共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The field of stem-cell biology has emerged as a key technology for the treatment of various disorders and tissue regeneration applications. However, a major problem remains in clinical practice, which is the question of whether stem cells preserve their self-renewal and differentiation potential in the culture conditions or not. In the current study, effects of boron on the cryopreservation of human tooth germ stem cells (hTGSCs) were evaluated for the first time. The impacts of various boron concentrations (sodium pentaborate pentahydrate (NaB)) were tested on characterized hTGSCs viability for different time intervals (24, 48, and 72 h). 20 μg/ml NaB with lower Me2SO concentration was found to display positive effects on hTGSCs during repeated freezing and defrosting cycles, and long-term cryopreservation. After thawing, cells were analyzed for their surface antigens and differentiation capacity. hTGSCs were successfully cryopreserved without any change in their mesenchymal stem cell characteristics as they were treated with boron containing freezing medium. In addition, fatty acid composition was examined to demonstrate membrane fatty acid profiles after freeze-thawing. Besides, NaB treatment extended osteogenic and chondrogenic differentiation of hTGSCs remarkably after long-term cryopreservation with respect to control groups. The study clearly suggests that NaB has a protective role on the survival of hTGSCs in short- and long-term cryopreservation. Due to the possible storage of hTGSCs at early ages, development of a functional and reliable cryopreservation media can be designed as a future solution to the dental stem cell banking. 相似文献
3.
This study was aimed at improving the 2,3,5-triphenyl-tetrazoliumchloride (TTC) reduction test for initial assessment of cell
survival after cryopreservation. Experiments were carried out on three embryogenic cell suspensions of different ages: 9-year-old
Gentiana tibetica (King ex Hook. F.), 2-year-old G. kurroo (Royle), and 1-year-old G. cruciata (L.). The suspensions were maintained in MS medium supplemented with 1.0 mg 1−1 3,6-dichloro-o-anisic acid, 0.1 mg 1−1 naphthaleneacetic acid, 2.0 mg l−1 6-benzylaminopurine, 80.0 mg 1−1 adenine sulphate and 0.09 M sucrose. Four weeks before freezing, part of the tissue was subcultured to the same medium with
sucrose concentrations elevated from 0.09 M (3%sMS) to 0.175 M (6%sMS) or 0.26 M (9%sMS).
In freezing treatments without cryoprotection, tissue was plunged directly into liquid nitrogen (LN) or cooled gradually.
In freezing treatments with cryoprotection, the cells were pretreated with 1 M sucrose, or with 0.4 M sorbitol + 0.25 M proline
or + 0.08 M DMSO, or with vitrification solution (PVS2). Encapsulation was another variant.
TTC reduction activity was spectrophotometrically assessed immediately, 1, 3, 5, 24 and 48 h after thawing. Cells without
cryoprotection were lethally damaged, but TTC reduction activity in those cells ranged from 6.5% (tissue from 3%sMS) to 73
% (tissue from 9%sMS) directly after thawing. Formazan production was reduced to zero after 24 h. The TTC test showed 50%
formazan content immediately after thawing of DMSO-protected G. tibetica tissue, but only 22.47% after 24 h and 2.9% after 48 h. Ultrastructural analysis of those cells showed lethal damage in many
of them. For the PVS2 treatment, the formazan content was similar in samples analyzed directly after thawing and 24 h later.
Cells treated with PVS2 did not show structural disturbances. Encapsulated cell aggregates of G. cruciata treated with concentrations of sucrose increasing up to 1 M produced 2.6 times more formazan. When applied at least 48 h
after thawing, the TTC test can reflect cell viability and can be used to compare the effectiveness of cryoprotectant performance
and freezing protocols, but it must be carefully evaluated, with appropriate controls. 相似文献
4.
Preservation of caprine preantral follicle viability after cryopreservation in sucrose and ethylene glycol 总被引:3,自引:0,他引:3
Santos RR Tharasanit T Figueiredo JR van Haeften T van den Hurk R 《Cell and tissue research》2006,325(3):523-531
Caprine preantral follicles within ovarian fragments were cryopreserved in the absence or presence of 0.5 M sucrose with or without 1 M dimethyl sulfoxide and/or 1 M ethylene glycol (EG). After being thawed, they were washed in minimum essential medium with or without 0.3 M sucrose. Histological analysis of follicle integrity immediately after cryopreservation showed consistent beneficial effects of including sucrose in the three cryoprotectant solutions analyzed when tissue was thawed without sucrose (53.9±14.8–82.4±3.2% normal vs 27.6±1.6–36.6±6.5%, P<0.05). However, in further studies, the addition of sucrose to the thaw solutions proved detrimental or of no benefit. An analysis of the cryopreserved material with calcein-AM and ethidium homodimer (markers for living and dead cells, respectively) gave comparable results to those obtained by histology. Follicles cryopreserved in EG, EG plus sucrose, or sucrose alone were cultured in vitro for 24 h following warming. During this culture period, viability fell most rapidly in material cryopreserved in sucrose alone and was no longer correlated with either the viability or integrity estimates made immediately after warming. By contrast, the viability of follicles cryopreserved in EG with sucrose and then cultured for 24 h was not significantly different from the cultured non-frozen controls. These results indicate that cryopreservation in 1 M EG plus 0.5 M sucrose combined with thawing without sucrose is effective for caprine ovarian tissue.This work was supported by CAPES/Brazil. Regiane Rodrigues dos Santos is a recipient of a grant from FUNCAP of Brazil. 相似文献
5.
Precision-cut liver slices are to some extent resistant to ice formation induced by rapid freezing. Susceptibility to rapid freezing damage has been shown to be (partly) dependent on intrinsic properties of cells. In the present study an attempt was made to decrease the susceptibility of rat liver slices for rapid freezing damage: the slices were pre-incubated at 37 degrees C under oxygen, prior to cryopreservation to recover from low ATP levels, impaired ion regulation and cell swelling induced by their preparation. It was shown that, unexpectedly, recovery of cellular homeostasis prior to the cryopreservation procedure by the 37 degrees C pre-incubation markedly decreased viability of rapidly frozen slices (in which ice was formed), but not of vitrified slices (in which no ice was formed), in a time- and temperature-dependent manner. UW was found to protect slices from this 'warm pre-incubation phenomenon.' Apparently, pre-incubation prior to freezing causes certain cellular alterations that render slices more susceptible to rapid freezing damage. 相似文献
6.
In a recent article published in Cryobiology, Seki and Mazur [9] performed kinetic analysis to investigate the physicochemical mechanism of the intracellular ice formation in mouse oocytes subjected to rapid cooling. Based on their results, the authors calculated the activation energy for the ice recrystallization process to be 27.5 kcal/mol. In this letter, we report our analysis of the result in terms of the transition-state theory to show that the process is unfavorable in terms of enthalpy but favorable in terms of entropy accompanying molecular expansions. This report is expected to evoke interests in applying thermodynamics to the investigation of the intracellular ice formation. 相似文献
7.
8.
Changes in apoptosis-like programmed cell death and viability during the cryopreservation of pollen from Paeonia suffruticosa 总被引:1,自引:0,他引:1
Ren Ruifen Li Zedi Zhou Hao Zhang Lingling Jiang Xueru Liu Yan 《Plant Cell, Tissue and Organ Culture》2020,140(2):357-368
Plant Cell, Tissue and Organ Culture (PCTOC) - Pollen after cryopreservation has a variety of change trends in viability, with most pollens showing decreased viability. The role of apoptosis-like... 相似文献
9.
10.
Gayle M. Volk Remi Bonnart Ashley Shepherd Zhenfang Yin Richard Lee MaryLou Polek Robert Krueger 《Plant Cell, Tissue and Organ Culture》2017,128(2):327-334
Diverse citrus cultivars maintained clonally within gene banks serve as valuable resources for research and breeding programs worldwide. These critical collections are kept as trees within field, screenhouse, or greenhouse collections. Ex situ collections are at risk of being lost due to unforeseen environmental or biological disasters. Cryopreservation provides a secure method to back-up these important collections. Herein, we assessed the applicability of a vitrification-based cryopreservation method to conserve citrus collection cultivars. Shoot tips were excised from screenhouse-grown trees from the USDA-ARS National Clonal Germplasm Repository for Citrus and Dates. Shoot tips were then treated with cryoprotectants, plunged into liquid nitrogen (LN), warmed and then recovered by micrografting onto ‘Carrizo’ citrange seedling rootstocks. Of 150 cryopreserved Citrus accessions representing 32 taxa, 24 taxa had mean regrowth levels that were at least 40?%. The 36 navel orange (Citrus sinensis) accessions had an average regrowth level of 64?%. There was no decrease in viability after 3 years of LN storage for the three accessions that are part of a long-term storage experiment. Histological observations revealed high levels of cell survival after LN exposure and that cellular regrowth occurred between rootstock and shoot tips within 2 days of micrografting. We demonstrate that diverse citrus cultivars can be successfully cryopreserved within gene banks for long-term conservation. 相似文献
11.
In this study, the growth of six different planctomycetes, a particular ubiquitous bacterial phylum, was assessed after exposure to pollutants. In addition and for comparative purposes, Pseudomonas putida, Escherichia coli and Vibrio anguillarum were tested. Each microorganism was exposed to several concentrations of 21 different pollutants. After exposure, bacteria were cultivated using the drop plate method. In general, the strains exhibited a great variation of sensitivity to pollutants in the order: V. anguillarum > planctomycetes > P. putida > E. coli. E. coli showed resistance to all pollutants tested, with the exception of phenol and sodium azide. Copper, Ridomil® (fungicide), hydrazine and phenol were the most toxic pollutants. Planctomycetes were resistant to extremely high concentrations of nitrate, nitrite and ammonium but they were the only bacteria sensitive to Previcur N® (fungicide). Sodium azide affected the growth on plates of E. coli, P. putida and V. anguillarum, but not of planctomycetes. However, this compound affected planctomycetes cell respiration but with less impact than in the aforementioned bacteria. Our results provide evidence for a diverse response of bacteria towards pollutants, which may influence the structuring of microbial communities in ecosystems under stress, and provide new insights on the ecophysiology of planctomycetes. 相似文献
12.
13.
The effect of prolonged ischaemia and cryopreservation on the cell viability of human aortic and femoral artery allografts 总被引:2,自引:0,他引:2
Skop B Urbanek T Bursig H Ziaja K Wilczok T 《Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society》2002,40(2):217-218
The viability of the human arterial allograft cells depends on the time and method of vessel procurement and storage. In this study, an evaluation of the effect of the duration of 4 degrees C ischaemia and cryopreservation on human aortic and femoral artery allograft viability was performed. After the isolation of arterial wall cells, the identification of cultured cells was performed using mRNA analysis for estimation of smooth-muscle markers of differentiation: desmin and heavy-caldesmon. The viability of cells from the medial layer of the aortic wall ranged from 74 to 90% (61-79% for femoral arteries). Cold ischaemia time (from harvesting until the beginning of the preparation) is a statistically significant factor influencing smooth muscle cell viability. Smooth muscle cells represented the majority of live cell population. 相似文献
14.
Pasquinelli G Foroni L Buzzi M Tazzari PL Vaselli C Mirelli M Gargiulo M Conte R Stella A 《Cryobiology》2006,52(2):309-316
The cryopreservation protocol we use for arterial reconstructive surgery has been studied to evaluate smooth muscle cell (SMC) structural integrity and viability before implantation. Samples of human thoracic aortas (HTA) were harvested from five multi-organ donors. Sampling included unfrozen and cryopreserved specimens. Cryopreservation was performed using RPMI with human albumin and 10% Me(2)SO in a controlled-rate freezing apparatus. Thawing was accomplished by submerging bags in a water bath (39 degrees C) followed by washings in cooled saline. In situ cell preservation as investigated by light and transmission electron microscopy showed that SMCs from cryopreserved HTA had nuclear and cytoplasmic changes. A TUNEL assay, performed to detect DNA fragmentation in situ, showed increased SMC nuclear positivity in cryopreserved HTA when compared to unfrozen samples. 7-AAD flow cytometry assay of cells derived from cryopreserved HTA showed that an average of 49+/-16% cells were unlabeled after cryopreservation. Organ cultures aimed to study cell ability to recover cryopreservation damage showed a decreasing number of SMCs from day 4 to day 15 in cryopreserved HTA. In conclusion, the cryopreservation protocol applied in this study induces irreversible damage of a significant fraction of arterial SMCs. 相似文献
15.
A method for cryopreserving a 100-microm-thick sheet of tissue produced by cultured rabbit chondrocytes has been developed. The method maintains cell viability and avoids tissue fracture and degradation of mechanical properties. A slow-freeze, fast-thaw procedure with 2 M Me(2)SO as the cryoprotectant resulted in no tissue fracture and approximately 90% viable cells after storage in culture flasks at -80 degrees C. The cells in the retrieved tissue remained responsive to IL-1beta, and tensile and fracture toughness properties of the tissue were not degraded by cryopreservation. 相似文献
16.
Wu LK Tokarew JM Chaytor JL von Moos E Li Y Palii C Ben RN Allan DS 《Carbohydrate research》2011,(1):86-93
Cryopreservation of human umbilical cord blood (UCB) typically involves the cryoprotectant dimethylsulfoxide (DMSO), however, infusional toxicity and reductions in cell viability remain a concern. Ice recrystallization (IR) is an important source of cryopreservation-induced cellular injury and limits the stem cell dose in UCB units. Carbohydrates have wide-ranging intrinsic IR inhibition (IRI) activity related to structural properties. We investigated the impact of carbohydrate IRI on cell viability, induction of apoptosis and hematopoietic progenitor function in cryopreserved UCB. Mononuclear cells (MNCs) from UCB were cryopreserved in storage media containing specific carbohydrates (200 mM) and compared to 5% DMSO. Samples were analyzed under conditions of high IR (‘slow’ thaw) and low IR (‘fast’ thaw). Thawed samples were analyzed for viability and apoptosis by flow cytometry and hematopoietic function using colony-forming unit (CFU) assays. IRI of carbohydrate solutions was determined using the ‘splat cooling’ assay. Greater IRI capacity of carbohydrates correlated with increased yield of viable MNCs (r2 = 0.92, p = 0.004) and CD34(+) cells (r2 = 0.96, p = 0.019) after thawing under conditions of high IR. The correlations were less apparent under conditions of low IR. Carbohydrates with greater IRI modulate the induction of early apoptosis during thawing, especially in CD34+ cells (r2 = 0.96, p = 0.0001) as compared to total mononuclear cells (p = 0.006), and preserve CFU capacity in vitro (r2 = 0.92, p = <0.0001). Our results suggest that carbohydrates with potent IRI increase the yield of non-apoptotic and functional hematopoietic progenitors and provide a foundation for the development of novel synthetic carbohydrates with enhanced IRI properties to improve cryopreservation of UCB. 相似文献
17.
Inhibition of recrystallization in ice by chimeric proteins containing antifreeze domains 总被引:1,自引:0,他引:1
G M Mueller R L McKown L V Corotto C Hague G J Warren 《The Journal of biological chemistry》1991,266(12):7339-7344
Using synthetic DNA, we assembled a gene encoding a protein identical in sequence to one of the antifreeze proteins produced by the fish Pseudopleuronectes americanus (winter flounder). To address the relationship between structure and function, we also assembled genes encoding proteins varying in sequence and length. The synthetic genes were cloned into a bacterial expression vector to generate translational fusions to the 3' end of a truncated staphylococcal protein A gene; the chimeric proteins encoded by these fusions, varying only in their antifreeze domains, were isolated from Escherichia coli. The antifreeze domains conferred the ability to inhibit ice recrystallization, which is characteristic of naturally occurring antifreeze proteins, on the chimeric proteins. The chimeric proteins varied in their effectiveness of inhibiting ice recrystallization according to the number of 11-amino acid repeats present in the antifreeze moiety. A protein with only two repeats lacked activity, while the inhibitory activity increased progressively for proteins containing three, four, and five repeats. Some activity was lost upon removal of either the salt bridge or the carboxyl-terminal arginine, but surprisingly, not when both features were absent together. 相似文献
18.
Z. Wu F. W. K. Kan Y. -M. She V. K. Walker 《Applied Biochemistry and Microbiology》2012,48(4):363-370
Microbial communities found on the surface of overwintering plants may be exposed to low temperatures as well as multiple freeze-thaw events. To explore the adaptive mechanisms of these epiphytes, with the objective of identifying products for freeze-protection, enrichment libraries were made from frost-exposed leaves. Of 15 identified bacteria from 60 individual clones, approximately half had ice-association activities, with the great majority showing high freeze-thaw resistance. Isolates with ice nucleation activity and ice recrystallization inhibition activity were recovered. Of the latter, two (Erwinia billingiae J10, and Sphingobacterium kitahiroshimense Y2) showed culture and electron microscopic evidence of motility and/or biofilm production. Mass spectrometric characterization of the E. billingiae extracellular polymeric substance (EPS) identified the major proteins as 35 kDa outer membrane protein A and F, supporting its biofilm character. The addition of the EPS preparation increased the freeze-thaw survival of the more susceptible bacteria 1000-10000 times, and protection was at least partially dependent on the protein component. 相似文献
19.
C-Linked antifreeze glycoprotein (C-AFGP) analogues have been shown to have potent ice recrystallization inhibition (IRI) activity. However, the lengthy synthesis of these compounds is not amenable to large-scale preparation for the many commercial, industrial, and medical applications that exist. This paper describes the synthesis of triazole-containing AFGPs using a convergent solid-phase synthesis (SPS) approach in which multiple carbohydrate derivatives are coupled to a resin-bound synthetic peptide in a single step. Modified "Click" conditions using dry DMF as solvent with catalytic Cu(II), sodium ascorbate, and microwave radiation afforded the synthesis of AFGP analogues 9-12 in 16-54% isolated yield. Compound 9 demonstrated no IRI activity, while compounds 10, 11, and 12 were moderate inhibitors of ice recrystallization. These results suggest that, while the triazole group is a structural mimetic of an amide bond, the amide bond in C-AFGP analogue 3 is an essential structural feature necessary for potent IRI activity. 相似文献
20.
Sara Alicia González Porto Nieves Domenech Alba González Rodríguez Edgar Mauricio Avellaneda Oviedo Francisco J. Blanco María C. Arufe Gonda Ángel Álvarez Jorge Jacinto Sánchez Ibañez Esther Rendal Vázquez 《Cell and tissue banking》2018,19(4):507-517
The purpose of the current study was to establish a valid protocol for nerve cryopreservation, and to evaluate if the addition of albumin supposed any advantage in the procedure. We compared a traditional cryopreservation method that uses dimethyl sulfoxide (DMSO) as cryoprotectant, to an alternative method that uses DMSO and albumin. Six Wistar Lewis rats were used to obtain twelve 20 mm fragments of sciatic nerve. In the first group, six fragments were cryopreserved in 199 media with 10% DMSO, with a temperature decreasing rate of 1 °C per minute. In the second group, six fragments were cryopreserved adding 4% human albumin. The unfreezing process consisted of sequential washings with saline in the first group, and saline and 20% albumin in the second group at 37 °C until the crioprotectant was removed. Structural evaluation was performed through histological analysis and electronic microscopy. The viability was assessed with the calcein-AM (CAM) and 4′,6-diamino-2-fenilindol (DAPI) staining. Histological results showed a correct preservation of peripheral nerve architecture and no significant differences were found between the two groups. However, Schwann cells viability showed in the CAM-DAPI staining was significantly superior in the albumin group. The viability of Schwann cells was significantly increased when albumin was added to the nerve cryopreservation protocol. However, no significant structural differences were found between groups. Further studies need to be performed to assess the cryopreserved nerve functionality using this new method. 相似文献