首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The rapid stimulation of intestinal Ca2+ transport observed in vitamin D-deficient chicks after receiving 1,25-dihydroxycholecalciferol has necessitated a re-evaluation of the correlation hitherto observed between this stimulation and the induction of calcium-binding protein synthesis. By 1h after a dose of 125ng of 1,25-dihydroxycholecalciferol, Ca2+ transport is increased. This is at least 2h before calcium-binding protein can be detected immunologically and 1h before synthesis of the protein begins on polyribosomes, and thus the hormone stimulates Ca2+ transport before calcium-binding-protein biosynthesis is induced. 2. The maximum increase in Ca2+ transport observed after this dose of 1,25-dihydroxycholecalciferol (attained by 8h) is similar to that observed after 1.25–25μg of cholecalciferol, but the stimulation is only short-lived, in contrast with the effect observed after the vitamin. At later times after the hormone, however, when Ca2+ transport has declined to its basal rate, the cellular content of calcium-binding protein remains elevated. 3. Calcium-binding protein is synthesized on free rather than membrane-bound polyribosomes, which implies that it is an intracellular protein. 4. Rachitic chicks require the presence of dietary calcium for maximum stimulation of calcium-binding protein production by cholecalciferol. 5. These results suggest that calcium-binding protein is an intracellular protein, and that its synthesis may be a consequence of the raised intracellular calcium content of the intestinal epithelial cells resulting from 1,25-dihydroxycholecalciferol-stimulated Ca2+ transport. We propose that calcium-binding-protein synthesis is necessary for maintaining the stimulated rate of Ca2+ transport, which is initiated by other factors.  相似文献   

2.
3.
These studies investigated the initial stimulation of intestinal calcium absorption in the rat by 1,25-dihydroxyvitamin D3. To produce a functional vitamin D3-deficiency, rats were fed a diet containing 2.4% strontium. After 10 days on the diet, intestinal calcium uptake, as measured by everted gut sacs, was significantly depressed. Strontium-fed rats were dosed orally with 1,25-dihydroxyvitamin D3, and changes in intestinal calcium uptake, intestinal alkaline phosphatase activity, and intestinal calcium-binding protein were measured as a function of time after dose. Calcium uptake was significantly increased in the proximal 2.5 cm of the duodenum at 4 h and along the whole duodenum by 7 h. Intestinal alkaline phosphatase activity, measured in a Triton extract of the mucosal homogenate and in isolated brush border complexes, was also increased by 7 h. Using both gel electrophoresis and immunodiffusion against a specific antiserum, an increase in intestinal calcium-binding protein was detected in intestinal supernate at 4 h after dosing. Almost no calcium-binding protein was detectable in strontium-fed rats dosed with propylene glycol only. These time studies are consistent with a role for both alkaline phosphatase and calcium-binding protein in the 1,25-dihydroxyvitamin D3-stimulated uptake of calcium by the intestine. In addition, the usefulness of strontium feeding for producing a functional vitamin D3 deficiency in rats is demonstrated.  相似文献   

4.
The intestinal level of the vitamin D-dependent duodenal calcium-binding protein was assayed by an equilibrated column technique in rat embryos, neonates, and pups. Calcium-binding protein was undetectable in unborn, newborn, and 1- to 2-day-old rats i.e., the level was lower than in severely vitamin D-deficient animals. Calcium-binding protein was detected after the animals were 5-days old and thereafter rose monotonically as a function of body weight. Treatment with 1,25-dihydroxyvitamin D3 failed to raise the calcium-binding protein levels of newborn or 1-day-old rats, but doubled the level in 11- or 12-day-old pups. Plasma calcium was raised in all treated animals. The failure to detect calcium-binding protein in vitamin D-replete suckling animals provides evidence for a dissociation between calcium absorption and calcium binding protein.  相似文献   

5.
A protein has been detected in chick brain which is immunologically identical to the vitamin D-induced calcium-binding protein found in intestinal tissue. It is present in highest concentration in the cerebellum and at lower levels in the remainder of the brain. Brain calcium-binding protein has the same molecular weight and electrophoretic properties as intestinal calcium-binding protein. Although the synthesis of intestinal calcium-binding protein is totally dependent upon a source of vitamin D, this has not yet been shown for brain calcium-binding protein. The total calcium-binding protein content of the cerebellum of chicks fed a vitamin D-free diet continued to increase during growth from 1 to 5 weeks, and is not responsive to exogenous vitamin D or 1,25-dihydroxyvitamin D.  相似文献   

6.
Dietary calcium and dietary phosphorus restriction were studied in chicks fed either cholecalciferol or 1α-hydroxycholecalciferol. Intestinal calcium absorption and calcium-binding protein of 1α-hydroxycholecalciferol-treated chicks remained unchanged under dietary calcium restriction, but increased under dietary phosphorus restriction. Kidney calcium-binding protein was not altered by dietary calcium restriction in chicks treated with either cholecalciferol or 1α-hydroxycholecalciferol, but increased under dietary phosphorus restriction independent of the vitamin D source. In contrast to the intestine, calcium-binding activity of the kidney was found to be poorly related to the calcium-binding protein concentration. It is suggested that kidney calcium-binding protein is regulated by a mechanism different from that of intestinal calcium-binding protein, and that its concentration in renal tissue is related to renal calcium excretion or plasma calcium level.  相似文献   

7.
Dietary calcium and dietary phosphorus restriction were studied in chicks fed either cholecalciferol or 1alpha-hydroxycholecalciferol. Intestinal calcium absorption and calcium-binding protein of 1alpha-hydroxycholecalciferol-treated chicks remained unchanged under dietary calcium restriction, but increased under dietary phosphorus restriction. Kidney calcium-binding protein was not altered by dietary caclium restriction in chidks treated with either cholecalciferol or 1alpha-hydroxycholecalciferol, but increased under dietary phosphorus restriction independent of the vitamin D source. In contrast to the intestine, calcium-binding activity of the kidney was found to be poorly related to the calcium-binding protein concentration. It is suggested that kidney calcium-binding protein is regulated by a mechanism different from that of intestinal calcium-binding protein, and that its concentration in renal tissue is related to renal caclium excretion or plasma calcium level.  相似文献   

8.
9.
The amount of skin calcium-binding protein, evaluated using a sensitive radioimmunoassay and indirect immunofluorescence, was decreased in vitamin-D deficient rats and increased after one week vitamin D3 or 1 alpha-hydroxyvitamin D3 treatment. In vitamin D replete and in vitamin D-deficient animals, skin calcium-binding protein was not sensitive to changes in dietary and/or serum calcium concentrations. These results indicate that this protein is different from other calcium-binding proteins such as parvalbumin and calmodulin which are not vitamin D-dependent, and also different from intestinal calcium-binding protein which, in D replete animals, is sensitive to changes in dietary and serum calcium concentrations. Skin calcium-binding protein may, therefore, represent a new class of vitamin D-dependent protein.  相似文献   

10.
A variety of intestinal cell organelles and proteins have been proposed to mediate 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)-stimulated calcium absorption. In the present study biochemical analyses were undertaken to determine the subcellular localization of 45Ca after calcium transport in vivo in ligated duodenal loops of vitamin D-deficient chicks injected with 1.3 nmol of 1,25-(OH)2D3 or vehicle 15 h prior to experimentation. Separation of Golgi, mitochondria, basal lateral membrane, and lysosome fractions in the epithelial homogenates was achieved by differential sedimentation followed by centrifugation in Percoll gradients and evaluation of appropriate marker enzyme activities. Both vitamin D-deficient and 1,25-(OH)2D3-treated chicks had the highest levels of 45Ca-specific activity in lysosomal fractions. The lysosomes were also the only organelles to exhibit a 1,25-(OH)2D3-mediated difference in calcium content, increasing to 138% of controls. Lysosomes prepared from 1,25-(OH)2D3-treated chicks also contained the greatest levels of immunoreactive calbindin-D28k (calcium-binding protein). Chloroquine, a drug known to interfere with lysosomal function, was tested and found to inhibit 1,25-(OH)2D3-stimulated intestinal calcium absorption. Neither 1,25-(OH)2D3 nor chloroquine affected [3H]2O transport. In additional experiments, microsomal membranes (105,000 X g pellets) were subjected to gradient centrifugation. The highest levels of 45Ca-specific activity and calcium-binding protein in material from 1,25-(OH)2D3-treated chicks were found in fractions denser than endoplasmic reticulum and may represent endocytic vesicles. In studies on intestinal mucosa of 1,25-(OH)2D3-treated birds fractionated after 30 min of exposure to lumenal Ca2+ or Ca2+ plus chloroquine, 45Ca was found to accumulate in lysosomes and putative endocytic vesicles, relative to controls. A mechanism involving vesicular flow is proposed for 1,25-(OH)2D3-mediated intestinal calcium transport. Endocytic internalization of Ca2+, fusion of the vesicles with lysosomes, and exocytosis at the basal lateral membrane complete the transport process.  相似文献   

11.
Embryonic chick duodenum maintained in organ culture responds to vitamin D3 in the culture medium by increased cyclic AMP concentration, de novo synthesis of a specific calcium-binding protein and by increased uptake and transmucosal transport of radiocalcium. The presence of bovine PTH, porcine or salmon calcitonin had no effect on these intestinal responses suggesting that these hormones may have no direct effect on the vitamin D3-mediated, intestinal calcium absorptive mechanism.  相似文献   

12.
A dependence was studied between the level of calcium absorption and the content of calcium-binding protein in the small intestine of D-hypovitaminous chickens to whom different exogenic precursors of nucleotides (potassium orotate or guanine) were administered at different stages of the response (0-72 h) to a single administration of vitamin D3 in a dose of 500 MU. It is established that under the effect of potassium orotate or guanine the degree of discrepancy between calcium adsorption and the content of Ca2+-binding protein increases at all stages under investigation. The results of the mathematical analysis of the experimental data which is based on the supposition of the linear dependence between the level of absorbed calcium and Ca2+-binding protein evidence for a considerable rise in the excess amount of the latter, which possibly does not take part in cation absorption, in the chickens who were administered nucleotide exogenic precursors. The data obtained show that the amount of calcium-binding protein is not a limiting factor in the mechanism of vitamin D3 stimulation of calcium absorption in the chicken small intestine.  相似文献   

13.
Duodena from 20-day-old chick embryos can be maintained in large scale organ culture on specially designed stainless-steel grids in contact with serum-free medium for 48 h with excellent preservation of mucosal structure at both the light and electron microscope levels. Although mitotic rate was subnormal, several other factors attest to the essential viability of the cultured intestine: L-leucine incorporation into protein, as well as the synthesis of a specific vitamin D3-induced calcium-binding protein (CaBP), increased over a 48-h culture period, and the electropotential gradient across the intestine was maintained throughout the culture period as was a concentration gradient for calcium. The tissue responded to vitamin D3 in the medium by synthesizing the calcium-binding protein within 6 h and by exhibiting enhanced 45Ca uptake within 12–24 h. Concentrations of vitamin D3, or its 25-hydroxylated derivative, higher than necessary for CaBP induction, also increased the activity of alkaline phosphatase. The 1,25-dihydroxylated derivative of vitamin D3, at a level extremely potent in CaBP induction, did not stimulate alkaline phosphatase. Mucosal to serosal transport of 45Ca could also be measured in everted duodenal sacs, subsequent to culture under similar conditions, and was also increased by vitamin D3 in the medium. Other embryonic organs, esophagus, stomach, liver, pancreas, lung, skin, and muscle, did not produce CaBP in response to vitamin D3 in the culture medium. However, CaBP-synthesizing capacity was present in the entire intestinal tract, exclusive of the rectum. 59Fe and 32P uptake by cultured duodenum were also stimulated by vitamin D3. The system has proven quite useful in the study of the vitamin D-mediated calcium absorptive mechanism but should be applicable to the study of the absorption of other nutrients, drugs, hormones, etc., as well as other studies of intestinal function.  相似文献   

14.
The Ca content in skeletal muscle relative to vitamin D3 intake was studied in chicks. It was found that the Ca content in rachitic chick muscle was significantly higher than normal and it decreased with vitamin D3 treatment. In 4-week-old chicks fed a vitamin D-deficient diet, the Ca content in leg muscle reached 9.86 +/- 1.07 mg/100 g wet wt, although in chicks receiving vitamin D3 in doses of 100 and 500 IU/kg diet, it was 7.80 +/- 0.72 and 6.08 +/- 0.61 mg/100 g wet wt, respectively. A single i.m. dose of 0.50 micrograms of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) or vitamin D3 caused a dramatic decrease in the muscle Ca content by 3 to 6 h after the injection. A simultaneous rise in the Ca level in blood serum was observed. However, at this time the Ca binding protein content in duodenal mucosa and the stimulation of Ca absorption were negligible. These findings allow the conclusion that the vitamin D deficiency in chicks leads to a surplus Ca accumulation in skeletal muscle. The administration of vitamin D3 or its metabolites causes rapid Ca release during the first 6 h. This may be the source of the Ca level increase in blood serum. In this respect 1,25(OH)2D3 was much more effective than vitamin D3.  相似文献   

15.
The binding of calcium and terbium to purified chick vitamin D-dependent intestinal calcium-binding protein was studied by terbium fluorescence, circular dichroism, and intrinsic protein fluorescence techniques. Calcium-binding protein bound, with high affinity, at least 3 mol of terbium/mol of protein; numerous low affinity terbium-binding sites were also noted. The three highest affinity sites were resolved into one very high affinity site (site A) and two other sites (sites B and C) with slightly lower affinity. Resonance energy transfer from tryptophan residues to terbium occurred only with site A. This site was filled before sites B and C. Competition experiments in which calcium was used to displace terbium bound to the protein showed that larger amounts of calcium were needed to displace terbium from site A than from sites B and C. Energy transfer from terbium to holmium indicated that the terbium-binding sites (B and C) were located close to each other (about 7-12 A) but were distant (greater than 12 A) from site A. The addition of EDTA to calcium-binding protein resulted in a 25% decrease in intrinsic protein fluorescence, suggesting a conformational change in the protein. The titration of EDTA-treated calcium-binding protein with calcium resulted in recovery of intrinsic protein fluorescence. A reversible calcium-dependent change in the ellipticity of calcium-binding protein in circular dichroism experiments was also seen. These observed properties suggest that vitamin D-dependent chick intestinal calcium-binding protein behaves in a manner similar to other well-known calcium-binding regulatory proteins.  相似文献   

16.
Undegraded polyribosome preparations may be obtained from chick intestinal mucosa if ribonuclease activity is strictly controlled. This is best achieved by homogenization of the mucosa directly in rat liver cell-sap. 2. The extent of amino acid incorporation by chick intestinal polyribosomes is greatly influenced by the source of the cell-sap. Sephadex-treated intestinal cell-sap caused impaired incorporation and release of completed polypeptide chains, whereas Sephadex-treated rat liver cell-sap promoted the polymerization of up to 90 amino acids per ribosome. Under optimum conditions 30-35% of the nascent polypeptide chains are completed and released. 3. The preparation of an antiserum against the calcium-binding protein formed in response to vitamin D is described. It is shown that the antiserum is highly specific for calcium-binding protein. 4. This antiserum was used to investigate the ability of chick intestinal polyribosomes to synthesize calciumbinding protein. Only polyribosomes from chicks receiving vitamin D have the ability to synthesize calcium-binding protein. Moreover, the product formed in vitro has the same electrophoretic mobility as calcium-binding protein synthesized in vivo. 5. It is concluded that one of the main functions of vitamin D in the small intestine is to induce the synthesis de novo of calcium-binding protein.  相似文献   

17.

Background  

The active hormonal form of vitamin D (1,25-dihydroxyvitamin D) is the primary regulator of intestinal calcium absorption efficiency. In vitamin D deficiency, intestinal calcium absorption is low leading to an increased risk of developing negative calcium balance and bone loss. 1,25-dihydroxyvitamin D has been shown to stimulate calcium absorption in experimental animals and in human subjects. However, the molecular details of calcium transport across the enterocyte are not fully defined. Recently, two novel epithelial calcium channels (CaT1/ECaC2 and ECaC1/CaT2) have been cloned and suggested to be important in regulating intestinal calcium absorption. However, to date neither gene has been shown to be regulated by vitamin D status. We have previously shown that 1,25-dihydroxyvitamin stimulates transcellular calcium transport in Caco-2 cells, a human intestinal cell line.  相似文献   

18.
The alteration in the biologic activity of the vitamin D3 molecule resulting from the replacement of a hydrogen atom with a fluorine atom is a subject of fundamental interest. To investigate this problem we synthesized 3 beta-fluorovitamin D3 6 and its hydrogen analog, 3-deoxyvitamin D3 7, and tested the biologic activity of each by in vitro and in vivo methods. Contrary to previous reports which showed that 3 beta-fluorovitamin D3 was as active as vitamin D3 in vivo, we found that the fluoro-analog was less active than vitamin D3. With regard to stimulation of intestinal calcium transport and bone calcium mobilization in the D-deficient hypocalcemic rat, 3 beta-fluorovitamin D3 showed significantly greater biologic activity than its hydrogen analog, 3-deoxyvitamin D3. In the organ-cultured, embryonic chick duodenum, 3 beta-fluorovitamin D3 was approx 1/1000th as active as the native hormone, 1,25-dihydroxyvitamin D3, while 3-deoxyvitamin D3 was inactive even at microM concentrations, in the induction of the vitamin D-dependent, calcium-binding protein. With regard to in vitro activity in displacing radiolabeled 25-hydroxyvitamin D3 from vitamin D binding protein and radiolabelled 1,25-dihydroxyvitamin D3 from a chick intestinal cytosol receptor, 3 beta-fluorovitamin D3 and 3 beta-deoxyvitamin D3 both showed very poor binding efficiencies when compared with vitamin D3. Our results show that the substitution of a fluorine atom for a hydrogen atom at the C-3 position of the vitamin D3 molecule results in a fluorovitamin 6 with significantly more biological activity than its hydrogen analog, 3-deoxyvitamin D3 7.  相似文献   

19.
Previous work in our laboratory showed that the osteopetrotic (op/op) mouse possesses a vitamin D-independent mechanism of intestinal calcium absorption. This study was performed in an effort to further characterize the mechanism. The vitamin D-deficient op/op mouse absorbed calcium faster than either a vitamin D-deficient or 1, 25-dihydroxyvitamin D(3)-supplemented wild-type mouse. This increased rate of absorption was not found at concentrations of calcium that result in diffusional calcium absorption. Thus, vitamin D-deficient op/op mice had intestinal calcium absorption similar to that of vitamin D-deficient wild-type littermates when increasing levels of calcium were administered. Also, mRNA and protein levels of calbindin-D9k were similar in vitamin D-deficient wild-type and op/op mice as well as in wild-type and op/op mice treated with 1, 25-dihydroxyvitamin D(3). Therefore, the mechanism of vitamin D-independent intestinal calcium absorption in the op/op mouse is distinct from vitamin D-dependent intestinal calcium absorption.  相似文献   

20.
THE MODE OF ACTION OF VITAMIN D   总被引:6,自引:0,他引:6  
1. The purpose of this review article is to re-evaluate and integrate many of the observations related to the physiological effects of vitamin D, using as a working hypothesis the concept that the vitamin may be acting analogously to a steroid hormone in terms of its ability to interact with genetic information and ultimately elicit a physiological response. Prior to this time the problem of the mechanism of action of vitamin D has primarily been approached from the point of view that the vitamin was acting as a cofactor for some specific enzymic reaction. 2. The physiological activities of vitamin D are integrated with those of parathyroid hormone to provide a homeostatic control for the regulation of primarily calcium and secondarily phosphate metabolism. It is proposed that the role of vitamin D in this homeostatic control mechanism is older and more fundamental than that of parathyroid hormone. The interaction of vitamin D on skeletal calcium metabolism may have evolved before the effects of the vitamin on intestinal calcium absorption. 3. There are several physiological defects of calcium metabolism—rickets, osteo-malacia, vitamin D-resistant rickets and idiopathic hypercalcaemia—all of which may be a consequence of an aberration in one or another of the interlocking steps of the vitamin D-dependent and calcium-dependent homeostatic control mechanism. 4. The most thoroughly established action of vitamin D in vivo is to promote or facilitate the intestinal absorption of calcium. Although the exact biochemical details of this process are not available, this may involve vitamin D-mediated synthesis of the appropriate enzyme systems or the alteration of membrane structure necessary for calcium absorption. It is not yet unequivocally established whether calcium absorption is an energy-dependent active transport process or is a passive carrier-mediated or simple diffusion process. 5. The exact action of vitamin D on bone metabolism is not as well established, but the primary effect of the vitamin is likely to mediate bone resorption. The vitamin D-dependent activities of the cell in both the intestine and bone are to absorb calcium and transfer it to the blood. 6. No direct effects of vitamin D on intestinal absorption of phosphate have been found. Furthermore the validity of a vitamin D-mediated renal reabsorption of phosphate is questioned, for the major effects of vitamin D are cation oriented. If the renal effects of vitamin D are true, it is postulated that the mechanism of action of the vitamin here on the anion, phosphate, is fundamentally different from its cation oriented mechanism. 7. There is a lag in the action of vitamin D on the vitamin mediated: (a) transport of calcium both in vivo in rats and chicks, and in vitro with everted intestinal slices; (b) the apparent increased permeability of intestinal mucosa; (c) increased levels of citric acid in serum or bone; (d) the increased incorporation of radioactive inorganic phosphorus into intestinal mucosa phospholipids. As shown by the use of radioactive vitamin D, this lag is not due to a lack of the vitamin in the target organs. 8. Whereas large, unphysiological doses of radioactive vitamin D localize in all tissues and all subcellular fractions, small physiological doses of radioactive vitamin D localize predominantly in the nucleus of the intestinal mucosa. The amount of vitamin D localized in the nucleus would appear to be too low for the vitamin to function as a cofactor, and is more indicative of an interaction on or with deoxy-ribonucleic acid. 9. Actinomycin D, an inhibitor of DNA-directed RNA synthesis, inhibits the action of vitamin D in mediating intestinal calcium absorption and bone resorption. Vitamin D also stimulates messenger-RNA synthesis in intestinal mucosa within 1/2 hr. of vitamin treatment. Vitamin D may play a crucial role, along with parathyroid hormone and calcium, in a DNA, gene-dependent, homeostatic control mechanism for cal, ium metabolism. In this system the vitamin D molecule has certain very specific structural requirements which are probably a reflection of the specificity of its receptor molecule, rather than structural requirements for a cofactor-enzyme relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号