首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preliminary data showed that α1-adrenergic antagonists induce apoptosis and a switch towards megakaryocytic differentiation in human erythroleukemia cells. To test the hypothesis whether survival and differentiation of erythroleukemia cells are under control of α1-adrenergic signalling, we examined α1-adrenoceptor expression of erythroleukemia cells and compared the in vitro effects of α-adrenergic antagonists with those of agonists. We discovered that α1-adrenergic agonists suppress both erythroid differentiation and growth of erythroleukemia cells concomitant with lipofuscin accumulation, autophagy and necrotic cell death. α1-adrenergic agonists also inhibit the in vitro growth of physiologic hematopoietic progenitors obtained from umbilical cord blood with high selectivity for the erythroid lineage. Interestingly, the observed effects could not be related to α1-adrenoceptors, even though agonists and antagonists displayed opposing effects regarding cellular growth and differentiation of erythroleukemia cells. Our data suggest that the effects of α1-adrenergic drugs are related to a non-adrenoceptor binding site, controlling the fate of erythroid progenitor cells towards differentiation and cell death. Since the observed effects are not mediated through adrenoceptors, the physiologic relevance of our data remains unclear, so far. Nevertheless, the identification of the still unknown binding site(s) might disclose new insights into regulation of erythroid differentiation and cell death.  相似文献   

2.
《Biophysical journal》2021,120(24):5631-5643
Over the last two decades, an increasing number of studies has been devoted to a deeper understanding of the molecular process involved in the binding of various agonists and antagonists to active and inactive conformations of β2-adrenergic receptor (β2AR). The 3.2 Å x-ray crystal structure of human β2AR active state in combination with the endogenous low affinity agonist adrenaline offers an ideal starting structure for studying the binding of various catecholamines to adrenergic receptors. We show that molecular docking of levodopa (L-DOPA) and droxidopa into rigid and flexible β2AR models leads for both ligands to binding anchor sites comparable to those experimentally reported for adrenaline, namely D113/N312 and S203/S204/S207 side chains. Both ligands have a hydrogen bond network that is extremely similar to those of noradrenaline and dopamine. Interestingly, redocking neutral and protonated versions of adrenaline to rigid and flexible β2AR models results in binding poses that are more energetically stable and distinct from the x-ray crystal structure. Similarly, lowest energy conformations of noradrenaline and dopamine generated by docking into flexible β2AR models had binding free energies lower than those of best poses in rigid receptor models. Furthermore, our findings show that L-DOPA and droxidopa molecules have binding affinities comparable to those predicted for adrenaline, noradrenaline, and dopamine, which are consistent with previous experimental and computational findings and supported by the molecular dynamics simulations of β2AR-ligand complexes performed here.  相似文献   

3.
4.
《Life sciences》1996,59(14):PL221-PL226
α1-and β-adrenergic and muscarinic-cholinergic regulation in spontaneous beating and Ca2+ oscillations in neonatal rat cardiac myocytes at day 6 of culture was investigated. The spontaneous beating in myocytes decreased in the presence of 10 μM norepinephrine (NE). This negative chronotropic action was antagonized by prazosin. Carbachol (CCh) also showed negative chronotropic action which was inhibited by atropine. On the other hand, isoproterenol (ISP) increased the beating rate which was antagonized by propranolol. NE increased inositol phosphate formation whereas CCh and ISP did not. NE and CCh suppressed the frequency of the spontaneous Ca2+ oscillations but ISP increased. The present results suggest that α1-adrenergic and muscarinic receptors regulate chronotropism to be negative whereas β-adrenoceptor regulates chronotropism to be positive in cultured neonatal rat cardiac myocytes.  相似文献   

5.
J Ubach  X Zhang  X Shao  T C Südhof    J Rizo 《The EMBO journal》1998,17(14):3921-3930
C2-domains are widespread protein modules with diverse Ca2+-regulatory functions. Although multiple Ca2+ ions are known to bind at the tip of several C2-domains, the exact number of Ca2+-binding sites and their functional relevance are unknown. The first C2-domain of synaptotagmin I is believed to play a key role in neurotransmitter release via its Ca2+-dependent interactions with syntaxin and phospholipids. We have studied the Ca2+-binding mode of this C2-domain as a prototypical C2-domain using NMR spectroscopy and site-directed mutagenesis. The C2-domain is an elliptical module composed of a beta-sandwich with a long axis of 50 A. Our results reveal that the C2-domain binds three Ca2+ ions in a tight cluster spanning only 6 A at the tip of the module. The Ca2+-binding region is formed by two loops whose conformation is stabilized by Ca2+ binding. Binding involves one serine and five aspartate residues that are conserved in numerous C2-domains. All three Ca2+ ions are required for the interactions of the C2-domain with syntaxin and phospholipids. These results support an electrostatic switch model for C2-domain function whereby the beta-sheets of the domain provide a fixed scaffold for the Ca2+-binding loops, and whereby interactions with target molecules are triggered by a Ca2+-induced switch in electrostatic potential.  相似文献   

6.
Large-conductance Ca2+-activated K+ channel is formed by a tetramer of the pore-forming α-subunit and distinct accessory β-subunits (β1–β4) which contribute to BKCa channel molecular diversity. Accumulative evidences indicate that not only α-subunit alone but also the α + β subunit complex and/or β-subunit might play an important role in modulating various physiological functions in most mammalian cells. To evaluate the detailed pharmacological and biophysical properties of α + β1 subunit complex or β1-subunit in BKCa channel, we established an expression system that reliably coexpress hSloα + β1 subunit complex in HEK293 cells. The coexpression of hSloα + β1 subunit complex was evaluated by western blotting and immunolocalization, and then the single-channel kinetics and pharmacological properties of expressed hSloα + β1 subunit complex were investigated by cell-attached and outside-out patches, respectively. The results in this study showed that the expressed hSloα + β1 subunit complex demonstrated to be fully functional for its typical single-channel traces, Ca2+-sensitivity, voltage-dependency, high conductance (151 ± 7 pS), and its pharmacological activation and inhibition.  相似文献   

7.
It is widely known that a rise in internal Ca2+ leads to an increased K+ permeability of human red blood cells [1,2,3]. Binding of Ca2+ to some membrane receptors is required for the opening of the K+ channel [4]. This requirement, however, seems to alter after "ageing" red cells in vitro in acid-citrate-dextrose solutions. Thus, the free Ca2+ concentration producing half-maximal effect on K+ permeability ([Ca2+]K+-50) of 4-weeks stored cells is approx. 2.10(-4) M (calculated from ref. 3 using 50% free Ca2+ according to Schatzmann [5]); nearly ten times lower than that reported for fresh cells [6]. This observation suggests the possibility that the K+ channel may become more sensitive to Ca2+ on cold storage. The experiments described below support this idea.  相似文献   

8.
In recent years it has become evident that bacteria can modulate signaling pathways in host cells through the secretion of small signaling molecules. We have evaluated the cytotoxic effects and NF-κB inhibitory activities of a panel of quorum sensing molecules and their reactive analogs on Hodgkin's lymphoma cells (L428). We found that several molecules inhibited NF-κB signaling in a dose dependent manner. Three inhibitors (ITC-12, ITC-Cl and Br-Furanone) showed 50% NF-κB inhibition at concentrations less than 10 µM (4.1 µM, 12.8 µM and 9.9 µM, respectively). Furthermore, all three molecules displayed cytotoxic effects against L428 cells with IC50 values of 12.4 µM, 18.3 µM and 3.1 µM respectively after 48 h incubation. They also showed inhibition of A549 adenocarcinoma cell migration at low concentrations 5.6 µM, 2.6 µM and 7.9 µM respectively. Further analysis showed that these molecules significantly decrease the degree of expression of proteins of NF-κB subunits p50, p65 and RelB both in cytosolic and nuclear fractions. This confirms that these compounds have the potential to modulate the NF-κB pathway by suppressing their subunits and thus exhibit cytotoxicity and inactivation of NF-κB signaling in Hodgkin's lymphoma cells.  相似文献   

9.
We examined the effect of water extracts of Persea americana fruit, and of the leaves of Tabernamontana divericata, Nerium oleander and Annona cherimolia (positive control) on Vicia faba root cells. We had confirmed in our previously published data the cytotoxicity of these plant extracts on four human cancer cell lines: liver (HepG-2), lung (A549), colon (HT-29) and breast (MCF-7). Vicia faba roots were soaked in plant extracts at dilutions of 100, 1,250, 2,500, 5,000, 10,000, 20,000 ppm for 4 and 24 h. All treatments resulted in a significant reduction in the mitotic index in a dose dependant manner. Root cells treated with T. divericata, N. oleander and A. cherimolia exhibited a decrease in prophase cell percentage, increase in micronuclei and chromosomal abnormalities as concentration increased. The P. americana treatment showed the highest cytotoxic effect on cancer cells, prophase cell percentage increased linearly with the applied concentration and no micronuclei were detected. This study shows that root tip assay of beans can be used in initial screening for new plant extracts to validate their use as candidates for containing active cytotoxic agents against malignant cells. This will greatly help in exploring new plant extracts as drugs for cancer treatment.  相似文献   

10.
Tropanylamide was investigated as a possible scaffold for β-tryptase inhibitors with a basic benzylamine P1 group and a substituted thiophene P4 group. Comparing to piperidinylamide, the tropanylamide scaffold is much more rigid, which presents less opportunity for the inhibitor to bind with off-target proteins, such as cytochrome P450, SSAO, and hERG potassium channel. The proposed binding mode was further confirmed by an in-house X-ray structure through co-crystallization.  相似文献   

11.
Store operated Ca2+ entry (SOCE) is the most important Ca2+ entry pathway in non-excitable cells. However, SOCE can also play a pivotal role in excitable cells such as anterior pituitary (AP) cells. The AP gland contains five different cell types that release six major AP hormones controlling most of the entire endocrine system. AP hormone release is modulated by Ca2+ signals induced by different hypothalamic releasing hormones (HRHs) acting on specific receptors in AP cells. TRH and LHRH both induce Ca2+ release and Ca2+ entry in responsive cells while GHRH and CRH only induce Ca2+ entry. SOCE has been shown to contribute to Ca2+ responses induced by TRH and LHRH but no molecular evidence has been provided. Accordingly, we used AP cells isolated from mice devoid of Orai1 channels (noted as Orai1−/− or Orai1 KO mice) and mice lacking expression of all seven canonical TRP channels (TRPC) from TRPC1 to TRPC7 (noted as heptaTRPC KO mice) to investigate contribution of these putative channel proteins to SOCE and intracellular Ca2+ responses induced by HRHs. We found that thapsigargin-evoked SOCE is lost in AP cells from Orai1−/− mice but unaffected in cells from heptaTRPC KO mice. Conversely, while spontaneous intracellular Ca2+-oscillations related to electrical activity were not affected in the Orai1−/− mice, these responses were significantly reduced in heptaTRPC KO mice. We also found that Ca2+ entry induced by TRH and LHRH is decreased in AP cells isolated from Orai1−/−. In addition, Ca2+ responses to several HRHs, particularly TRH and GHRH, are decreased in the heptaTRPC KO mice. These results indicate that expression of Orai1, and not TRPC channel proteins, is necessary for thapsigargin-evoked SOCE and is required to support Ca2+ entry induced by TRH and LHRH in mouse AP cells. In contrast, TRPC channel proteins appear to contribute to spontaneous Ca2+-oscillations and Ca2+ responses induced by TRH and GHRH. We conclude that expression of Orai1 and TRPC channels proteins may play differential and significant roles in AP physiology and endocrine control.  相似文献   

12.
Sustained rise in cytosolic Ca(2+) and cell shrinkage mainly caused by K(+) and Cl(-) efflux are known to be prerequisites to apoptotic cell death. Here, we investigated how the efflux of K(+) and Cl(-) as well as the rise in cytosolic Ca(2+) occur prior to caspase activation and are coupled to each other in apoptotic human epithelial HeLa cells. Caspase-3 activation and DNA laddering induced by staurosporine were abolished by blockers of K(+) and Cl(-) channels or cytosolic Ca(2+) chelation. Staurosporine induced decreases in the intracellular free K(+) and Cl(-) concentrations ([K(+)](i) and [Cl(-)](i)) in an early stage prior to caspase-3 activation. Staurosporine also induced a long-lasting rise in the cytosolic free Ca(2+) concentration. The early-phase decreases in [K(+)](i) and [Cl(-)](i) were completely prevented by a blocker of K(+) or Cl(-) channel, but were not affected by cytosolic Ca(2+) chelation. By contrast, the Ca(2+) response was abolished by a blocker of K(+) or Cl(-) channel. Strong hypertonic stress promptly induced a cytosolic Ca(2+) increase lasting >50 min together with sustained shrinkage and thereafter caspase-3 activation after 4 h. The hypertonic stress induced slight increases in [K(+)](i) and [Cl(-)](i) in the first 50 min, but these increases were much less than the effect of shrinkage-induced condensation, indicating that K(+) and Cl(-) efflux took place. Hypertonicity induced caspase-3 activation that was prevented not only by cytosolic Ca(2+) chelation but also by K(+) and Cl(-) channel blockers. Thus, it is concluded that not only Ca(2+) mobilization but early-phase efflux of K(+) and Cl(-) are required for caspase activation, and Ca(2+) mobilization is a downstream and resultant event of cell shrinkage in both staurosporine- and hypertonicity-induced apoptosis.  相似文献   

13.
Numerous studies have demonstrated the effects of Tβ4 on cell migration, proliferation, apoptosis and inflammation after exogenous treatment, but the mechanism by which Tβ4 functions is still unclear. Previously, we demonstrated that incubation of endothelial cells with Tβ4 induced synthesis and secretion of various proteins, including plasminogen activator inhibitor type 1 and matrix metaloproteinases. We also showed that Tβ4 interacts with Ku80, which may operate as a novel receptor for Tβ4 and mediates its intracellular activity. In this paper, we provide evidence that Tβ4 induces cellular processes without changes in the intracellular Ca(2+) concentration. External treatment of HUVECs with Tβ4 and its mutants deprived of the N-terminal tetrapeptide AcSDKP (Tβ4(AcSDKPT/4A)) or the actin-binding sequence KLKKTET (Tβ4(KLKKTET/7A)) resulted in enhanced cell migration and formation of tubular structures in Matrigel. Surprisingly, the increased cell motility caused by Tβ4 was not associated with the intracellular Ca(2+) elevation monitored with Fluo-4 NW or Fura-2 AM. Therefore, it is unlikely that externally added Tβ4 induces HUVEC migration via the surface membrane receptors known to generate Ca(2+) influx. Our data confirm the concept that externally added Tβ4 must be internalized to induce intracellular mechanisms supporting endothelial cell migration.  相似文献   

14.
In this study the properties of the 45Ca2+ influx in human red blood cells (RBC) induced by NaVO3 or ATP-depletion were compared. Both NaVO3-induced and ATP-depletion-induced 45Ca2+ influxes were in the range 10(-6)-10(-5) mol Ca2+ x l(-1)cells x h(-1). The saturatability of ATP-depletion-induced 45Ca2+ influx with Ca2+ was much less pronounced than that of NaVO3-induced 45Ca2+ influx. The NaVO3-induced Ca2+ influx was sensitive to nifedipine (IC50 = 50 micromol/l) and Cu2+ (IC50 = 9 micromol/l) but these inhibitors had only a marginal effect when ATP-depletion was used as the Ca2+ influx inducer. On the other hand, polymyxin B (PXB) (1-5 mg/ml) strongly stimulated the ATP-depletion-induced 45Ca2+ influx whereas its effect on the NaVO3-induced Ca2+ influx was biphasic, with about 10% stimulation at lower PXB concentrations and an inhibition of 40% at higher concentrations. SDS-PAGE revealed that both NaVO3 and PXB induced changes in the protein phosphorylation pattern in the presence of Ca2+. NaVO3 stimulated the phosphorylation of several proteins and this effect was counteracted by PXB. The comparison of the kinetics and temperature dependencies of the Gárdos effect induced by NaVO3 and the ATP-depletion showed marked differences. The ability of NaVO3 to induce the Gárdos effect dramatically increased in ATP-depleted cells. These findings indicate that the 45Ca2+ influxes preceding the activation of the Ca2+-activated K+ efflux (Gárdos effect) stimulated by NaVO3 and by ATP-depletion, are mediated by different transport pathways. In addition, obtained results demonstrate that ATP-depletion and NaVO3-treatment exert additive action in triggering the Gárdos effect.  相似文献   

15.
16.
Zinc-α2-glycoprotein (ZAG) is an adipokine with an MHC class I-like protein fold. Even though zinc causes ZAG to precipitate from plasma during protein purification, no zinc binding has been identified to date. Using mass spectrometry, we demonstrated that ZAG contains one strongly bound zinc ion, predicted to lie close to the α1 and α2 helical groove. UV, CD and fluorescence spectroscopies detected weak zinc binding to holo-ZAG, which can bind up to 15 zinc ions. Zinc binding to 11-(dansylamino) undecanoic acid was enhanced by holo-ZAG. Zinc binding may be important for ZAG binding to fatty acids and the β-adrenergic receptor.  相似文献   

17.
Apurinic/apyrimidinic endonuclease 1 (APE1), a central enzyme in the base excision repair pathway, cleaves damaged DNA in Mg(2+) dependent reaction. Despite characterization of nine X-ray crystallographic structures of human APE1, in some cases, bound to various metal ions and substrate/product, the position of the metal ion and its stoichiometry for the cleavage reaction are still being debated. While a mutation of the active site E96Q was proposed to eliminate Mg(2+) binding at the "A" site, we show experimentally that this mutant still requires Mg(2+) at concentration similar to that for the wild type enzyme to cleave the AP site in DNA. Molecular dynamics simulations of the wild type APE1, E96Q and a double missense mutant E96Q + D210N indicate that Mg(2+) placed at the A-site destabilizes the bound AP site-containing DNA. In these simulations, the H-bond chain D238-H309-AP site oxygen is broken and the substrate DNA is shifted away from its crystal structure position (1DE9). In contrast, simulations with the Mg(2+) at site B or A+B sites leave the substrate DNA at the position shown in the crystal structure (1DE9). Taken together our MD simulations and biochemical analysis suggests that Mg(2+) binding at the B site is involved in the reaction mechanism associated with endonuclease function of APE1.  相似文献   

18.
In addition to the known binding of norharman (NH) to monoamine oxidase (MAO) and benzodiazepine (BZ) binding sites (at M concentrations), a distinct class of high-affinity NH binding sites was discovered in rat brain (1,2). Investigations of several organs of the rat led to the discovery of high affinity binding sites in the liver, which successfully could be solubilized from P2 membrane homogenate (0.25% w/v Triton X-100). Scatchard analysis revealed an apparent KD value of 26±8 nM and a maximum number of binding sites of 11±3 pmol/mg protein (n=14). Association kinetics showed that equilibrium was nearly reached after two hours. Dissociaton was totally complete only after more than 16 hours. The MAO-inhibitors examined did not influence the binding characteristics. No displacement of specific binding could be found by haloperidol.  相似文献   

19.
The Gq-coupled oxytocin receptor (OTR) and the Gs-coupled β2-adrenergic receptor (β2AR) are both expressed in myometrial cells and mediate uterine contraction and relaxation, respectively. The two receptors represent important pharmacological targets as OTR antagonists and β2AR agonists are used to control pre-term uterine contractions. Despite their physiologically antagonistic effects, both receptors activate the MAP kinases ERK1/2, which has been implicated in uterine contraction and the onset of labor. To determine the signalling pathways involved in mediating the ERK1/2 response, we assessed the effect of blockers of specific G protein-associated pathways. In human myometrial hTERT-C3 cells, inhibition of Gαi as well as inhibition of the Gαq/PKC pathway led to a reduction of both OTR- and β2AR-mediated ERK1/2 activation. The involvement of Gαq/PKC in β2AR-mediated ERK1/2 induction was unexpected. To test whether the emergence of this novel signalling mechanism was dependent on OTR expression in the same cell, we conducted experiments in HEK 293 cells that were transfected with the β2AR alone or co-transfected with the OTR. Using this approach, we found that β2AR-mediated ERK1/2 responses became sensitive to PKC inhibition only in cells co-transfected with the OTR. Inhibitor studies indicated the involvement of an atypical PKC isoform in this process. We confirmed the specific involvement of PKCζ in this pathway by assessing PKCζ translocation to the cell membrane. Consistent with our inhibitor studies, we found that β2AR-mediated PKCζ translocation was dependent on co-expression of OTR. The present demonstration of a novel β2AR-coupled signalling pathway that is dependent on OTR co-expression is suggestive of a molecular interaction between the two receptors.  相似文献   

20.
The role of RGS proteins on dopaminergic D2S receptor (D2SR) signalling was investigated in Chinese hamster ovary (CHO)-K1 cells, using recombinant RGS protein- and PTX-insensitive Gαo proteins. Dopamine-mediated [35S]GTPγS binding was attenuated by more than 60% in CHO-K1 D2SR cells coexpressing a RGS protein- and PTX-insensitive GαoGly184Ser:Cys351Ile protein versus cells coexpressing a similar amount of PTX-insensitive GαoCys351Ile protein. Dopamine-agonist-mediated Ca2+ responses were dependent on the coexpression with a GαoCys351Ile protein and were fully abolished upon coexpression with a GαoGly184Ser:Cys351Ile protein. These results suggest that interactions between the Gαo protein and RGS proteins are involved in efficient D2SR signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号