首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nguyen KD  Au-Young SH  Nodwell JR 《Plasmid》2007,58(2):167-173
The enhanced green fluorescent protein (eGFP) is widely used to investigate cell type specific gene expression and protein localization in the filamentous streptomycetes. To broaden the scope of cell biological investigation in these organisms, we have adapted shuttle vectors for the construction of gene fusions to the monomeric red fluorescent protein (mRFP1) and have tested them in Streptomyces coelicolor. Using fusions of mRFP1 to the cell division proteins DivIVA and FtsZ, we show that mRFP1 is comparable to eGFP for cell biological research in this organism and suggest that this paves the way for the future use of two-color imaging and FRET.  相似文献   

2.
Microsomal cytochrome P450 2C2 is an integral endoplasmic reticulum (ER) membrane protein that is directly retained in the ER and excluded from transport vesicles. We have used bimolecular fluorescence complementation and co-immunoprecipitation to show that a ubiquitous ER membrane protein (BAP31) interacts with P450 2C2 in transfected COS-1 cells. A chimera containing only the N-terminal signal anchor of P450 2C1 (P450 2C1-(1-29)) also interacted with BAP31, which is consistent with interaction of the two proteins via their transmembrane domains. Down-regulation of BAP31 expression with small interfering RNA resulted in redistribution of green fluorescent protein-tagged P450 2C2 or P450 2C1-(1-29) from the ER into the nuclear membrane and compact perinuclear compartment structures as well as the cell surface in a small fraction of the cells. In Bap31-null embryonic stem cells, a significant fraction of P450 2C2 or P450 2C1-(1-29) was detected at the cell surface and nuclear envelope, but was redistributed to the ER by expression of BAP31. The expression level of P450 2C2 was significantly increased in COS-1 cells with repressed levels of BAP31. Formation of the pro-apoptotic p20 fragment of BAP31 was detected in transfected COS-1 cells expressing P450 2C2, and annexin V staining was consistent with the activation of an apoptotic pathway in these cells. Down-regulation of BAP31 with small interfering RNA partially reversed the apoptosis. These results suggest that interaction of P450 2C2 with BAP31 is important for its ER retention and expression level and that BAP31 may be involved in the regulation of apoptosis induced by the ER overload response to increased expression of P450.  相似文献   

3.
Cytochrome P450 (P450) 2C1/2 contains redundant endoplasmic reticulum (ER) retention signals and is excluded from the recycling pathway. Other P450s, such as P450 2E1, have been detected in the plasma membrane and Golgi apparatus. To examine whether the mechanisms of ER retention might differ for P450 2C1/2 and P450 2E1, chimeras of green flourescent protein and the full-length proteins, N-terminal signal/anchor sequences, or the cytoplasmic catalytic domains from these proteins have been expressed in COS1 cells. Chimeras with either the N-terminal signal/anchor sequence or the cytoplasmic domain of P450 2C1/2 were retained in the ER and the distribution was not altered by treatment with nocodazole. A chimera with full-length P450 2E1 was located in the ER, but in contrast to P450 2C1/2, treatment with nocodazole resulted in redistribution to a vesicular pattern, which suggested that this protein was retained in the ER by a retrieval mechanism. In support of this possibility, the P450 2E1 chimera, but not the P450 2C1/2 chimera, was included in transport vesicles generated in an in vitro budding assay. A chimera with only the N-terminal signal/anchor sequence of P450 2E1 fused to green fluorescent protein was located in the ER and nocodazole treatment altered its distribution, whereas a chimera with only the cytoplasmic domain of P450 2E1 was not efficiently retained in the ER and accumulated primarily in the Golgi region. These results demonstrate that the mechanisms for retention in the ER of two closely related members of the P450 superfamily are different and that the N-terminal signal/anchor sequence contains the dominant retention signal.  相似文献   

4.
The use of the green fluorescent protein (GFP) to label specific cell types and track gene expression in animal models, such as mice, has evolved to become an essential tool in biological research. Transgenic animals expressing genes of interest linked to GFP, either as a fusion protein or transcribed from an internal ribosomal entry site (IRES) are widely used. Enhanced GFP (eGFP) is the most common form of GFP used for such applications. However, a red fluorescent protein (RFP) would be highly desirable for use in dual‐labeling applications with GFP derived fluorescent proteins, and for deep in vivo imaging of tissues. Recently, a new generation of monomeric (m)RFPs, such as monomeric (m)Cherry, has been developed that are potentially useful experimentally. mCherry exhibits brighter fluorescence, matures more rapidly, has a higher tolerance for N‐terminal fusion proteins, and is more photostable compared with its predecessor mRFP1. mRFP1 itself was the first true monomer derived from its ancestor DsRed, an obligate tetramer in vivo. Here, we report the successful generation of a transgenic mouse line expressing mCherry as a fluorescent marker, driven by the ubiquitin‐C promoter. mCherry is expressed in almost all tissues analyzed including pre‐ and post‐implantation stage embryos, and white blood cells. No expression was detected in erythrocytes and thrombocytes. Importantly, we did not encounter any changes in normal development, general physiology, or reproduction. mCherry is spectrally and genetically distinct from eGFP and, therefore, serves as an excellent red fluorescent marker alone or in combination with eGFP for labelling transgenic animals. genesis 48:723–729, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
We investigate the potential of dual-color photon counting histogram (PCH) analysis to resolve fluorescent protein mixtures directly inside cells. Because of their small spectral overlap, we have chosen to look at the fluorescent proteins EGFP and mRFP1. We experimentally demonstrate that dual-color PCH quantitatively resolves a mixture of EGFP and mRFP1 in cells from a single measurement. To mimic the effect of protein association, we constructed a fusion protein of EGFP and mRFP1 (denoted EGFP-mRFP1). Fluorescence resonant energy transfer within the fusion protein alters the dual-channel brightness of the fluorophores. We describe a model for fluorescence resonant energy transfer effects on the brightness and incorporate it into dual-color PCH analysis. The model is verified using fluorescence lifetime measurements. Dual-color PCH analysis demonstrated that not all of the expressed EGFP-mRFP1 fusion proteins contained a fluorescent mRFP1 molecule. Fluorescence lifetime and emission spectra measurements confirmed this surprising result. Additional experiments show that the missing fluorescent fraction of mRFP1 is consistent with a dark state population of mRFP1. We successfully resolved this mixture of fusion proteins with a single dual-color PCH measurement. These results highlight the potential of dual-color PCH to directly detect and quantify protein mixtures in living cells.  相似文献   

6.
7.
Misfolded or damaged proteins are typically targeted for destruction by proteasome‐mediated degradation, but the mammalian ubiquitin machinery involved is incompletely understood. Here, using forward genetic screens in human cells, we find that the proteasome‐mediated degradation of the soluble misfolded reporter, mCherry‐CL1, involves two ER‐resident E3 ligases, MARCH6 and TRC8. mCherry‐CL1 degradation is routed via the ER membrane and dependent on the hydrophobicity of the substrate, with complete stabilisation only observed in double knockout MARCH6/TRC8 cells. To identify a more physiological correlate, we used quantitative mass spectrometry and found that TRC8 and MARCH6 depletion altered the turnover of the tail‐anchored protein heme oxygenase‐1 (HO‐1). These E3 ligases associate with the intramembrane cleaving signal peptide peptidase (SPP) and facilitate the degradation of HO‐1 following intramembrane proteolysis. Our results highlight how ER‐resident ligases may target the same substrates, but work independently of each other, to optimise the protein quality control of selected soluble and tail‐anchored proteins.  相似文献   

8.
Phytophthora infestans causes late-blight, a devastating and re-emerging disease of potato crops. During the early stages of infection, P. infestans differentiates infection-specific structures such as appressoria for host epidermal cell penetration, followed by infection vesicles, and haustoria to establish a biotrophic phase of interaction. Here we report the cloning, from a suppression subtractive hybridization library, of a P. infestans gene called Pihmp1 encoding a putative glycosylated protein with four closely spaced trans-membrane helices. Pihmp1 expression is upregulated in germinating cysts and in germinating cysts with appressoria, and significantly upregulated throughout infection of potato. Transient gene silencing of Pihmp1 led to loss of pathogenicity and indicated involvement of this gene in the penetration and early infection processes of P. infestans. P. infestans transformants expressing a Pihmp1::monomeric red fluorescent protein (mRFP) fusion demonstrated that Pihmp1 was translated in germinating sporangia, germinating cysts and appressoria, accumulated in the appressorium, and was located at the haustorial membrane during infection. Furthermore, we discovered that haustorial structures are formed over a 3 h period, maturing for up to 12 h, and that their formation is initiated only at sites on the surface of intercellular hyphae where Pihmp1::mRFP is localized. We propose that Pihmp1 is an integral membrane protein that provides physical stability to the plasma membrane of P. infestans infection structures. We have provided the first evidence that the surface of oomycete haustoria possess proteins specific to these biotrophic structures, and that formation of biotrophic structures (infection vesicles and haustoria) is essential to successful host colonization by P. infestans.  相似文献   

9.
Arginine vasopressin (AVP) is involved in the homeostatic responses numerous life-threatening conditions, for example, the promotion of water conservation during periods of dehydration, and the activation of the hypothalamo-pituitary adrenal axis by emotional stress. Recently, we generated new transgenic animals that faithfully express an AVP-enhanced green fluorescent protein (eGFP) fusion gene in the paraventricular nucleus (PVN), the supraoptic nucleus (SON) and the suprachiasmatic nucleus (SCN) of the hypothalamus. In these transgenic rats, marked increases in eGFP fluorescence and fusion gene expression were observed in the magnocellular division of the PVN and the SON, but not the SCN, after osmotic challenges, such as dehydration and salt loading, and both acute and chronic nociceptive stimuli. In the parvocellular division of the PVN, eGFP expression was increased after acute and chronic pain, bilateral adrenalectomy, endotoxin shock and restraint stress. In the extra-hypothalamic areas of the brain, eGFP expression was induced in the locus coeruleus after the intracerebroventricular administration of colchicine. Next, we generated another transgenic rat that expresses a fusion gene comprised of c-fos promoter-enhancer sequences driving the expression of monomeric red fluorescent protein 1 (mRFP1). In these transgenic rats, abundant nuclear fluorescence of mRFP1 was observed in the PVN, the SON and other osmosensitive areas after acute osmotic stimulation. Finally, we generated a double transgenic rat that expresses both the AVP-eGFP and c-fos-mRFP1 fusion genes. In this double transgenic rat, we have observed nuclear mRFP1 fluorescence in eGFP-positive neurons after acute osmotic stimulation. These unique transgenic rats provide an exciting new tool to examine neuroendocrine responses to physiological and stressful stimuli in both in vivo and in vitro preparations.  相似文献   

10.
The ubiquitously expressed protein tyrosine phosphatase PTP1B is involved in the regulation of numerous cellular signaling pathways. PTP1B is anchored to the ER membrane while many of its substrates are localized to the plasma membrane. This spatial separation raises the question how PTP1B can interact with its targets. In our study we demonstrate direct interaction of PTP1B with the Ser/Thr kinase PKCdelta, the non-receptor tyrosine kinase Src and the insulin receptor which all are key enzymes in cellular signaling cascades. Protein complex formation was visualized in vivo using Bimolecular Fluorescence Complementation (BiFC). We demonstrate that complex formation of PTP1B with plasma membrane-anchored proteins is possible without detachment of PTP1B from the ER. Our data indicate that the dynamic ER membrane network is in constant contact to the plasma membrane. Local attachments of the two membrane systems enable a direct communication of ER- and plasma membrane-anchored proteins. The reported formation of membrane junctions is an important step towards the understanding of signal transmissions between the ER and the plasma membrane.  相似文献   

11.
12.
Vogel M  Vorreiter J  Nassal M 《Proteins》2005,58(2):478-488
Self-organizing assemblies such as viral capsids may be used as symmetrical molecular platforms for the display of heterologous sequences, with applications ranging from vaccines to structural studies. The 183-amino-acid hepatitis B virus (HBV) core protein assembles spontaneously into icosahedral capsid-like particles (CLPs). The most exposed, and most immunogenic, substructure on the CLPs is a small loop that connects two long antiparallel alpha-helices which act as dimerization interface. Ninety (90) or 120 dimers multimerize into the capsid; the four-helix bundles formed by the dimers protrude as spikes from the surface. We recently demonstrated that the entire enhanced green fluorescent protein (eGFP) can be inserted into this loop, yielding CLPs that natively displayed eGFP on their surface. The central location of the insertion site requires that any insert be fixed to the carrier via both termini, with corresponding restrictions regarding insert size and structure. eGFP obviously satisfied these criteria but, surprisingly, all attempts to produce CLPs with the isostructural red fluorescent proteins DsRed1, DsRed2, and HcRed failed. Suspecting their oligomerization tendency to be responsible, we generated fusions containing instead monomeric yellow, cyan, and red fluorescent proteins (mYFP, mCFP and mRFP1). This strongly increased the yields of YFP and CFP-CLPs, and it allowed for the first time to efficiently generate red fluorescent CLPs. Hence insert quaternary structure is a highly critical factor for CLP assembly. These data have important implications for the rational design of self-assembling fusion proteins.  相似文献   

13.
RNA-1 of Peanut clump virus (PCV) encodes the proteins P131 and P191, containing the signature motifs of replication proteins, and P15, which regulates viral RNA accumulation. In PCV-infected protoplasts both P131 and P191 were immunodetected in the perinuclear region. Laser scanning confocal microscopy (LSCM) showed that P131 and P191 colocalized with neosynthesized 5-bromouridine 5'-triphosphate-labeled RNA and double-stranded RNA, demonstrating that they belong to the replication complex. On the contrary, the P15 fused to the enhanced green fluorescent protein (EGFP) never colocalized with the two proteins. In endoplasmic reticulum (ER)-GFP transgenic BY-2 protoplasts, the distribution of the green fluorescent-labeled ER was strongly modified by PCV infection. LSCM showed that both P131 and P191 colocalized with ER green fluorescent bodies accumulating around the nucleus during infection. The replication process was not inhibited by cerulenin and brefeldin A, suggesting that PCV replication does not depend on de novo-synthesized membrane and does not require transport through the Golgi apparatus. Electron microscopy of ultrathin sections of infected protoplasts showed aggregates of broken ER but also visualized vesicles, some of which resembled modified peroxisomes. The results suggest that accumulation of PCV during infection is accompanied by specific association of PCV RNA-1-encoded proteins with membranes of the ER and other organelles. The concomitant extensive rearrangement of these membranous structures leads to the formation of intracellular compartments in which synthesis and accumulation of the viral RNA occur in defined areas.  相似文献   

14.
Isoflavonoids are specialized plant metabolites, almost exclusive to legumes, and their biosynthesis forms a branch of the diverse phenylpropanoid pathway. Plant metabolism may be coordinated at many levels, including formation of protein complexes, or ‘metabolons’, which represent the molecular level of organization. Here, we have confirmed the existence of the long‐postulated isoflavonoid metabolon by identifying elements of the complex, their subcellular localizations and their interactions. Isoflavone synthase (IFS) and cinnamate 4–hydroxylase (C4H) have been shown to be tandem P450 enzymes that are anchored in the ER, interacting with soluble enzymes of the phenylpropanoid and isoflavonoid pathways (chalcone synthase, chalcone reductase and chalcone isomerase). The soluble enzymes of these pathways, whether localized to the cytoplasm or nucleus, are tethered to the ER through interaction with these P450s. The complex is also held together by interactions between the soluble elements. We provide evidence for IFS interaction with upstream and non‐consecutive enzymes. The existence of such a protein complex suggests a possible mechanism for flux of metabolites into the isoflavonoid pathway. Further, through interaction studies, we identified several candidates that are associated with GmIFS2, an isoform of IFS, in soybean hairy roots. This list provides additional candidates for various biosynthetic and structural elements that are involved in isoflavonoid production. Our interaction studies provide valuable information about isoform specificity among isoflavonoid enzymes, which may guide future engineering of the pathway in legumes or help overcome bottlenecks in heterologous expression.  相似文献   

15.
Microsomal forms of eukaryotic cytochrome P450 proteins are integral membrane proteins of the endoplasmic reticulum (ER) membrane which are targeted to the ER via the signal recognition particle pathway. A hydrophobic amino terminus serves as a combined signal sequence and major membrane anchor (signal-anchor sequence) for the microsomal P450s. We have examined the insertion of bovine 17 alpha-hydroxylase (P45017 alpha) into the ER of COS 1 cells in order to evaluate the role of membrane insertion of the amino-terminal signal-anchor of microsomal P450s as a functional determinant for these enzymes. Previously, we have shown that deletion of the hydrophobic amino terminus from P45017 alpha reduced membrane targeting and insertion by 5-fold compared with the wild-type protein, abolished enzymatic activity, and resulted in an aberrant CO difference spectrum. In the present study we have replaced the amino terminus of P45017 alpha with two heterologous signal-anchor sequences, one that is similar and one that is very different from the P45017 alpha sequence. The chimeric proteins were expressed in COS 1 cells. Immunoblot analysis of isolated microsomal membranes show that the heterologous signal-anchor sequences functioned to target the P45017 alpha protein to the ER. Enzymatic assays in intact COS 1 cells indicate that both the chimeric proteins are efficient 17 alpha-hydroxylase enzymes. The amino terminus of P45017 alpha was also replaced with a sequence that is not a signal-anchor, and the expressed protein was neither targeted to the ER nor was functional in COS 1 cells. In conclusion, both the structure and catalytic activity of P45017 alpha in COS 1 cells is dependent upon an amino-terminal sequence that functions as a signal-anchor sequence and not upon the precise sequence of the amino terminus.  相似文献   

16.
Chediak-Higashi syndrome is characterized by dysfunctional giant organelles of common origin, that is, lysosomes, melanosomes, and platelet dense bodies. Its defective gene LYST encodes a large molecular weight protein whose function is unknown. The Beige mouse also defective in Lyst is a good model of the human disease. Purified lysosomes from Beige and normal black mouse livers were used to carry out a proteomics study. Two-dimensional gel electrophoretic separation of soluble lysosomal proteins of Beige and normal mice revealed no major differences. The cleavable isotope-coded affinity tag (cICAT) technique was used to compare the composition of Beige and normal lysosomal membrane proteins. While the levels of common proteins, that is, Lamp1, Lamp2, and Niemann-Pick type C1, were decreased in Beige mice, there was an increase in the levels of endoplasmic reticulum (ER) resident proteins, for example, cytochrome P450, NADPH-cytochrome P450 oxidoreductase, and flavin-containing monooxygenase. Confocal microscopy confirmed that another ER protein, calnexin, colocalizes with Lamp1 on membranes of giant lysosomes from fibroblasts of Chediak-Higashi syndrome patient. Our results suggest that LYST may play a role in either preventing inappropriate incorporation of proteins into the lysosomal membrane or in membrane recycling/maturation.  相似文献   

17.
Neuropathy target esterase (NTE), the human homologue of a protein required for brain development in Drosophila, has a predicted amino-terminal transmembrane helix (TM), a putative regulatory (R) domain, and a hydrophobic catalytic (C) domain. Here we describe the expression, in COS cells, of green fluorescent protein-tagged constructs of NTE and mutant proteins lacking the TM or the R- or C-domains. Esterase assays and Western blots of particulate and soluble fractions indicated that neither the TM nor R-domain is essential for NTE catalytic activity but that this activity requires membrane association to which the TM, R-, and C-domains all contribute. Experiments involving proteinase treatment revealed that most of the NTE molecule is exposed on the cytoplasmic face of membranes. In cells expressing a moderate level of NTE and all cells expressing DeltaC-NTE, fluorescence was distributed in an endoplasmic reticulum (ER)-like pattern. Cells expressing high levels of NTE showed aberrant distribution of ER marker proteins and accumulation of NTE on the cytoplasmic surface of ER-derived tubuloreticular aggregates. Deformation of the ER was also seen in cells expressing DeltaR-NTE or enzymatically inactive S966A-NTE but not DeltaTM-NTE. The data suggest that NTE is anchored in the ER via its TM, that its R- and C-domains also interact with the cytoplasmic face of the ER, and that overexpression of NTE causes ER aggregation via intermolecular association of its C-domains.  相似文献   

18.
The stability of fluorescent proteins (FPs) is of great importance for their use as reporters in studies of gene expression, protein dynamics and localization in cell. A comparative analysis of conformational stability of fluorescent proteins, having different association state was done. The list of studied proteins includes EGFP (monomer of green fluorescent protein, GFP), zFP506 (tetramer GFP), mRFP1 and "dimer2" (monomer and dimmer of red fluorescent protein), DsRed1 (red tetramer). The character of fluorescence intensity changes induced by guanidine hydrochloride (GdnHCl) of these proteins differs significantly. Green tetramer zFP506 has been shown to be more stable than green monomer EGFP, red dimmer "dimer2" has been shown to be less stable than red tetramer DsRed1, while red monomer mRFP1 has been shown to be practically as stable as tetramer DsRedl. It is concluded that the quaternary structure, being an important stabilizing factor, does not represent the only circumstance dictating the dramatic variations between fluorescent proteins in their conformational stability.  相似文献   

19.
Civjan NR  Bayburt TH  Schuler MA  Sligar SG 《BioTechniques》2003,35(3):556-60, 562-3
One of the biggest challenges in the field of proteomics is obtaining functional membrane proteins solubilized and dispersed into a physiologically relevant environment that maintains the spectrum of in vivo activities. Here we describe a system composed of nanoscale self-assembled particles, termed Nanodiscs, which contain a single phospholipid bilayer stabilized by an encircling membrane scaffold protein (MSP). Using microsomal membranes of baculovirus-infected Spodoptera frugiperda (Sf9) insect cells overexpressing an N-terminally anchored cytochrome P450 monoxygenase (P450), we demonstrate that target membrane proteins can be directly solubilized and incorporated into distinct populations of Nanodiscs, which can be separated by size chromatography. We show that formation of these Nanodiscs from insect cell membranes allows for the compartmentalization into soluble nanostructures that provide a natural membrane bilayer that avoids the aggregation of membrane proteins often encountered in other reconstitution procedures. Lipid composition analysis and substrate binding analysis of size-fractionated Nanodiscs arrayed in microtiter plates further demonstrates that the Nanodisc system effectively disperses the overexpressed membrane protein into monodispersed bilayers containing biochemically defined lipid components and the target protein in its native from suitable for sensitive high-throughput substrate binding analysis.  相似文献   

20.
Benzylisoquinoline alkaloids are a large and structurally diverse group of natural plant products that includes many compounds with potent biological activities, including the antimicrobial agent sanguinarine. The putative subcellular localization of the sanguinarine pathway was determined using in-frame N-terminal fusions between cDNAs encoding nine consecutive biosynthetic enzymes and the gene encoding the green fluorescent protein (GFP). Expression constructs were introduced into cultured opium poppy cells by particle bombardment, and the localization of fusion proteins was visualized using epifluorescence microscopy. GFP fusions with two O-methyltransferases and two N-methyltransferases in the sanguinarine pathway all produced non-targeted fluorescence in the cytosol and nucleus. Interspersed between these soluble proteins are five membrane-bound cytochromes P450. Corresponding cDNAs are available for three P450s, all of which produced fluorescence when fused to GFP in association with the endoplasmic reticulum (ER). Two enzymes with suggested or known N-terminal signal peptides were initially associated with the ER, but were subsequently transported to the central vacuole suggesting their occurrence in the ER lumen. The alternating localization of these biosynthetic enzymes to three subcellular compartments indicates extensive trafficking of pathway intermediates across the endomembranes and suggests a key role for compartmentalization in the regulation of sanguinarine metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号