首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Freshly isolated rat islets and cultured hamster insulinoma cells (HIT T15) were incubated with a membrane-permeable octanoyl tripeptide (N-octanoyl-ASN-TYR-THR-NH2), which contains an acceptor sequence for ASN-linked glycosylation. Labeled octanoyltripeptide (125[I]TYR) was glycosylated by both islets and HIT cells. The carbohydrate moiety of this glycotripeptide was removed by N-glycanase indicating that glycotripeptide was formed in the lumen of endoplasmic reticulum and, subsequently was secreted via the route for secretory protein. Secretion of glycotripeptide began more rapidly than that of insulin newly synthesized from 3[H]leucine. At 30 min glycotripeptide secretion was already significant but, over a 3-h period, it never represented more than 21% of glycotripeptide produced. Glycotripeptide secretion was not affected by compounds shown to regulate insulin secretion (glucose, forskolin, EGTA and streptozotocin). Thus in beta cells, it appears that glycotripeptide secretion is unregulated and that its cellular secretory pathway is different from that for insulin.  相似文献   

2.
Strong, albeit indirect, evidence suggests that a GTP-binding (G) protein(s) can act directly on the secretory machinery by a post-second messenger mechanism. The type and function of this putative Ge (exocytosis) protein were investigated in streptolysin-O-permeabilized rat basophilic leukemia (RBL) cells. The exocytotic response to calcium was first characterized both morphologically and biochemically using the release of preloaded [3H]serotonin as an index of exocytosis. Calcium-induced secretion (EC50 about 3 microM) in RBL cells requires ATP (EC50 about 2.5 mM) and is modulated by pH, the optimal value being 7.2. Another requirement for calcium-induced secretion is an activated G protein, since inactivators of G proteins such as GDP beta S (EC50 about 800 microM) inhibit the secretagogue effect of 10 microM free calcium. Conversely, GTP gamma S (EC50 about 1 microM) and other nonhydrolyzable analogs of GTP, which keep G proteins in a permanently active conformation, potentiate the effect of calcium. GTP gamma S alone is without effect. The effect of GTP gamma S on exocytosis is apparently not mediated by known second messengers, suggesting that a Ge protein is involved. Electron microscopic images show that in resting cells, secretory granules are clustered in the perinuclear area, whereas they become scattered upon calcium stimulation. A paradoxical effect of GTP gamma S is observed when applied during permeabilization; under these conditions, in fact, the nucleotide inhibits the subsequent secretory response to calcium. The scattering of granules is also inhibited. This effect of GTP gamma S is counteracted by coadministration of GTP. These responses to guanine nucleotides are typical of vectorially acting G proteins involved in protein synthesis and in intracellular vesicle transport. Taken together, the data presented suggest that calcium-dependent release requires a vectorially acting G protein controlling the movement of secretory granules. This and alternative models are discussed.  相似文献   

3.
Secretion leaders are essential for expression of many heterologous proteins including insulin in yeast. The function of secretion leaders and their interaction with the secretory pathway is not clear. To determine what constitutes functional pre-pro-leader sequences inSaccharomyces cerevisiae,synthetic leader sequences for secretion of the insulin precursor were developed by a combination of rational design and stepwise systematic optimization. The synthetic leaders efficiently facilitate secretion of the insulin precursor fromS. cerevisiaewhen compared with the α-factor leader, leading to a high yield of correctly folded insulin precursor in the culture supernatant. The synthetic leaders feature two potential N-linked glycosylation sites which are efficiently glycosylated during secretion. Pulse–chase analysis indicates that the synthetic leaders/insulin precursor fusion protein have a prolonged residence in the endoplasmic reticulum compared to the α-factor leader/insulin precursor fusion protein. The longer transition time in the endoplasmic reticulum mediated by the synthetic leaders might provide additional time for correct folding of the insulin precursor and account for the increased fermentation yield.  相似文献   

4.
The non-differentiated HL60 cell can be stimulated to secrete when Ca2+ and guanosine 5'-[gamma-thio]-triphosphate (GTP gamma S) are introduced into streptolysin-O-permeabilized cells. Secretion is accompanied by activation of polyphosphoinositide phosphodiesterase (PPI-pde). Both responses show a concentration-dependence on Ca2+ between pCa 8 and pCa 5. The half-maximal requirements for Ca2+ for PPI-pde activation and secretion are pCa 6.4 +/- 0.1 and pCa 6.2 +/- 0.2 respectively. The rank order of potency of the GTP analogues to stimulate PPI-pde activation and secretion is similar; GTP gamma S greater than guanosine 5'-[beta gamma-imido]-triphosphate greater than guanosine 5'-[beta gamma-methylene]triphosphate greater than XTP approximately equal to ITP, but the maximal response achieved by each compound compared with GTP gamma S is much greater for secretion than for PPI-pde activation. A dissociation of the two responses is obtained with 10 mM-XTP and -ITP; secretion is always observed but not inositol trisphosphate formation at this concentration. GTP, dGTP, UTP and CTP are inactive for both secretion and PPI-pde activation. Both GDP and dGDP are competitive inhibitors of both GTP gamma S-induced secretion and PPI-pde activation. Phorbol 12-myristate 13-acetate could not fully substitute for GTP gamma S in stimulating secretion, suggesting that the effect of GTP gamma S cannot result simply from the generation of diacylglycerol. In the absence of MgATP, secretion and PPI-pde activation is still evident, albeit at a reduced level. This also supports the hypothesis that protein kinase C-dependent phosphorylation is not essential for secretion. The effect of MgATP is to enhance secretion, and to reduce both the Ca2+ and GTP gamma S requirement for secretion. In conclusion, two roles for guanine nucleotides can be identified; one for activating PPI-pde (GP) and the other for activating exocytosis (GE), acting in series.  相似文献   

5.
Colleters are secretory structures well distributed in many organs of Angiosperms. Ultrastructurally, the colleters secretory cell presents an enhanced endoplasmic reticulum, Golgi apparatus, and mitochondria. Secretion synthesis, transportation, and passage through outer cell wall is poorly characterized. This study characterized the anatomy and ultrastructure of BATHYSA NICHOLSONII (Rubiaceae) colleters and evaluated the presence of protein in the secretion and its antifungal property. Samples were collected and prepared according to usual techniques in light and electron microscopy, electrophoresis, and fungal growth inhibition assay. Colleters are of a standard type, cylindrical and elongated, formed by one secretory epidermal palisade layer, and a central axis formed by parenchymatic cells and a vascular trace. Epidermal cells have dense cytoplasm with abundant ribosome, a nucleus, enhanced endoplasmic reticulum and Golgi apparatus. The outer cell wall presented morphologically distinct layers. The presence of secretory cavities was noted in all outer cell wall extents. Secretion preparations analyzed by SDS-PAGE showed that B. NICHOLSONII secretion is a mixture of proteins with molecular masses covering a range of approximately 66 to 24 kDa. This preparation presented an inhibitory effect on the fungi spore growth.  相似文献   

6.
Killer toxin secretion was blocked at the restrictive temperature in Saccharomyces cerevisiae sec mutants with conditional defects in the S. cerevisiae secretory pathway leading to accumulation of endoplasmic reticulum (sec18), Golgi (sec7), or secretory vesicles (sec1). A 43,000-molecular-weight (43K) glycosylated protoxin was found by pulse-labeling in all sec mutants at the restrictive temperature. In sec18 the protoxin was stable after a chase; but in sec7 and sec1 the protoxin was unstable, and in sec1 11K toxin was detected in cell lysates. The chymotrypsin inhibitor tosyl-l-phenylalanyl chloromethyl ketone (TPCK) blocked toxin secretion in vivo in wild-type cells by inhibiting protoxin cleavage. The unstable protoxin in wild-type and in sec7 and sec1 cells at the restrictive temperature was stabilized by TPCK, suggesting that the protoxin cleavage was post-sec18 and was mediated by a TPCK-inhibitable protease. Protoxin glycosylation was inhibited by tunicamycin, and a 36K protoxin was detected in inhibited cells. This 36K protoxin was processed, but toxin secretion was reduced 10-fold. We examined two kex mutants defective in toxin secretion; both synthesized a 43K protoxin, which was stable in kex1 but unstable in kex2. Protoxin stability in kex1 kex2 double mutants indicated the order kex1 --> kex2 in the protoxin processing pathway. TPCK did not block protoxin instability in kex2 mutants. This suggested that the KEX1- and KEX2-dependent steps preceded the sec7 Golgi block. We attempted to localize the protoxin in S. cerevisiae cells. Use of an in vitro rabbit reticulocyte-dog pancreas microsomal membrane system indicated that protoxin synthesized in vitro could be inserted into and glycosylated by the microsomal membranes. This membrane-associated protoxin was protected from trypsin proteolysis. Pulse-chased cells or spheroplasts, with or without TPCK, failed to secrete protoxin. The protoxin may not be secreted into the lumen of the endoplasmic reticulum, but may remain membrane associated and may require endoproteolytic cleavage for toxin secretion.  相似文献   

7.
Membrane traffic has been shown to be regulated during cell division. In particular, with the use of viral membrane proteins as markers, endoplasmic reticulum (ER)-to-Golgi transport in mitotic cells has been shown to be essentially blocked. However, the effect of mitosis on other steps in the secretory pathway is less clear, because an early block makes examination of following steps difficult. Here, we report studies on the functional characteristics of secretory pathways in mitotic mammalian tissue culture cells by the use of a variety of markers. Chinese hamster ovary cells were transfected with cDNAs encoding secretory proteins. Consistent with earlier results following viral membrane proteins, we found that the overall secretory pathway is nonfunctional in mitotic cells, and a major block to secretion is at the step between ER and Golgi: the overall rate of secretion of human growth hormone is reduced at least 10-fold in mitotic cells, and export of truncated vesicular stomatitis virus G protein from the ER is inhibited to about the same extent, as judged by acquisition of endoglycosidase H resistance. To ascertain the integrity of transport from the trans-Golgi to plasma membrane, we followed the secretion of sulfated glycosaminoglycan (GAG) chains, which are synthesized in the Golgi and thus are not subject to the earlier ER-to-Golgi block. GAG chains are valid markers for the pathway taken by constitutive secretory proteins; both protein secretion and GAG chain secretion are sensitive to treatment with n-ethyl-maleimide and monensin and are blocked at 19 degrees C. We found that the extent of GAG-chain secretion is not altered during mitosis, although the initial rate of secretion is reduced about twofold in mitotic compared with interphase cells. Thus, during mitosis, transport from the trans-Golgi to plasma membrane is much less hindered than ER-to-Golgi traffic. We conclude that transport steps are not affected to the same extent during mitosis.  相似文献   

8.
Employing [32P]ADP-ribosylation by pertussis toxin we have identified a G protein that is located in the rough endoplasmic reticulum of canine pancreas and therefore termed it GRER. Identification of GRER is based on the following data. A 41-kDa polypeptide was the only polypeptide that was [32P]ADP-ribosylated by pertussis toxin in pancreas rough microsomes. Guanosine 5'-(gamma-thio)triphosphate (GTP gamma S) and 1 mM ATP, 6 mM MgCl2, 10 mM NaF (AMF) inhibited ADP-ribosylation of this polypeptide. The [32P]ADP-ribosylated 41-kDa polypeptide was immunoprecipitated by antisera which specifically recognized the C-terminal residues of the alpha subunits of Gi and transducin, indicating that the 41-kDa polypeptide is immunologically related to the alpha subunits of heterotrimeric G proteins. Treatment with GTP gamma S resulted in a reduction in the sedimentation rate of the [32P]ADP-ribosylated, detergent-solubilized GRER. It also induced the release of the [32P]ADP-ribosylated 41-kDa polypeptide from rough microsomes in the absence of detergent, unlike ADP-ribosylated alpha subunits of plasma membrane-associated G proteins. These data are consistent with an oligomeric nature of GRER. The codistribution of GRER with an endoplasmic reticulum marker protein during subcellular fractionation and the lack of plasma membrane contamination of the rough microsomal fraction, combined with the isodensity of GRER with rough microsomes as well as the isodensity of GRER with "stripped" microsomes after extraction of rough microsomes with EDTA and 0.5 M KCl, localized GRER to the rough endoplasmic reticulum. Preliminary experiments suggest that GRER appears not to be involved in translocation of proteins across the rough endoplasmic reticulum membrane.  相似文献   

9.
alpha 1-Antitrypsin (AAT) is a major hepatic secretory protein. The elevated synthesis of human AAT within hepatocytes of transgenic mice results in its accumulation within a subset of distended cisternae of the rough endoplasmic reticulum. The protein does not accumulate in large insoluble aggregates as is the case for the human PiZ AAT variant. Furthermore, the accumulated protein is not associated with immunoglobulin heavy chain binding protein. Transgenic animals exhibiting an elevated synthesis and subsequent intrahepatic accumulation of human AAT exhibit reduced serum levels of murine AAT as a result of its hindered secretion and accumulation within the rough endoplasmic reticulum. Interestingly, the secretion of murine transferrin and albumin which represent glycosylated and non-glycosylated hepatic secretory proteins, respectively, is unaffected. Overall, these results demonstrate that the elevated synthesis of human AAT can hinder the export of murine AAT from the hepatic rough endoplasmic reticulum in an apparently specific manner.  相似文献   

10.
Previous studies in this laboratory (1) have shown that tunicamycin-treatment inhibits the secretion of three secretory glycoproteins--alpha 2-macroglobulin, ceruloplasmin, and alpha 1-protease inhibitor in human hepatoma (Hep G2) cell cultures. In the present study, we have investigated (i) their site of accumulation within the endoplasmic reticulum/Golgi pathway, and (ii) the solubility characteristics of these unglycosylated proteins. Using percoll density gradient centrifugation, we found that tunicamycin-treatment markedly inhibited the transport of alpha 2-macroglobulin, ceruloplasmin and alpha 1-protease inhibitor from the rough endoplasmic reticulum. However, there was no detectable changes in their solubility properties as both the glycosylated and unglycosylated species were associated with the 100,000 xg supernatant fraction following disruption of the microsomal fraction (i) with 0.2% Triton X-100 and (ii) by repeated freeze-thaw cycles. Also no evidence of protein aggregation was detected by liquid chromatography of the unglycosylated proteins on Bio-Gel A-1.5 column.  相似文献   

11.
Mouse pancreatic acini were permeabilized with streptolysin O to investigate amylase secretion stimulated by various intracellular mediators and the kinetics of secretion as a function of temperature. Amylase secretion was temperature dependent in that the initial rate of Ca2(+)-stimulated secretion increased with increasing temperature. In addition, there was no enhancement of Ca2(+)-stimulated secretion by GTP[gamma S] at 14 degrees C, while enhancement was maximal at 30 degrees C. GTP[gamma S]-mediated enhancement of secretion at a given temperature was mostly due to sustained secretion with a small increase in secretory rate. At 30 degrees C Ca2(+)-stimulated secretion was also enhanced by cAMP and phorbol ester (TPA) to similar extents as by GTP[gamma S]. The maximally effective concentration of cAMP was 1-10 microM in the presence of 0.1 mM isobutylmethylxanthine. The enhancements of Ca2(+)-stimulated amylase secretion by all combinations of cAMP (100 microM plus 0.1 mM isobutylmethylxanthine), TPA (1 microM), and GTP[gamma S] (30 microM) were fully additive. In Ca2(+)-free buffer, cAMP, TPA or GTP[gamma S] individually had no effect on amylase secretion. Together, TPA and GTP[gamma S] stimulated Ca2(+)-independent secretion, which was 187 +/- 38% of basal. Cyclic AMP together with TPA and GTP[gamma S] in the absence of Ca2+ stimulated 329 +/- 30% of basal secretion. Ca2(+)-stimulated amylase secretion was decreased about 50% by metabolic inhibition, while the enhancement by cAMP, TPA or GTP[gamma S] was totally blocked by metabolic inhibitors. These data demonstrate that amylase secretion in the acinar cell is mediated by multiple intracellular pathways which act in parallel and probably converge at a distal step in the exocytotic process.  相似文献   

12.
The mechanisms of granule protein secretion have been studied in streptolysin-O-permeabilized guinea pig eosinophils. Secretion of the granule-associated enzyme N-acetyl-beta-D-glucosaminidase was dependent on both Ca2+ and a nonhydrolyzable GTP analogue, guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma-S), suggesting roles for both calcium and GTP binding proteins. Secretion was maximal by 7 min, and varied between 35 and 60% of the total enzyme activity. Other GTP analogues also elicited secretion, with rank order GTP-gamma-S greater than guanylyl-imidophosphate greater than guanylyl (beta-gamma-methylene-diphosphate). Unrelated nucleotide triphosphates showed little or no effect confirming the specificity of the G protein. Transmission electronmicroscopy confirmed that permeabilization alone did not result in loss of granules and that exocytosis was dependent on the addition of the effectors, Ca2+ and GTP-gamma-S. ATP enhanced the magnitude of the secretory response and also enhanced the effective affinities for both Ca2+ and GTP-gamma-S. In the presence of 10(-5) M GTP-gamma-S the ED50 (Ca2+) was pCa 5.57 +/- 0.04 (2.69 microM) in the absence of ATP and declined to pCa 6.16 +/- 0.03 (0.69 microM) in the presence of ATP (p less than 0.0001). Furthermore, ATP served to restore responsiveness in cells that had been rendered refractory by delaying stimulation after permeabilization. Pretreatment with PMA (an activator of PKC) inhibited the induction of a refractory state, whereas inhibition of PKC partially countered the ability of ATP to restore responsiveness, both observations pointing to a requirement for a specific component of the secretory mechanism to be in a phosphorylated state in order to condone the secretion process. These observations show that secretory mechanisms in eosinophils are similar to those in other myeloid cells, in particular neutrophils and mast cells, although the time course of secretion is more protracted.  相似文献   

13.
Summary The extrafloral nectary ofAcacia terminalis is of the flat type and is located on the adaxial surface of the petiole of the bipinnate leaf. The secretory area is restricted to the base of the trough and no gaps or pores were detected by staining with vital dyes. Between the vascular bundles beneath the nectary and the surface cuticle there were three cell types. The cells of the flanking zone adjacent to the vascular bundles did not appear to be producing secretion whereas the cells of the glandular and secretory zones were secreting. The cells of the glandular zone were elongated whereas those of the surface secretory zone were spherical. Both had endoplasmic reticulum and Golgi bodies with secretory vesicles which were observed in close association with the plasmalemma. Secretion accumulated in the intercellular spaces of the glandular zone cells and forced the cells of the secretory zone apart. Symplastic contact was maintained in all cell types by plasmodesmata which were often associated with endoplasmic reticulum. Secretion accumulated beneath the cuticle which was distended but remained intact on the surface of the secretion.  相似文献   

14.
The soluble form of vascular endothelial growth factor receptor 1 (sVEGFR-1/sFlt1) is generated by alternative splicing of the FLT1 gene. Secretion of sFlt1 from endothelial cells plays an important role in blood vessel sprouting and morphogenesis. However, excess sFlt1 secretion is associated with diseases such as preeclampsia and chronic kidney disease. To date, the secretory transport process involved in the secretion of sFlt1 is poorly understood. In the present study, we investigated the itinerary of sFlt1 trafficking along the secretory pathway. To understand the timecourse of sFlt1 secretion, endothelial cells stably expressing sFlt1 were metabolically radiolabeled with [(35)S]-methionine and cysteine. Our results indicate that after initial synthesis the levels of secreted [(35)S]-sFlt1 in the extracellular medium peaks at 8 hours. Treatment with brefeldin A (BFA), a drug which blocks trafficking between the endoplasmic reticulum (ER) and the Golgi complex, inhibited extracellular release of sFlt1 suggesting that ER to Golgi and intra-Golgi trafficking of sFlt1 are essential for its secretion. Furthermore, we show that ectopic expression of dominant-negative mutant forms of Arf1, Arf6, and Rab11 as well as siRNA-mediated knockdown of these GTPases block secretion of sFlt1 during normoxic and hypoxic conditions suggesting role for these small GTPases. This work is the first to report role of regulatory proteins involved in sFlt1 trafficking along the secretory pathway and may provide insights and new molecular targets for the modulation of sFlt-1 release during physiological and pathological conditions.  相似文献   

15.
Previously, we reported that the isoprenoid pathway inhibitor, lovastatin, blocks the activation by IgE receptor cross-linking of 45Ca2+ influx, 1,4,5-inositol trisphosphate production, secretion, and membrane changes (ruffling, spreading) in intact RBL-2H3 rat basophilic leukemia cells. These results indicated that an isoprenoid pathway intermediate, very likely an isoprenylated protein, is importantly involved in the control of IgE receptor-mediated signal transduction. Here, we show that 20 h of pretreatment with lovastatin also inhibits antigen-induced secretion and membrane responses in streptolysin O-(SLO)-permeabilized cells. However, lovastatin does not inhibit secretion stimulated by the nonhydrolyzable GTP analog, GTP gamma S. Furthermore, the membrane responses to GTP gamma S persist, although in an attenuated form, in lovastatin-treated permeabilized cells. The relative insensitivity of GTP gamma S-induced responses to lovastatin was one of several indications that antigen and GTP gamma S may activate separate pathways leading to transmembrane responses in permeabilized cells. Further experiments showed that the beta-thio derivative of GDP, GDPBAS, inhibits the secretory and membrane responses to GTP gamma S, as expected for a GTP-binding protein-dependent signaling pathway, while having little effect on antigen-induced responses. Conversely, genistein blocks the secretory and membrane responses to antigen, as expected for a tyrosine kinase-dependent pathway, without altering the GTP gamma S-induced responses. From these results, and from additional data from cells treated with tyrphostins and sodium orthovanadate, we propose that IgE receptor-mediated secretion from permeabilized RBL-2H3 cells occurs by a tyrosine kinase-dependent pathway that requires isoprenoid pathway activity for function.We propose further that RBL-2H3 cells contain a separate GTP-binding protein-mediated signaling pathway whose direct activation by GTP gamma S is either independent of isoprenoid pathway activity or depends on the activity of an isoprenylated protein that is not significantly depleted after 20 h of lovastatin treatment.  相似文献   

16.
Non-hydrolysable analogues of GTP, such as GTP gamma S and GMP-PNP, have previously been shown to inhibit the formation of constitutive secretory vesicles (CSVs) and immature secretory granules (ISGs) from the trans-Golgi network (TGN). Using a cell-free system, we show here that the formation of these vesicles is also inhibited by [A1F4]-, a compound known to act on trimeric G-proteins. Addition of highly purified G-protein beta gamma subunits stimulated, in a differential manner, the cell-free formation of both CSVs and ISGs. ADP-ribosylation experiments revealed the presence of a pertussis toxin-sensitive G-protein alpha subunit in the TGN. We conclude that trimeric G-proteins regulate the formation of secretory vesicles from the TGN.  相似文献   

17.
D Baker  L Hicke  M Rexach  M Schleyer  R Schekman 《Cell》1988,54(3):335-344
Transport of alpha-factor precursor from the endoplasmic reticulum to the Golgi apparatus has been reconstituted in gently lysed yeast spheroplasts. Transport is measured through the coupled addition of outer-chain carbohydrate to [35S]methionine-labeled alpha-factor precursor translocated into the endoplasmic reticulum of broken spheroplasts. The reaction is absolutely dependent on ATP, stimulated 6-fold by cytosol, and occurs between physically separable sealed compartments. Transport is inhibited by the guanine nucleotide analog GTP gamma S. sec23 mutant cells have a temperature-sensitive defect in endoplasmic reticulum-to-Golgi transport in vivo. This defect has been reproduced in vitro using sec23 membranes and cytosol. Transport at 30 degrees C with sec23 membranes requires addition of cytosol containing the SEC23 (wild-type) gene product. This demonstrates that an in vitro inter-organelle transport reaction depends on a factor required for transport in vivo. Complementation of sec mutations in vitro provides a functional assay for the purification of individual intercompartmental transport factors.  相似文献   

18.
Secretion of invertase in mitotic yeast cells.   总被引:7,自引:0,他引:7  
M Makarow 《The EMBO journal》1988,7(5):1475-1482
In mammalian cells intracellular transport is inhibited during mitosis. Here we show that in the yeast Saccharomyces cerevisiae secretion continues uninterrupted during mitosis. S. cerevisiae cells were arrested in mitosis by treating wild-type cells with the microtubule-inhibitor nocodazole, or by incubating a temperature-sensitive cell division cycle mutant (cdc16) at the restrictive temperature. Secretion of invertase into the periplasmic space was equally efficient in mitotic and in unsynchronized cells. Electron microscopy of nocodazole-treated mitotic wild-type cells revealed stretches of rough endoplasmic reticulum, strongly fenestrated Golgi cisternae and clusters of vesicles with the diameter of 30-90 nm. Secretion of invertase was inhibited in mitotic sec7 cells at the restrictive temperature, but continued at the permissive temperature. Sec7 is a mutant strain where intracellular traffic is blocked in unsynchronized cells in the Golgi complex at the restrictive temperature. Thus, the elements of the mitotic Golgi complex appear to be able to support intracellular traffic.  相似文献   

19.
The coagulating gland of the rat synthesizes two prevalent secretory proteins (transglutaminase and 115 K) that are discharched in a different manner, one being secreted in an apocrine fashion (transglutaminase) and the other one in a merocrine way (115 K). Differences in the intra- cellular pathway and the release of either protein were studied using immunofluorescence on semithin sections, immunoelectron microscopy of preembedding-processed chopper sections and postembedding-processed ultrathin sections of rat coagulating gland. Immunohistochemical staining using an anti-transglutaminase antibody resulted in dense labeling of the cytoplasm of secretory cells and their apical blebs, whereas the cisternae of the rough endoplasmic reticulum and the Golgi apparatus were completely unlabeled. When, on the contrary, the anti-115 K antiserum was used, dense labeling of the cisternae of the rough endoplasmic reticulum, the Golgi apparatus, and the secretory granules was seen. Intraluminal secretion was also labeled, but the secretory blebs remained unlabeled. Our findings show that, in the coagulating gland of the male rat, the two secretory proteins studied are processed in parallel, but at completely different intracellular pathways. They are released via different extrusion mechanisms. Transglutaminase is synthesized outside the endoplasmic reticulum, reaches the apical cell pole by free flow in the cytoplasm, and is released via apocrine blebs, the membranes of which appear to be derived from the apical plasma membrane. The protein 115 K, on the other hand, follows the classic route, being synthesized within the cisternae of rough endoplasmic reticulum, subsequently glycosylated in the Golgi apparatus, and released in a merocrine fashion. The mutual exclusion of the two secretory pathways and the regulation of the alternative release mechanism are still unresolved issues.  相似文献   

20.
Characterization of the mechanism of endocytic vesicle fusion in vitro   总被引:8,自引:0,他引:8  
A cell-free assay to monitor receptor-mediated endocytic processes has been developed that uses biotinylated transferrin and avidin-linked beta-galactosidase as receptor-associated and fluid-phase probes, respectively (Wessling-Resnick, M., and Braell, W. A. (1990) J. Biol. Chem. 265, 690-699). The fusion of vesicles from heterologous sources can be detected in this assay: endocytic vesicles from K562 cells (a human cell line) will fuse with vesicles from Chinese hamster ovary cells. Fusion between endocytic vesicles is inhibited upon treatment with N-ethylmaleimide but can be restored by the addition of untreated cytosol from either cell type. The in vitro fusion reaction is also inhibited by the nonhydrolyzable nucleotide analogs guanosine 5'-(3-thiotriphosphate) (GTP gamma S) and adenosine 5'-(3-thiotriphosphate) (ATP gamma S). Other nonhydrolyzable guanine nucleotides are found to inhibit the in vitro reaction in the following order of potency: GTP gamma S greater than 5'-guanylyl imidodiphosphate (GTP-PNP) greater than alpha,beta-methylene GTP (GTP-PCP). The inhibitory effects of the nonhydrolyzable analogs of GTP and ATP are not additive. Moreover, excess GTP relieves the inhibition by GTP gamma S more than it relieves the inhibition by ATP gamma S, while excess ATP preferentially alleviates ATP gamma S (not GTP gamma S) inhibition. These properties suggest that the two nucleotides exert their effects at distinct points in the fusion process. Although micromolar levels of excess Ca2+ also inhibit vesicle fusion, the inhibition exerted by GTP gamma S appears to proceed via a pathway independent of the divalent cation. The GTP gamma S-sensitive step in endocytic vesicle fusion is found to occur at a mechanistic stage prior to and distinct from the N-ethylmaleimide-sensitive step of the reaction. This situation permits the accumulation of a membrane vesicle intermediate in the presence of GTP gamma S; subsequent incubation of these vesicles with cytosol and GTP restores their fusion competence. Characteristics of in vitro endocytic vesicle fusion suggest that similarities exist with steps of the fusion mechanism involved with membrane traffic events of the secretory pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号