYFP) or to the mitochondria (PEX3 1-140-EYFP) and did not interact with ECFP-PEX19. We suggest that FRET is a suitable tool to gain quantitative spatial information about the interaction of peroxins during the process of peroxisome biogenesis in single cells. These findings complement and extend data from conventional in vitro protein interaction assays and support the hypothesis of PEX3 being an anchor for PEX19 at the peroxisomal membrane.  相似文献   

10.
In higher plants, peroxisomes accomplish a variety of physiological functions such as lipid catabolism, photorespiration and hormone biosynthesis. Recently, many factors regulating peroxisomal biogenesis, so-called PEX genes, have been identified not only in plants but also in yeasts and mammals. In the Arabidopsis genome, the presence of at least 22 PEX genes has been proposed. Here, we clarify the physiological functions of 18 PEX genes for peroxisomal biogenesis by analyzing transgenic Arabidopsis plants that suppressed the PEX gene expression using RNA interference. The results indicated that the function of these PEX genes could be divided into two groups. One group involves PEX1, PEX2, PEX4, PEX6, PEX10, PEX12 and PEX13 together with previously characterized PEX5, PEX7 and PEX14. Defects in these genes caused loss of peroxisomal function due to misdistribution of peroxisomal matrix proteins in the cytosol. Of these, the pex10 mutant showed pleiotropic phenotypes that were not observed in any other pex mutants. In contrast, reduced peroxisomal function of the second group, including PEX3, PEX11, PEX16 and PEX19, was induced by morphological changes of the peroxisomes. Cells of the pex16 mutant in particular possessed reduced numbers of large peroxisome(s) that contained unknown vesicles. These results provide experimental evidence indicating that all of these PEX genes play pivotal roles in regulating peroxisomal biogenesis. We conclude that PEX genes belonging to the former group are involved in regulating peroxisomal protein import, whereas those of the latter group are important in maintaining the structure of peroxisome.  相似文献   

11.
Peroxisome biogenesis relies on two known peroxisome matrix protein import pathways that are mediated by the receptors PEX5 and PEX7. These pathways converge at the importomer, a peroxisome‐membrane complex that is required for protein translocation into peroxisomes and consists of docking and RING–finger subcomplexes. In the fungus Podospora anserina, the RING–finger peroxins are crucial for meiocyte formation, while PEX5, PEX7 or the docking peroxin PEX14 are not. Here we show that PEX14 and the PEX14‐related protein PEX14/17 are differentially involved in peroxisome import during development. PEX14/17 activity does not compensate for loss of PEX14 function, and elimination of both proteins has no effect on meiocyte differentiation. In contrast, the docking peroxin PEX13, and the peroxins implicated in peroxisome membrane biogenesis PEX3 and PEX19, are required for meiocyte formation. Remarkably, the PTS2 coreceptor PEX20 is also essential for meiocyte differentiation and this function does not require PEX5 or PEX7. This finding suggests that PEX20 can mediate the import receptor activity of specific peroxisome matrix proteins. Our results suggest a new pathway for peroxisome import, which relies on PEX20 as import receptor and which seems critically required for specific developmental processes, like meiocyte differentiation in P. anserina.  相似文献   

12.
13.
We isolated and characterized CHO mutants deficient in peroxisome assembly using green fluorescent protein (GFP) and blue fluorescent protein (BFP) as the fluorescent probes to study the molecular mechanism of peroxisome biogenesis. We used stable transformants of CHO cells expressing GFP appending peroxisome targeting signal-1 (PTS1) and/or peroxisome targeting signal-2 (PTS2) as the parent strains for rapid isolation of the mutants. We have obtained six peroxisome-deficient mutants by visual screening of the mislocalizations of the peroxisomal GFPs. Mutual cell fusion experiments indicated that the six mutants isolated were divided into four complementation groups. Several of the mutants obtained possessed defective genes: the PEX2 gene was defective in SK24 and PT54; the PEX5 gene in SK32 and the PEX7 gene in PT13 and PT32. BE41, which belonged to the fourth complementation group, was not determined. When peroxisomal forms of BFP were transiently expressed in mutant cells, the peroxisomal BFPs appending both PTS1 and PTS2 appeared to bypass either the PTS1 or PTS2 pathway for localization in SK32. This observation suggested that other important machinery, in addition to the PTS1 or PTS2 pathway, could be involved in peroxisome biogenesis. Thus, our approach using peroxisomal fluorescent proteins could facilitate the isolation and analysis of peroxisome-deficient CHO mutants and benefit studies on the identification and role of the genes responsible for peroxisome biogenesis.  相似文献   

14.
PEX5 functions as a mobile import receptor for peroxisomal matrix proteins with a peroxisomal targeting signal 1 (PTS1). A critical step within the PTS1-import pathway is the interaction between PEX5 and the peroxisome membrane-associated protein PEX14. Based on two-hybrid analyses in mammalian cells and complementary in vitro binding assays, we demonstrate that the evolutionarily conserved pentapeptide repeat motifs, WX(E/D/Q/A/S)(E/D/Q)(F/Y), in PEX5 bind to PEX14 with high affinity. The results obtained indicate that each of the seven di-aromatic pentapeptides of human PEX5 interacts separately at the same binding site in the N terminus of PEX14 with equilibrium dissociation constants in the low nanomolar range. Mutational analysis of the PEX14-binding motifs reveals that the conserved aromatic amino acids at position 1 or 5 are essential for high affinity binding. We propose that the side chains of the aromatic amino acids are in close proximity as part of an amphipathic alpha-helix and together form hydrophobic anchors for binding PEX5 to individual PEX14 molecules.  相似文献   

15.
The relative contribution of the Sertoli cell and the pachytene spermatocyte to dolichol and N-linked oligosaccharide biosynthesis within the seminiferous tubule was investigated. Evidence is presented to show that the interaction between these two cell types affects dolichol and N-linked oligosaccharide biosynthesis. Analysis of the dolichol content of Sertoli cultures confirms earlier data suggesting that the Sertoli cell constitutes the major pool of dolichols within the seminiferous tubule. [14C]Acetate incorporation studies suggest that the Sertoli cell in culture synthesizes dolichol much more rapidly than does the isolated pachytene spermatocyte. This information, in addition to previous data in the literature, infers an interactive effect whereby the presence of the spermatogenic cell in the tubule stimulates dolichol synthesis in the Sertoli cell. The absence of normal Sertoli-spermatocyte interactions in in vitro incubations may also limit dolichol synthesis in the pachytene spermatocyte. The distribution of dolichol kinase between the Sertoli and the pachytene spermatocyte was also examined. The concentration of this enzyme in the Sertoli cell suggests the presence of an active salvage pathway within that cell. The correlation between the appearance of the pachytene spermatocyte and the previously described peak of dolichol kinase activity in the seminiferous tubules of the prepubertal animal implies cell-cell interactions. Radiolabelling studies of N-linked oligosaccharides were conducted using [3H]mannose and concanavalin A affinity chromatography to identify multiantennary, biantennary, and high-mannose oligosaccharide pools. An in vitro bicameral coculture system was used to demonstrate that pachytene spermatocytes stimulate incorporation of [3H]mannose into Sertoli cell oligosaccharides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We have cloned the Hansenula polymorpha PEX14 gene by functional complementation of the chemically induced pex14-1 mutant, which lacked normal peroxisomes. The sequence of the PEX14 gene predicts a novel protein product (Pex14p) of 39 kDa which showed no similarity to any known protein and lacked either of the two known peroxisomal targeting signals. Biochemical and electron microscopical analysis indicated that Pex14p is a component of the peroxisomal membrane. The synthesis of Pex14p is induced by peroxisome-inducing growth conditions. In cells of both pex14-1 and a PEX14 disruption mutant, peroxisomal membrane remnants were evident; these contained the H.polymorpha peroxisomal membrane protein Pex3p together with a small amount of the major peroxisomal matrix proteins alcohol oxidase, catalase and dihydroxyacetone synthase, the bulk of which resided in the cytosol. Unexpectedly, overproduction of Pex14p in wild-type H. polymorpha cells resulted in a peroxisome-deficient phenotype typified by the presence of numerous small vesicles which lacked matrix proteins; these were localized in the cytosol. Apparently, the stoichiometry of Pex14p relative to one or more other components of the peroxisome biogenesis machinery appears to be critical for protein import.  相似文献   

17.
PEX13 is an integral membrane protein on the peroxisome that regulates peroxisomal matrix protein import during peroxisome biogenesis. Mutations in PEX13 and other peroxin proteins are associated with Zellweger syndrome spectrum (ZSS) disorders, a subtype of peroxisome biogenesis disorder characterized by prominent neurological, hepatic, and renal abnormalities leading to neonatal death. The lack of functional peroxisomes in ZSS patients is widely accepted as the underlying cause of disease; however, our understanding of disease pathogenesis is still incomplete. Here, we demonstrate that PEX13 is required for selective autophagy of Sindbis virus (virophagy) and of damaged mitochondria (mitophagy) and that disease‐associated PEX13 mutants I326T and W313G are defective in mitophagy. The mitophagy function of PEX13 is shared with another peroxin family member PEX3, but not with two other peroxins, PEX14 and PEX19, which are required for general autophagy. Together, our results demonstrate that PEX13 is required for selective autophagy, and suggest that dysregulation of PEX13‐mediated mitophagy may contribute to ZSS pathogenesis.  相似文献   

18.
The PEX11 peroxisomal membrane proteins promote peroxisome division in multiple eukaryotes. As part of our effort to understand the molecular and physiological functions of PEX11 proteins, we disrupted the mouse PEX11alpha gene. Overexpression of PEX11alpha is sufficient to promote peroxisome division, and a class of chemicals known as peroxisome proliferating agents (PPAs) induce the expression of PEX11alpha and promote peroxisome division. These observations led to the hypothesis that PPAs induce peroxisome abundance by enhancing PEX11alpha expression. The phenotypes of PEX11alpha(-/-) mice indicate that this hypothesis remains valid for a novel class of PPAs that act independently of peroxisome proliferator-activated receptor alpha (PPARalpha) but is not valid for the classical PPAs that act as activators of PPARalpha. Furthermore, we find that PEX11alpha(-/-) mice have normal peroxisome abundance and that cells lacking both PEX11alpha and PEX11beta, a second mammalian PEX11 gene, have no greater defect in peroxisome abundance than do cells lacking only PEX11beta. Finally, we report the identification of a third mammalian PEX11 gene, PEX11gamma, and show that it too encodes a peroxisomal protein.  相似文献   

19.
The isoprenoid metabolic pathway in protozoa of the Leishmania genus exhibits distinctive characteristics. These parasites, as well as other members of the Trypanosomatidae family, synthesize ergosterol, instead of cholesterol, as the main membrane sterol lipid. Leishmania has been shown to utilize leucine, instead of acetate as the main precursor for sterol biosynthesis. While mammalian dolichols are molecules containing 15-23 isoprene units, Leishmania amazonensis promastigotes synthesize dolichol of 11 and 12 units. In this paper, we show that the intracellular stages of L. amazonensis, amastigotes, synthesize mainly polyprenols of 9 isoprene units, instead of dolichol.  相似文献   

20.
Slightly elevated serum dolichol levels have so far been demonstrated only in alcoholics. We now report two diseases with exceptionally high serum dolichol levels. They are autosomal, recessively inherited lysosomal storage diseases, aspartylglucosaminuria (AGU) and mannosidosis. In 16 patients with AGU the mean serum level of total dolichols (457 +/- 43 ng/ml) was more than two-fold when compared to healthy controls (170 +/- 4 ng/ml). In two patients with mannosidosis the levels were almost two-fold. The percentage distribution of the dolichol homologues with 18, 19 or 20 isoprene units did not differ between the patients and controls. The inclusion of an additional control group excluded the possible influence of mental retardation and imparied moving ability on the results. Elevated serum dolichols in patients with lysosomal storage diseases may reflect a disturbance in lysosomal function and serve as a diagnostic marker. The biochemical mechanisms leading to this phenomenon remain to be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号