首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A number of proteins involved in cell growth control, including members of the Ras family of GTPases, are modified at their C terminus by a three-step posttranslational process termed prenylation. The enzyme isoprenylcysteine carboxylmethyl-transferase (Icmt) catalyzes the last step in this process, and genetic and pharmacological suppression of Icmt activity significantly impacts on cell growth and oncogenesis. Screening of a diverse chemical library led to the identification of a specific small molecule inhibitor of Icmt, cysmethynil, that inhibited growth factor signaling and tumorigenesis in an in vitro cancer cell model (Winter-Vann, A. M., Baron, R. A., Wong, W., dela Cruz, J., York, J. D., Gooden, D. M., Bergo, M. O., Young, S. G., Toone, E. J., and Casey, P. J. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 4336-4341). To further evaluate the mechanisms through which this Icmt inhibitor impacts on cancer cells, we developed both in vitro and in vivo models utilizing PC3 prostate cancer cells. Treatment of these cells with cysmethynil resulted in both an accumulation of cells in the G(1) phase and cell death. Treatment of mice harboring PC3 cell-derived xenograft tumors with cysmethynil resulted in markedly reduced tumor size. Analysis of cell death pathways unexpectedly showed minimal impact of cysmethynil treatment on apoptosis; rather, drug treatment significantly enhanced autophagy and autophagic cell death. Cysmethynil-treated cells displayed reduced mammalian target of rapamycin (mTOR) signaling, providing a potential mechanism for the excessive autophagy as well as G(1) cell cycle arrest observed. These results identify a novel mechanism for the antitumor activity of Icmt inhibition. Further, the dual effects of cell death and cell cycle arrest by cysmethynil treatment strengthen the rationale for targeting Icmt in cancer chemotherapy.  相似文献   

2.
Recent evidence suggests that autophagy plays a role in oxidative injury-induced cell death. Here we examined whether glutamate-mediated oxidative toxicity induces autophagy in murine hippocampal HT22 cells and if autophagy induction affects the molecular events associated with cell death. Markers for autophagy induction including LC3 conversion, suppression of mTOR pathway, and GFP-LC3 dot formation were enhanced by glutamate treatment. By contrast, autophagy inhibition blocked glutamate-induced LC3 conversion and consequently reduced cell death. Activation of ERK1/2, a hallmark of glutamate-induced cytotoxicity, was also decreased by autophagy inhibition. Interestingly, autophagy inhibition also affected the expression of chaperones including Hsp60 and Hsp70, which are differentially regulated during HT22 cell death. Conversely, knock-down of Hsp60 greatly decreased LC3 conversion. Together these results suggest that glutamate-induced cytotoxicity involves autophagic cell death and chaperones may play a role in this process.  相似文献   

3.
Axin, a negative regulator of the Wnt signaling pathway, plays a critical role in various cellular events including cell proliferation and cell death. Axin‐regulated cell death affects multiple processes, including viral replication. For example, axin expression suppresses herpes simplex virus (HSV)‐induced necrotic cell death and enhances viral replication. Based on these observations, this study investigated the involvement of autophagy in regulation of HSV replication and found axin expression inhibits autophagy‐mediated suppression of viral replication in L929 cells. HSV infection induced autophagy in a time‐ and viral dose‐dependent manner in control L929 cells (L‐EV), whereas virus‐induced autophagy was delayed in axin‐expressing L929 cells (L‐axin). Subsequent analysis showed that induction of autophagy by rapamycin reduced HSV replication, and that inhibiting autophagy by 3‐methyladenine (3MA) and beclin‐1 knockdown facilitated viral replication in L‐EV cells. In addition, preventing autophagy with 3MA suppressed virus‐induced cytotoxicity in L‐EV cells. In contrast, HSV replication in L‐axin cells was resistant to changes in autophagy. These results suggest that axin expression may render L929 cells resistant to HSV‐infection induced autophagy, leading to enhanced viral replication.  相似文献   

4.
Berry DL  Baehrecke EH 《Cell》2007,131(6):1137-1148
Autophagy is a catabolic process that is negatively regulated by growth and has been implicated in cell death. We find that autophagy is induced following growth arrest and precedes developmental autophagic cell death of Drosophila salivary glands. Maintaining growth by expression of either activated Ras or positive regulators of the class I phosphoinositide 3-kinase (PI3K) pathway inhibits autophagy and blocks salivary gland cell degradation. Developmental degradation of salivary glands is also inhibited in autophagy gene (atg) mutants. Caspases are active in PI3K-expressing and atg mutant salivary glands, and combined inhibition of both autophagy and caspases increases suppression of gland degradation. Further, induction of autophagy is sufficient to induce premature cell death in a caspase-independent manner. Our results provide in vivo evidence that growth arrest, autophagy, and atg genes are required for physiological autophagic cell death and that multiple degradation pathways cooperate in the efficient clearance of cells during development.  相似文献   

5.
Autophagy has been implicated in both cell survival and programmed cell death (PCD), and this may explain the apparently complex role of this catabolic process in tumourigenesis. Our previous studies have shown that caspases have little influence on Drosophila larval midgut PCD, whereas inhibition of autophagy severely delays midgut removal. To assess upstream signals that regulate autophagy and larval midgut degradation, we have examined the requirement of growth signalling pathways. Inhibition of the class I phosphoinositide-3-kinase (PI3K) pathway prevents midgut growth, whereas ectopic PI3K and Ras signalling results in larger cells with decreased autophagy and delayed midgut degradation. Furthermore, premature induction of autophagy is sufficient to induce early midgut degradation. These data indicate that autophagy and the growth regulatory pathways have an important relationship during midgut PCD. Despite the roles of autophagy in both survival and death, our findings suggest that autophagy induction occurs in response to similar signals in both scenarios.  相似文献   

6.
Macroautophagy has been implicated in a variety of pathological processes. Hypoxic/ischemic cellular injury is one such process in which autophagy has emerged as an important regulator. In general, autophagy is induced after a hypoxic/ischemic insult; however, whether the induction of autophagy promotes cell death or recovery is controversial and appears to be context dependent. We have developed C. elegans as a genetically tractable model for the study of hypoxic cell injury. Both necrosis and apoptosis are mechanisms of cell death following hypoxia in C. elegans. However, the role of autophagy in hypoxic injury in C. elegans has not been examined. Here, we found that RNAi knockdown of the C. elegans homologs of beclin 1/Atg6 (bec-1) and LC3/Atg8 (lgg-1, lgg-2), and mutation of Atg1 (unc-51) decreased animal survival after a severe hypoxic insult. Acute inhibition of autophagy by the type III phosphatidylinositol 3-kinase inhibitors, 3-methyladenine and Wortmannin, also sensitized animals to hypoxic death. Hypoxia-induced neuronal and myocyte injury as well as necrotic cellular morphology were increased by RNAi knockdown of BEC-1. Hypoxia increased the expression of a marker of autophagosomes in a bec-1-dependent manner. Finally, we found that the hypoxia hypersensitive phenotype of bec-1(RNAi) animals could be blocked by loss-of-function mutations in either the apoptosis or necrosis pathway. These results argue that inhibition of autophagy sensitizes C. elegans and its cells to hypoxic injury and that this sensitization is blocked or circumvented when either of the two major cell-death mechanisms is inhibited.  相似文献   

7.
8.
The emerging evidences suggest that endoplasmic (ER) stress is involved in onset of many pathological conditions like cancer and neurodegeneration. The persistent ER stress results in misfolded protein aggregates, which are degraded through the process of autophagy or lead to cell death through activation of caspases. The regulation of crosstalk of autophagy and cell death during ER stress is emerging. Ubiquitination plays regulatory role in crosstalk of autophagy and cell death. In the current study, we describe the role of TRIM13, RING E3 ubiquitin ligase, in regulation of ER stress induced cell death. The expression of TRIM13 sensitizes cells to ER stress induced death. TRIM13 induced autophagy is essential for ER stress induced caspase activation and cell death. TRIM13 induces K63 linked poly-ubiquitination of caspase-8, which results in its stabilization and activation during ER stress. TRIM13 regulates translocation of caspase-8 to autophagosome and its fusion with lysosome during ER stress. This study first time demonstrated the role of TRIM13 as novel regulator of caspase-8 activation and cell death during ER stress.  相似文献   

9.
BACKGROUND: To survive starvation and other forms of stress, eukaryotic cells undergo a lysosomal process of cytoplasmic degradation known as autophagy. Autophagy has been implicated in a number of cellular and developmental processes, including cell-growth control and programmed cell death. However, direct evidence of a causal role for autophagy in these processes is lacking, resulting in part from the pleiotropic effects of signaling molecules such as TOR that regulate autophagy. Here, we circumvent this difficulty by directly manipulating autophagy rates in Drosophila through the autophagy-specific protein kinase Atg1. RESULTS: We find that overexpression of Atg1 is sufficient to induce high levels of autophagy, the first such demonstration among wild-type Atg proteins. In contrast to findings in yeast, induction of autophagy by Atg1 is dependent on its kinase activity. We find that cells with high levels of Atg1-induced autophagy are rapidly eliminated, demonstrating that autophagy is capable of inducing cell death. However, this cell death is caspase dependent and displays DNA fragmentation, suggesting that autophagy represents an alternative induction of apoptosis, rather than a distinct form of cell death. In addition, we demonstrate that Atg1-induced autophagy strongly inhibits cell growth and that Atg1 mutant cells have a relative growth advantage under conditions of reduced TOR signaling. Finally, we show that Atg1 expression results in negative feedback on the activity of TOR itself. CONCLUSIONS: Our results reveal a central role for Atg1 in mounting a coordinated autophagic response and demonstrate that autophagy has the capacity to induce cell death. Furthermore, this work identifies autophagy as a critical mechanism by which inhibition of TOR signaling leads to reduced cell growth.  相似文献   

10.
The previous studies by this author group has shown that paclitaxel, a mitotic inhibitor used in breast cancer chemotherapy, inhibits cell growth via induction of Raf-1-dependent apoptosis. In this article, the role of autophagy in paclitaxel anticancer action was investigated using v-Ha-ras-transformed NIH 3T3 cells. Paclitaxel induced a notable increase in the number of fluorescent particles labeled with monodansylcadaverine (MDC), a specific marker for autophagic vacuoles. MDC-labeled vacuoles clearly exhibited the fluorescent-tagged LC3 in cells transiently overexpressing GFP-LC3 (a protein that associates with autophagosome membranes). However, autophagy inhibition with 3-methyladenine (3-MA) failed to rescue v-Ha-ras-transformed NIH 3T3 cells from paclitaxel-induced cell death. More interestingly, the apoptosis inhibition by overexpression of the X-linked inhibitor of apoptosis (XIAP) did not fully block the cell death by paclitaxel, implying that apoptosis inhibition might accelerate the autophagic components of the paclitaxel response. Conversely, Raf-1 shRNA expression protected against paclitaxel-induced cell death through the simultaneous inhibition of both autophagy and apoptosis. These results suggest that both autophagy and apoptosis act as cooperative partners to induce cell death in v-Ha-ras-transformed NIH 3T3 cells treated with paclitaxel.  相似文献   

11.
The mode and timing of virally induced cell death hold the potential of regulating viral yield, viral transmission, and the severity of virally induced disease. Orbiviruses such as the epizootic hemorrhagic disease virus (EHDV) are nonenveloped and cytolytic. To date, the death of cells infected with EHDV, the signal transduction pathways involved in this process, and the consequence of their inhibition have yet to be characterized. Here, we report that the Ibaraki strain of EHDV2 (EHDV2-IBA) induces apoptosis, autophagy, a decrease in cellular protein synthesis, the activation of c-Jun N-terminal kinase (JNK), and the phosphorylation of the JNK substrate c-Jun. The production of infectious virions decreased upon inhibition of apoptosis with the pan-caspase inhibitor Q-VD-OPH (quinolyl-valyl-O-methylaspartyl-[-2,6-difluorophenoxy]-methyl ketone), upon inhibition of autophagy with 3-methyladenine or via the knockout of the autophagy regulator Atg5, or upon treatment of infected cells with the JNK inhibitor SP600125 or the cyclin-dependent kinase (CDK) inhibitor roscovitine, which also inhibited c-Jun phosphorylation. Moreover, Q-VD-OPH, SP600125, and roscovitine partially reduced EHDV2-IBA-induced cell death, and roscovitine diminished the induction of autophagy by EHDV2-IBA. Taken together, our results imply that EHDV induces and benefits from the activation of signaling pathways involved in cell stress and death.  相似文献   

12.
13.
The endothelial dysfunction induced by oxidized low-density lipoprotein (ox-LDL) plays an important role in the pathogenesis of atherosclerosis, which can lead to oxidative stress and inflammation. The role of autophagy in the process of atherosclerosis has drawn increasing attention. The human umbilical vein endothelial cells (HUVECs), whose Ras-related C3 botulinum toxin substrate 1 (Rac1) and Rac3 was knockdown, were used to detect whether the possible molecular mechanisms of Rac1 and Rac3 for anti-inflammatory in endothelial cells was effected by downregulation of autophagy. The HUVECs were incubated with ox-LDL. The inflammatory factors and autophagy proteins were evaluated to ascertain and compare the effect of Rac1 and Rac3 on autophagy. Then, 3-methyladenine (3-MA) as an inhibiter of autophagy was used to detect whether the effect of Rac1 and Rac3 was related to autophagy. ox-LDL-induced cell dysfunction in HUVECs was determined by testing the formation of foam cells, the expression of nuclear factor (NF)-κB and nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 and NF-κB p65 and other inflammatory factors, the release of reactive oxygen species by oxidative stress and the dysfunction of the cytomembrane. And ApoE−/− mice on a high-fat diet were used as an animal model to detect the effect of Rac1 and Rac3 in vivo. The results showed that when Rac1 and Rac3 were decreased in HUVECs, the cell dysfunction caused by ox-LDL was inhibited. If 3-MA was used to inhibit autophagy in Rac1 and Rac3 knockdown cells, the injury induced by ox-LDL on the cells was recovered. These results indicated that the effect of Rac1 and Rac3 was combined with ox-LDL, which was related to inhibition of autophagy. The effect of Rac3 was more significant than that of Rac1.  相似文献   

14.
《Autophagy》2013,9(2):85-90
Autophagy is a dynamic process of protein degradation which is typically observed during nutrient deprivation. Recently, interest in autophagy has been renewed among oncologists, because different types of cancer cells undergo autophagy after various anticancer therapies. This type of non-apoptotic cell death has been documented mainly by observing morphological changes, e.g., numerous autophagic vacuoles in the cytoplasm of dying cells. Thus, autophagic cell death is considered programmed cell death type II, whereas apoptosis is programmed cell death type I. These two types of cell death are predominantly distinctive, but many studies demonstrate cross-talk between them. Whether autophagy in cancer cells causes death or protects cells is controversial. In multiple studies, autophagy has been inhibited pharmacologically or genetically, resulting in contrasting outcomes—survival or death—depending on the specific context. Interestingly, the regulatory pathways of autophagy share several molecules with the oncogenic pathways activated by tyrosine kinase receptors. Tumor suppressors such as Beclin 1, PTEN, and p53 also play an important role in autophagy induction. Taken together, these accumulating data may lead to development of new cancer therapies that manipulate autophagy.  相似文献   

15.
Kondo Y  Kondo S 《Autophagy》2006,2(2):85-90
Autophagy is a dynamic process of protein degradation, which is typically observed during nutrient deprivation. Recently, interest in autophagy has been renewed among oncologists, because different types of cancer cells undergo autophagy after various anticancer therapies. This type of nonapoptotic cell death has been documented mainly by observing morphological changes, e.g., numerous autophagic vacuoles in the cytoplasm of dying cells. Thus, autophagic cell death is considered programmed cell death type II, whereas apoptosis is programmed cell death type I. These two types of cell death are predominantly distinctive, but many studies demonstrate cross-talk between them. Whether autophagy in cancer cells causes death or protects cells is controversial. In multiple studies, autophagy has been inhibited pharmacologically or genetically, resulting in contrasting outcomes--survival or death--depending on the specific context. Interestingly, the regulatory pathways of autophagy share several molecules with the oncogenic pathways activated by tyrosine kinase receptors. Tumor suppressors such as Beclin 1, PTEN and p53 also play an important role in autophagy induction. Taken together, these accumulating data may lead to development of new cancer therapies that manipulate autophagy.  相似文献   

16.
The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway promotes melanoma tumor growth and survival while suppressing autophagy, a catabolic process through which cells collect and recycle cellular components to sustain energy homeostasis in starvation. Conversely, inhibitors of the PI3K/AKT/mTOR pathway, in particular the mTOR inhibitor temsirolimus (CCI-779), induce autophagy, which can promote tumor survival and thus, these agents potentially limit their own efficacy. We hypothesized that inhibition of autophagy in combination with mTOR inhibition would block this tumor survival mechanism and hence improve the cytotoxicity of mTOR inhibitors in melanoma. Here we found that melanoma cell lines of multiple genotypes exhibit high basal levels of autophagy. Knockdown of expression of the essential autophagy gene product ATG7 resulted in cell death, indicating that survival of melanoma cells is autophagy-dependent. We also found that the lysosomotropic agent and autophagy inhibitor hydroxychloroquine (HCQ) synergizes with CCI-779 and led to melanoma cell death via apoptosis. Combination treatment with CCI-779 and HCQ suppressed melanoma growth and induced cell death both in 3-dimensional (3D) spheroid cultures and in tumor xenografts. These data suggest that coordinate inhibition of the mTOR and autophagy pathways promotes apoptosis and could be a new therapeutic paradigm for the treatment of melanoma.  相似文献   

17.
18.
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, inhibits growth of breast cancer cells but the mechanisms underlying growth inhibitory effect of BITC are not fully understood. Here, we demonstrate that BITC treatment causes FoxO1-mediated autophagic death in cultured human breast cancer cells. The BITC-treated breast cancer cells (MDA-MB-231, MCF-7, MDA-MB-468, BT-474, and BRI-JM04) and MDA-MB-231 xenografts from BITC-treated mice exhibited several features characteristic of autophagy, including appearance of double-membrane vacuoles (transmission electron microscopy) and acidic vesicular organelles (acridine orange staining), cleavage of microtubule-associated protein 1 light chain 3 (LC3), and/or suppression of p62 (p62/SQSTM1 or sequestosome 1) expression. On the other hand, a normal human mammary epithelial cell line (MCF-10A) was resistant to BITC-induced autophagy. BITC-mediated inhibition of MDA-MB-231 and MCF-7 cell viability was partially but statistically significantly attenuated in the presence of autophagy inhibitors 3-methyl adenine and bafilomycin A1. Stable overexpression of Mn-superoxide dismutase, which was fully protective against apoptosis, conferred only partial protection against BITC-induced autophagy. BITC treatment decreased phosphorylation of mTOR and its downstream targets (P70s6k and 4E-BP1) in cultured MDA-MB-231 and MCF-7 cells and MDA-MB-231 xenografts, but activation of mTOR by transient overexpression of its positive regulator Rheb failed to confer protection against BITC-induced autophagy. Autophagy induction by BITC was associated with increased expression and acetylation of FoxO1. Furthermore, autophagy induction and cell growth inhibition resulting from BITC exposure were significantly attenuated by small interfering RNA knockdown of FoxO1. In conclusion, the present study provides novel insights into the molecular circuitry of BITC-induced cell death involving FoxO1-mediated autophagy.  相似文献   

19.
Autophagy is an essential recycling pathway implicated in neurodegeneration either as a pro-survival or a pro-death mechanism. Its role after axonal injury is still uncertain. Axotomy of the optic nerve is a classical model of neurodegeneration. It induces retinal ganglion cell death, a process also occurring in glaucoma and other optic neuropathies. We analyzed autophagy induction and cell survival following optic nerve transection (ONT) in mice. Our results demonstrate activation of autophagy shortly after axotomy with autophagosome formation, upregulation of the autophagy regulator Atg5 and apoptotic death of 50% of the retinal ganglion cells (RGCs) after 5 days. Genetic downregulation of autophagy using knockout mice for Atg4B (another regulator of autophagy) or with specific deletion of Atg5 in retinal ganglion cells, using the Atg5(flox/flox) mice reduces cell survival after ONT, whereas pharmacological induction of autophagy in vivo increases the number of surviving cells. In conclusion, our data support that autophagy has a cytoprotective role in RGCs after traumatic injury and may provide a new therapeutic strategy to ameliorate retinal diseases.  相似文献   

20.
We recently demonstrated that resveratrol induces caspase-dependent apoptosis in multiple cancer cell types. Whether apoptosis is also regulated by other cell death mechanisms such as autophagy is not clearly defined. Here we show that inhibition of autophagy enhanced resveratrol-induced caspase activation and apoptosis. Resveratrol inhibited colony formation and cell proliferation in multiple cancer cell types. Resveratrol treatment induced accumulation of LC3-II, which is a key marker for autophagy. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, increased resveratrol-mediated caspase activation and cell death in breast and colon cancer cells. Inhibition of autophagy by silencing key autophagy regulators such as ATG5 and Beclin-1 enhanced resveratrol-induced caspase activation. Mechanistic analysis revealed that Beclin-1 did not interact with proapoptotic proteins Bax and Bak; however, Beclin-1 was found to interact with p53 in the cytosol and mitochondria upon resveratrol treatment. Importantly, resveratrol depleted ATPase 8 gene, and thus, reduced mitochondrial DNA (mtDNA) content, suggesting that resveratrol induces damage to mtDNA causing accumulation of dysfunctional mitochondria triggering autophagy induction. Together, our findings indicate that induction of autophagy during resveratrol-induced apoptosis is an adaptive response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号